当前位置:文档之家› 3-2 分子生物学习题集(含详解)

3-2 分子生物学习题集(含详解)

3-2  分子生物学习题集(含详解)
3-2  分子生物学习题集(含详解)

考研分子生物学习题集

证明DNA是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。这两个实验中主要的论点证据是:( ) --类型:选择题--选择:(a)从被感染的生物体内重新分离得到DNA,作为疾病的致病剂(b)DNA突变导致毒性丧失(c)生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能(d)DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子(e)真核生物、原核生物、病毒的DNA能相互混合并彼此替代

--答案:c

--------------------------------------------------------------------------------

1953年Watson和Crick提出:( ) --类型:选择题--选择:(a)多核苦酸DNA链通过氢键连接成一个双螺旋(b)DNA的复制是半保留的,常常形成亲本—子代双螺旋杂合链(c)三个连续的核苦酸代表一个遗传密码(d)遗传物质通常是DNA而非RNA (e)分离到回复突变体

证明这一突变并非是一个缺失突变

--答案:a

--------------------------------------------------------------------------------

双链DNA中的碱基对有:( ) --类型:选择题--选择:(a)A—U (b)G─T (c)C—G (d)T─A

(e)C─A

--答案:c,d

--------------------------------------------------------------------------------

DNA双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA的解链温度的正确描述:( ) --类型:选择题--选择:(a)哺乳动物DNA约为45℃,因此发烧时体温高于42℃是十分危险的(b)依赖于A-T含量,因为A-T含量越高则双链分开所需要的能量越少(c)是双链DNA中两条单链分开过程中温度变化范围的中间值(d)可通过碱基在260nm的特征吸收蜂的改变来确定(e)就是单链发生断裂(磷酸二酯键

断裂)时的温度

--答案:c,d

--------------------------------------------------------------------------------

DNA的变性:( ) --类型:选择题--选择:(a)包括双螺旋的解链(b)可以由低温产生(c)是可逆的(d)是磷酸二酯键的断裂(e)包括氢键的断裂

--答案:a,c,e

--------------------------------------------------------------------------------

在类似RNA这样的单链核酸所表现出的“二级结构”中,发夹结构的形成:( ) --类型:选择题--选择:(a)基于各个片段问的互补,形成反向平行双螺旋(b)依赖于A—U含量,因为形成的氢键越少则发生碱基配对所需的能量也越少(c)仅仅当两配对区段中所有的碱基均互补时才会发生(d)同样包括有像G—U这样的不规则碱基配对(e)允许存在几个只有提

供过量的自由能才能形成碱基对的碱基

--答案:a,d

--------------------------------------------------------------------------------

DNA分子中的超螺旋:( ) --类型:选择题--选择:(a)仅发生于环状DNA中。如果双螺旋在围绕其自身的轴缠绕后(即增加缠绕数)才闭合,则双螺旋在扭转力的作用下,处于静止(b)在线性和环状DNA中均有发生。缠绕数的增加可被碱基配对的改变和氢键的增加所抑制(c)可在一个闭合的DNA分子中形成一个左手双螺旋。负超螺旋是DNA修饰的前提,为酶接触DNA提供了条件(d)是真核生物DNA有丝分裂过程中固缩的原因(e)是双螺旋中一条链绕另一条链的旋转数和双螺旋轴的回转数的总和

--答案:a,c,e

--------------------------------------------------------------------------------

DNA在10nm纤丝中压缩多少倍(长度)? ( ) --类型:选择题--选择:(a)6倍.(b)10倍(c)

40倍(d)240倍(e)1000倍(f)10000倍

--答案:a

--------------------------------------------------------------------------------

DNA在30nm纤丝中压缩多少倍?( ) --类型:选择题--选择:(a) 6倍(b)10倍(c)40倍

(d)240倍(e)1000倍(f)10000倍

--答案:c

--------------------------------------------------------------------------------

DNA在染色体的常染色质区压缩多少倍?( ) --类型:选择题--选择:(a)6倍(b)10倍(c)

40倍(d)240倍(e)1000倍(f)10000倍

--答案:e

DNA在中期染色体中压缩多少倍?( ) --类型:选择题--选择:(a)6倍(b)10倍(c)40倍(d)

240倍(e)1000倍(f)10000倍

--答案:f

--------------------------------------------------------------------------------

组蛋白的净电荷是:( ) --类型:选择题--选择:(a)正(b)中性(c)负

--答案:a

--------------------------------------------------------------------------------

核小体的电性是:( ) --类型:选择题--选择:(a)正(b)中性(c)负

--答案:b

--------------------------------------------------------------------------------

当新的核小体在体外形成时,会出现以下哪些过程?( ) --类型:选择题--选择:(a)核心组蛋白与DNA结合时,一次只结合一个(b)一个H32—H42核形成,并与DNA结合,随后按顺序加上两个H2A—H2B二聚体(c)核心八聚体完全形成后,再与DNA结合

--答案:b,c

--------------------------------------------------------------------------------

1953年Watson和Crick提出:( ) (e)分离到回复突变体证明这一突变并非是一个缺失突变--类型:选择题--选择:(a)多核苷酸DNA链通过氢键连接成一个双螺旋(b)DNA的复制是半保留的,常常形成亲本—子代双螺旋杂合链(c)三个连续的核苦酸代表一个遗传密码

(d)遗传物质通常是DNA而非RNA

--答案:a

--------------------------------------------------------------------------------

当一个基因具有活性时:( ) --类型:问答题--选择:(a)启动子一般是不带有核小体的(b)整个基因一般是不带有核小体的(c)基因被核小体遮盖,但染色质结构已发生改变以致于整

个基因对核酸酶降解更加敏感--答案:a,c

--------------------------------------------------------------------------------

在高盐和低温条件下由DNA单链杂交形成的双螺旋表现出几乎完全的互补性,这一过程可

看作是一个复性(退火)反应. --类型:判断题

--答案:1.错误;

--------------------------------------------------------------------------------

B型双螺旋是DNA的普遍构型,而Z型则被确定为仅存在于某些低等真核细胞中。--类型:

判断题

--答案:3.错误

--------------------------------------------------------------------------------

病毒的遗传因子可包括1到300个基因。与生命有机体不同,病毒的遗传因子可能是DNA 或RNA(但不可能同时兼有!)因此DNA不是完全通用的遗传物质。--类型:判断题

--答案:4.正确

C0t1/2与基因组大小相关。--类型:判断题

--答案:5.正确

--------------------------------------------------------------------------------

C0t1/2与基因组复杂性相关。--类型:判断题

--答案:6.正确

--------------------------------------------------------------------------------

非组蛋白染色体蛋白负责3nm纤丝高度有序的压缩。--类型:判断题

--答案:7.正确。

--------------------------------------------------------------------------------

碱基对间在生化和信息方面有什么区别? --类型:简答题

--答案:1、答:从化学的角度看,不同的核苷酸仅是含氮碱基有差别。贮存在DNA中的信息是指碱基的顺序,而碱基不参与核苷酸之间的共价连接,因此贮存在DNA的信息不会影响分子结构,来自突变或重组的信息改变也不会破坏分子。

-------------------------------------------------------------------------------- 在何种情况下有可能预测某一给定的核苷酸链中“G”的百分含量? --类型:简答题

--答案:2、答:由于在分子中互补碱基的含量是一样的,因此只有在双链中G的百分比是可知的:G%=(G十C)/2。(G十c)可由分光光度法测定。

--------------------------------------------------------------------------------

真核基因组的哪些参数影响C0t1/2值? --类型:简答题

--答案:3、答:C0t1/2值受基因组大小和基因组中重复DNA的类型和总数影响。

--------------------------------------------------------------------------------

请问哪些条件可促使DNA复性(退火)? --类型:简答题

--答案:4、答:降低温度、pH值和增加盐浓度可以促进DNA复性(退火)。

在核酸双螺旋(如DNA)中形成发夹环结构的频率比单链分子低。发夹结构的产生需要回文序列使双链形成对称的发夹,呈十字结构。--类型:判断题

--答案:2.正确;--------------------------------------------------------------------------------

为什么DNA双螺旋中维持特定的沟很重要? --类型:简答题

--答案:5、答:形成沟状结构是DNA与蛋白质相互作用所必需的,这样DNA结合蛋白与DNA修饰蛋白中特定的氨基酸才能与对应的碱基相互作用。

--------------------------------------------------------------------------------

大肠杆菌染色体的分子量大约是2,5x 1000000000Da,核苷酸的平均分子量是330Da。邻近核苦酸对之间的距离是0.34nm;双螺旋每一转的高度(即螺距)是0.34nm,(1) 该分子有多长(2) 该DNA有多少转? --类型:简答题

--答案:6、答:(1) 1碱基=330Da,l碱基对=660Da 碱基对数=2.5×10000000000/ 660=3.8×1000000 =3800kb 每个碱基对相距0.34nm,这样:染色体DNA分子的长度=3.8×1000000×0.34nm =1.3×1000000 nm =1.3mm (2) 该DNA双螺旋中的转数=

3.8×1000000×0.34/3.4=3.8×100000

--------------------------------------------------------------------------------

曾经有一段时间认为,DNA无论来源如何,都是4个核苷酸的规则重复排列(如ATCG.A TCG,ATCG,ATCG…),所以DNA缺乏作为遗传物质的特异性。第一个推翻该四核苦酸

定理的证据是什么? --类型:简答题

--答案:7、答在1949到1951年间,Erwin Chargaff发现:(1)不同来源的DNA的碱基组成变化极大。(2) A和T、C和G的总量几乎总是相等(即Chargaff规则)。(3)虽然(A

十G)/(C十T)的值总是l,但(A十T)/(G十C)的比值在各生物体之间变化极大。

现在对人类基因组的主要研究工作是进行基因组的序列测定。然而,有人根据人类基因组是由重复序列组成为由,认为反复对同一种DNA进行测序是不明智的。你能否拟定两份计划,一份计划应保证仅仅单一序列DNA被测序,第二个计划应允许仅仅转录的单一DNA序列被

测序。请简述你的两份计划。--类型:分析题

--答案:答:计划一:进行一个复性实验,在从不同的温育时间取出等量样品。当所有重复DNA都发生退火时,从反应中去除双链DNA(可以使用一个仅能结合双链DNA的柱或过滤器)。接着继续进行复性反应直到所有的单拷贝DNA都发生复性;以这一单拷贝DNA建立克隆文库,用于测序。计划二:仅测序能够表达的单拷贝基因。用计划一中分离纯化得到的单一序列DNA与细胞总RNA杂交,使复性完全,然后从反应液中除去单链DNA,只有能表达的单拷贝DNA以DNA-RNA杂合体的形式留下来。克隆这一DNA并进行测序(现在可采用EST法,从细胞总RNA中制备表达序列的cDNA,进行测序)。

列举一个已知的DNA序列编码一种以上蛋白质的三种方法。--类型:简答题

--答案:答:给定的一段DNA序列可以以下述方式编码两种或两种以上的蛋白质:(1)可读框中在核糖体结合位点之后含有多重起始位点;(2)以一两个碱基的移码方式出现重叠的可读框;(3)不同的剪接方式,例如,选择不同的外显子组合成不同的mRNA。

--------------------------------------------------------------------------------

氨甲喋吟对哺乳动物细胞有何作用?细胞是如何对这种药物产生抗性的?其中稳定和不稳定

抗性有什么不同?--类型:简答题

--答案:答:氨甲喋呤是一个阻断叶酸新陈代谢的药物,提高DHFR基因的拷贝数可以使细胞产生对这种药物的抗性。在稳定扩增的细胞中,基因在它们正常所处的染色体位置上扩增。在不稳定的细胞系中,扩增基因形成称为双微染色体的额外染色体元件。去除氨甲喋呤

之后双微染色体就会消失。

--------------------------------------------------------------------------------

什么证据表明活性基因带有DNaseI的超敏位点? --类型:分析题

--答案:答:有人用不同浓度的DNaseI对成熟细胞中的成体β球蛋白基因和胚胎β球蛋白进行检测,发现:成体β球蛋白基因对低浓度的DNaseI敏感(在0.05mg/m1的DNaseI 的作用下成体β球蛋白基因的带大部分消失);而在成熟细胞中没有活性的胚胎β球蛋白基因只有当DNaseI的浓度达到0.5mg/ml时才能被消化,因此,活性的基因对DNaseI超敏

感。

--------------------------------------------------------------------------------

表面抗原的变异和哺乳动物免疫多样性都是DNA重排的结果。锥虫通过DNA重排选择表达所携带的一千多个不同的VSG基因中的一个。而哺乳动物细胞则通过DNA重排产生成百上千个不同的抗体,包括与VSG蛋白反应的抗体,尽管抗体在数量上的优势,锥虫仍然能够成功地逃避宿主的免疫系统,为什么? --类型:分析题

--答案:答:锥虫因为细胞分裂周期短而取胜。当锥虫感染哺乳动物时,它在血流中以快速的倍增时间复制。在感染开始后不久,识别锥虫VSG的B细胞从休眠状态被激活并开始膨大,而哺乳动物细胞的分裂比锥虫慢得多。当B细胞膨大到足以杀死锥虫时,一些锥虫的VSG已经发生了改变,使B细胞不再能识别它。这样就起始了新一轮的感染,直到免疫系统能识别它时就已改变成能逃得过免疫系统的变体,于是又开始了新的循环。

--------------------------------------------------------------------------------

请解释酵母的交配型系统为什么可以作为DNA重组、染色质结构对基因表达的调控、染色体结构域的保持、转录元件间的蛋白互作、基因表达的细胞类型特异性以及信号传递激活基

因的例子。--类型:分析题

--答案:答:交配型体系通过DNA重排把交配型基因从沉默基因座(HMT和HML)转移到表达基因座(MAT)。沉默基因座由HMT和HML的染色体结构控制而没有转录活性。E和I 沉默子区域是产生不活动染色体结构的分界。一些转录因子的活性受到蛋白—蛋白相互作用的调节,如PRTF转录因子。PRTF能单独激活“α-特异基因,与α-蛋白结合时能激活。α-特异基因。当α2出现时,它抑制α-特异基因。细胞类型特异表达基因的表达以HO基因为例,它具有一个复杂的启动子,该启动子只在单倍体细胞中有活性,在双倍体细胞中没有活性。HO启动子还受到细胞周期的调节,它只在G1期的后期有活性。最后,交配型体系还采用一种信号传递级联作用来控制基因的表达。交配型外激素与细胞表面受体的结合激活了一系列将信号传递到核内并改变基因表达的蛋白激酶。

为什么在DNA中通常只发现A—T和C—G碱基配对? --类型:简答题

--答案:31. 答:(1)C—A配对过于庞大而不能存在于双螺旋中;G—T碱基对则太小,核苷酸间的空隙太大无法形成氢键。(2)A和T通常有两个氢键,而C和G有三个。正常情况下,可形成两个氢键的碱基不能与可形成三个氢键的碱基配对。

-------------------------------------------------------------------------------- 列出最先证实是DNA(或RNA)而不是蛋白质是遗传物质的一些证据。--类型:简答题

--答案:32 答:(1)在20世纪40年代,0swald Avery和他的同事发现来自于肺炎球菌光滑型毒株(被一层多糖荚膜包被着)的DNA可被无毒的粗糙菌株(无荚膜)吸附,并将一些这种细胞转化为光滑型毒株。如果提取出的DNA首先用DNase处理,将其降解,转化则不会发生。(2)1956年,Heinz Fraenkel—Conrat重建了烟草花叶病毒(TMV),将一种病毒株的衣壳蛋白和另一种病毒株的RNA构成杂合病毒(注意TMV的遗传物质是单链RNA分子) 用这些杂合体感染烟草时,发现:①产生的损伤与RNA供体植株相同;②从损伤处得到的子代病毒具有与提供RNA的亲本株系一致的RNA和蛋白衣壳。(3)当噬菌体感染细菌时,只有核酸进入被感染细胞(虽然有时可能也有微量的结合蛋白进入),而这已足以编码完整的新噬菌体。(4)可特异性改变DNA结构的化学物质能够诱导产生可遗传的变化或突变。(5)在任何种属中,DNA的量在各个细胞中是稳定的,除了单倍体配子中只含有该数值的一半。如果认为DNA是遗传物质,这是意料之中的。此外,在细胞的其他成分中没有发现这种稳

定性的联系。

--------------------------------------------------------------------------------

为什么只有DNA适合作为遗传物质? --类型:简答题

--答案:33.答:DNA是由磷酸二酯键连接的简单核苷酸多聚体,其双链结构(二级结构)保证了依赖于模板合成的准确性。DNA以遗传密码的形式编码多肽和蛋白质,其编码形式的

多样性和复杂性是令人难以想像的。

--------------------------------------------------------------------------------

什么是连锁群?举一个属于连锁基因座的例子。--类型:简答题

--答案:34 答:连锁群是指通过共同遗传分离的一组遗传基因座。通常这些基因座在同一染色体上,相互靠得很近,而且在这区域重组率低。最常见的例子是X染色体连锁群,该连锁群只在雄性后代中出现遗传型和表型的明显分离(例如果蝇中的白眼突变体)。

--------------------------------------------------------------------------------

什么是顺反子?用“互补”和“等位基因”说明“基因”这个概念。--类型:简答题

--答案:35. 答:等位基因是指同一基因的不同状态,通常是位于不同个体的同源染色体上。在遗传作图(RFLP或突变体表型分析)中,染色体上的基因(遗传单元)与基因座等价。这些遗传学术语必须与分子生物学术语相结合才能反映遗传信息的利用及基因表达。基因表达的单位即转录单位,在原核生物中一般由多个可翻译成蛋白质的片段组成;而在真核生物中则不然,仅含有一个翻译单位的转录单位称为一个顺反子。顺反子可以通过互补分析得以鉴定:若两个突变单位不能通过反式互补实验使功能得以恢复,则说明这两个突变单位位于同

一转录单位。

--------------------------------------------------------------------------------

假定你在25℃条件下用如下浓度的DNaseI:0,0.1,1.0及10.0mg/ml,对鸡红细胞细胞核的染色质进行酶切20分钟。将这些样品与分子量标记一起上样于6%变性聚丙烯酰胺凝胶,下图是凝胶电泳的结果。但由于你混淆了样品,因此弄不清每个泳道对应的样品是什么。惟一可以确信的是分子量标记上样于左边的泳道,但忘记了各带对应的分子量大小(图1.1)。

(1)请回忆起在各泳道分别使用的是哪一浓度的DNaseI? (2)请指出分子量标记泳道(用M 表示)各带的大约分子量。(3) 描述各泳道所显示的染色质结构特征,证实所记忆的数字是

正确的。--类型:分析题

--答案:36 答:(1)和(2)的答案示如图A1.1。(3)在没有DNaseI加入时,染色质没有被消化,可以看到一条高分子量的带。在低浓度下(O.1mg/ml),DNase I切割核小体之间的连接DNA产生一个单核小体带(200nt的带)、双核小体带(400nt的带)等等。增加核酸酶的浓度到1.0mg/ml,这时所有的多核小体带都被切割成单核小体的带。在非常高的浓度下,包围组蛋白八聚体的DNA也会被切割。只有当一条链处于双螺旋之外时,它才可能有敏感性。消化后,产生了与DNA的周期性结构相关的相间10个核苷酸的条带。由此可说明记

忆的数字是正确的。

--------------------------------------------------------------------------------

假定你从一新发现的病毒中提取了核苷酸,请用最简单的方法确定:(1)它是DNA还是R NA?(2)它是单链还是双链?--类型:分析题

--答案:37 答:确定碱基比率。如果有胸腺嘧啶,为DNA,如果有尿嘧啶,则为RNA。

如果为双链分子,那么A与T(或U)的量以及G与C的量应相等。

--------------------------------------------------------------------------------

RNA 是由核糖核酸通过()键连接而成的一种()。几乎所有的RNA都是由()DNA ()而来,因此,序列和其中一条链()。--类型:填空题

--答案:38 磷酸二酯;多聚体;模板;转录;互补

--------------------------------------------------------------------------------

多数类型的RNA是由加工()产生的,真核生物前体tRNA的()包括()的切除和()的拼接。随着()和()端的序列切除,3’端加上了序列()。在四膜虫中,前体TR NA 的切除和()的拼接是通过()机制进行的。--类型:填空题

--答案:39 前体分子;加工;内含子;外显子;5’;3’; CCA;内含子;外显子;

自动催化

--------------------------------------------------------------------------------

Rnase P 是一种(),含有()作为它的活性部位,这种酶在()序列的()切割()。

--类型:填空题

--答案:40 内切核酸酶;RNA;tRNA;5’端;前体RNA

C0t1/2实验测定的是()。--类型:填空题

--答案:41 RNA的复性程度

--------------------------------------------------------------------------------

假定摆动假说是正确的,那么最少需要()种TRNA来翻译61种氨基酸密码子。--类型:

填空题

--答案:42 32

--------------------------------------------------------------------------------

写出两种合成后不被切割或拼接的RNA:()和()。--类型:填空题

--答案:43.真核生物中的5SrRNA;原核生物中的mRNA

--------------------------------------------------------------------------------

原核细胞信使RNA含有几个其功能所必需的特征区段,它们是:( ) --类型:选择题--选择:(a)启动子,SD序列,起始密码子,终止密码子,茎环结构(b)启动子,转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和ORF 尾部序列,茎环结构(c)转录起始位点,尾部序列,由顺反子间区序列隔开的SD序列和0RF,茎环结构(d)转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和0RF,局部序列

--答案:d

--------------------------------------------------------------------------------

tRNA参与的反应有:( ) --类型:选择题--选择:(a)转录(b)反转录(c)翻译(d)前体mR

NA的剪接(e)复制

--答案:a

--------------------------------------------------------------------------------

氨酰tRNA的作用由( )决定.--类型:选择题--选择:(a)其氨基酸(b)其反密码子(c)其固定的碱基区(d)氨基酸与反密码子的距离,越近越好(e)氨酰tRNA合成酶的活性

--答案:c,d

--------------------------------------------------------------------------------

I型内含子能利用多种形式的鸟嘌吟,如:( ) --类型:选择题--选择:(a)GMP (b)GDP

(c)GTP (d)dGDP (e)ddGMP(2’,3’–双脱氧GMP)

--答案:c,d

--------------------------------------------------------------------------------

I型内含子折叠成的复杂二级结构:( ) --类型:选择题--选择:(a)有长9bp的核苦酸配对(b)对突变有很大的耐受性(c)形成可结合外来G和金属离子的“口袋”(d)使内含子的所

有末端都在一起(e)在剪接过程中发生构象重组(f)利用P1和P9螺旋产生催化中心

--答案:a,c,e

--------------------------------------------------------------------------------

RNase P:( ) --类型:选择题--选择:(a) 其外切核酸酶活性催化产生tRNA成熟的5’末端(b)含有RNA和蛋白组分(c)体内切割需要两个组分(d)体外切割需要两个组分(e)采用

复杂的二级与三级结构形成催化位点

--答案:a,b,c,e

--------------------------------------------------------------------------------

锤头型核酶:( ) --类型:选择题--选择:(a)是一种具有催化活性的小RNA (b)需要仅含有17个保守核苦酸的二级结构(c)不需要Mg2+协助(d)可用两个独立的RNA创建锤头型核

--答案:a,b,d

I型剪接需要( ) --类型:问答题--选择:(a)单价阳离子(b)二价阳离子(c)四价阳离子(d) U1SnRNP (e)一个腺苷酸分支点(f)一个鸟嘌吟核苷酸作为辅助因子

--答案:a,b,f

--------------------------------------------------------------------------------

在I型剪接的过程中,( ) --类型:选择题--选择:(a)游离的G被共价加到内含子的5’端(b)GTP被水解(c)内含子形成套马索结构(d)在第一步,G的结合位点被外来的G占据,而在第二步时,被3’剪接位点的G 所取代(e)被切除的内含子继续发生反应,包括两个环

化反应

--答案:a,d,e

--------------------------------------------------------------------------------

对于所有具有催化能力的内含子,金属离子很重要;请举例说明金属离子是如何作用的。

--类型:简答题

--答案:53. 答:锤头型核酶在活性位点上结合一个Mg2+离子。这个Mg2+离子通过去掉一个质子并攻击切割位点而直接参与切割反应。

--------------------------------------------------------------------------------

列出真核生物mRNA与原核生物mRNA的区别。--类型:简答题

--答案:54. 答:原核生物和真核生物mRNA的差别在于可翻译顺反子的数目,真核生物的mRNA是单个顺反子。而且,真核生物的mRNA在其3’末端有多聚腺嘌呤尾巴(po1yA),而5’末端有7—甲基鸟嘌呤帽子。真核生物的mRNA尾部区域有时会携带特定的去稳定因

子。

--------------------------------------------------------------------------------

列出各种tRNA所有相同的反应及个别tRNA的特有反应。--类型:简答题

--答案:55. 答:(1)相同反应:与核糖体结合;除了起始tRNA以外,其他均与延长因子相互作用。(2)特殊反应:起始氨酰tRNA的甲酰化作用;起始氨酰tRNA同起始因子的相互作用;密码子与反密码子的碱基配对;由氨酰tRNA合成酶催化氨酰化。

--------------------------------------------------------------------------------

在体内,rRNA和tRNA都具有代谢的稳定性,而mRNA的寿命却很短,原因何在?--类型:

简答题

--答案:56 答:在不同的营养状态或细胞分化期间,mRNA的(种类和数量)变化很大;rR

NA和tRNA则无此特性。

--------------------------------------------------------------------------------

为什么真核生物核糖体RNA基因具有很多拷贝? --类型:简答题

--答案:57. 答:因为rRNA需要的量很大,并且没有翻译扩增作用。

--------------------------------------------------------------------------------

为什么说信使RNA的命名源自对真核基因表达的研究,比说源自对原核基因表达的研究更

为恰当? --类型:简答题

--答案:58. 答:真核基因表达过程是被区室化的。mRNA的合成与成熟是在细胞核中完成的,翻译则发生在细胞质中,转录“信息”被传递到细胞核外的核糖体中。由于真核细胞mRNA的半衰期比原核细胞mRNA长而且可以通过多种实验方法干扰转录“信息”的传递,

因此可分离出真核细胞的mRNA。

--------------------------------------------------------------------------------

说明为什么mRNA仅占细胞RNA总量的一小部分(3%一5%)。--类型:简答题

--答案:59 答:mRNA只占总RNA的3%一5%,这主要是有以下两个原因:①由于需要大量的核糖体和稳定的tRNA群,因此mRNA合成量比其他RNA的量要少;②由于对内切酶与外切核酸酶敏感,mRNA容易自发地降解,所以在原核细胞中mRNA的半衰期只有2一15分钟,真核细胞中也只有4—24小时。

--------------------------------------------------------------------------------

为何rRNA和tRNA分子比mRNA稳定? --类型:简答题

--答案:60. 答:mRNA游离存在于细胞之中,并且被特异的单链RNA核酸酶所降解。tR NA和rRNA 是部分双链的,所以能够免遭核酸酶的攻击。另外,rRNA不是游离存在的,通

常同蛋白质结合形成核糖体。

起始tRNA具有哪两种与其他跟tRNA不同的特性? --类型:简答题

--答案:61. 答:(1)带有一个甲酰化的氨基酸(N—甲酰甲硫氨酸);(2)它是惟一一种同3 0S核糖体亚基—mRNA复合物内的密码子(AUG)起反应的tRNA

--------------------------------------------------------------------------------

区别tRNA和mRNA在翻译中的作用。--类型:简答题

--答案:62. 答:mRNA是氨基酸装配成多肽的模板。tRNA一方面是识别特异氨基酸的接头分子,另一方面又可以识别特异的mRNA密码子。

--------------------------------------------------------------------------------

氨基酸分子如何与正确的tRNA分子连接? --类型:简答题

--答案:63. 答:对于每一种氨基酸都有一种特殊的氨酰tRNA合成酶,这种酶可以识别自己的氨基酸和相应的空载tRNA在ATP存在的情况下,它把氨基酸的羧基同tRNA 3’端的

CCA连接起来。

--------------------------------------------------------------------------------

简要说明证明信使的存在及其本质为RNA的证据。--类型:简答题

--答案:64.答:(1)科学家观察到生物,尤其是真核生物中,染色体DNA只存在于核中,而蛋白质合成则完全在细胞质中进行。因此,提出一定存在某种化合物(信使)在核与细胞质之间传递遗传信息。1957年,E11iot Volkin和Lazlrus Astrachan注意到用噬菌体T2感染E.coli细胞后细菌的RNA和蛋白质合成迅速停止,而T2的RNA和蛋白质迅速合成。此外,这一RNA的碱基比例与T2 DNA碱基比例一致,而不是细菌DNA.他们的发现第一次证明了信使为RNA。(2) 1961年Bernard Hall和So1 Spiegelman用杂交实验更令人信服地证明了mRNA假说。他们用噬菌体T2感染E.coli后,马上分离出现的RNA(假定为信使),再将E.coli和噬菌体T2DNA温热变性,成为单链DNA,把RNA和单链DNA混合后缓慢冷,发现:①双链DNA分子重新形成;②当单链的DNA和RNA的碱基互补时,形成DNA-RNA 杂合双链分子。他们发现噬菌体T2感染后出现的RNA不能与E.coli 的DNA杂交,但至少

能与T2双链DNA中的一条链互补。

--------------------------------------------------------------------------------

列举4种天然存在的具有催化活性的RNA。--类型:简答题

--答案:65.答:I型内含子、II型内含子、RnaseP、锤头型核酶。

--------------------------------------------------------------------------------

I型内含子发生改变后,可以产生其他酶的活性吗?如果可以,是哪些活性?这意味着I型内含子的催化中心有什么特点?--类型:简答题

--答案:66.答:可以。这些活性包括:RNA聚合酶、内切核酸酶、磷酸酶、连接酶的活性。将I 型内含子转变成这些酶的能力表明它能结合于RNA的糖—磷酸骨架并能催化在它前后的几个不同反应。例如,连接是剪切的相反反应。

--------------------------------------------------------------------------------

某些自剪接的内含子具有可读框,它们编码何种蛋白?这与内含子的移动有什么关系? --类型:简答题

--答案:67.答:编码的蛋白有:反转录酶、内切核酸酶、成熟酶。这些蛋白产生内含子的一个DNA 拷贝并在染色体一个新位点上打开双链以便插入内含子。

--------------------------------------------------------------------------------

有一个被认为是mRNA的核苦酸序列,长300个碱基,你怎样才能:(1)证明此RNA是mRNA而不是tRNA或rRNA。(2)确定它是真核还是原核mRNA。--类型:分析题

--答案:68.答:根据序列组成进行判断:(1)此序列太长不可能是tRNA。如果它是rRNA,应该含有许多特殊元件,如:假尿嘧啶和5—甲基胞嘧啶;同时应具有可以形成发夹环的反向重复序列。如果是mRNA则应有AUG起始密码子、一段相应的氨基酸密码子和一个相应的终止密码子构成的可读框。(2)所有的真核生物mRNA在5’端都含有一个7—甲基鸟苷,而且大多数还在3’端有一个长的po1yA尾巴。这些都是原核生物mRNA所不具有的,但是原核生物mRNA靠近5’端有l—个核糖体结合序列(SD序列)。

--------------------------------------------------------------------------------

如果两个RNA分子具有适当的序列以及配对恰当,就可以利用它们构建锤头型核酶。其中,“底物链”必须含有5’—GUN—3’(N代表任一种核苷酸)序列,而“酶链”则必须具有核酶催化中心的序列,同时与底物链配对。这样,酶链在N核昔酸的3’端对底物链进行切割。提供适当的酶链,可以降解细胞中不能被锤头型核酶切割的RNA,这为把酶链作为阻断某些基因表达的治疗试剂提供了可能。例如,一些研究小组正在设计可以切割HIV RNA的酶链,将如何设计这种核酶的酶链?如何选择HIV RNA中的靶序列?该酶链应具有什么特点?另外,以RNA作为药物,将会碰到什么问题? --类型:分析题

--答案:69.答:首先,目标RNA必须具有5’-GUN-3’序列。这一序列不能位于参与形成其他RNA 结构(比如说茎—环结构)的区域中,因为这些结构会妨碍RNA与起核酶作用的RNA 链的配对。酶链必须与目标RNA配对,但不能与其它细胞内任何RNA配对,否则RNA 会被不正确切除。在目前来说将一种RNA送到目标细胞中还是一件困难的事,但可以通过加上一个编码酶链的基因并将基因送进细胞中,让胞内的RNA 聚合酶制造出RNA,或者以化学方法合成酶链并导人细胞中。

--------------------------------------------------------------------------------

在DNA合成中负责复制和修复的酶是( )。--类型:填空题

--答案:70. DNA聚合酶

染色体中参与复制的活性区呈Y型结构,称为( )。--类型:填空题

--答案:71 DNA复制*

--------------------------------------------------------------------------------

在DNA复制和修复过程中修补DNA螺旋上缺口的酶称为( ).--类型:填空题

--答案:72. DNA连接酶

--------------------------------------------------------------------------------

在DNA复制过程中,连续合成的子链称( ),另一条非连续合成的子链称为( )。--类型:填空题

--答案:73. 先导链;后随链

--------------------------------------------------------------------------------

如果DNA聚合酶把一个不正确的核苦酸加到3’末端,一个含3’→5’活性的独立催化区会将这个错配碱基切去。这个催化区称分( )酶。--类型:填空题

--答案:74. 校正外切核酸

--------------------------------------------------------------------------------

DNA后随链合成的起始要一段短的( ),它是由( )以核糖核苷酸为底物合成的。--类型:填空题

--答案:75. RNA引物;DNA引发酶

--------------------------------------------------------------------------------

复制*上DNA双螺旋的解旋作用由(),催化的,它利用来源于ATP水解产生的能量沿DNA 链单向移动。--类型:填空题

--答案:76. DNA解旋酶

--------------------------------------------------------------------------------

帮助DNA解旋的()与单链DNA结合,使碱基仍可参与模板反应。--类型:填空题

--答案:77. 单链DNA结合蛋白(SSB)

--------------------------------------------------------------------------------

DNA引发酶分子与DNA解旋酶直接结合形成一个()单位,它可在复制*上沿后随链下移,随着后随链的延伸合成RNA引物。--类型:填空题

--答案:78. 引发体

--------------------------------------------------------------------------------

如果DNA聚合酶出现错误,会产生一对错配碱基,这种错误可以被一个通过甲基化作用来区别新链和旧链的特别()系统进行校正。--类型:填空题

--答案:79. 错配校正(配错修复)

--------------------------------------------------------------------------------

对酵母、细菌以及几种生活在真核生物细胞中的病毒来说,都可在DNA独特序列()处观察到复制泡的形成。--类型:填空题

--答案:80. 复制起点

()可被看成一种可形成暂时单链缺口(Ⅰ型)或暂时双链缺口(Ⅱ型)的可逆核酸酶。--类型:填空题

--答案:81. DNA拓扑酶

--------------------------------------------------------------------------------

DNA的复制:( ) --类型:选择题--选择:(a)包括一个双螺旋中两条子链的合成(b)遵循新的子链与其亲本链相配对的原则(c)依赖于物种特异的遗传密码(d)是碱基错配最主要的来源(e)是一个描述基因表达的过程

--答案:b,d

--------------------------------------------------------------------------------

一个复制子是:( ) --类型:选择题--选择:(a)细胞分裂期间复制产物被分离之后的DNA 片段(b)复制的DNA片段和在此过程中所需的酶和蛋白(c)任何自发复制的DNA序列(它与复制起始点相连) (d)任何给定的复制机制的产物(A如:单环) (e)复制起点和复制*之间的DNA片段,

--答案:c

--------------------------------------------------------------------------------

真核生物复制子有下列特征,它们:( ) --类型:选择题--选择:(a) 比原核生物复制子短得多,因为有末端序列的存在(b) 比原核生物复制子长得多,因为有较大的基因组(c)通常是双向复制且能融合(d)全部立即启动,以确保染色体在S期完成复制(e)不是全部立即启动,在任何给定的时间只有大约15%是有活性的

--答案:c

--------------------------------------------------------------------------------

下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是:( ) --类型:选择题--选择:(a)起始位点是包括多个短重复序列的独特DNA片段(b)起始位点是形成稳定二级结构的回文序(c)多聚体DNA结合蛋白专一性识别这些短的重复序列(d)起始位点旁侧序列是A—T丰富的,能使DNA螺旋解开(e)起始位点旁侧序列是G—C丰富的,能稳定起始复合物.

--答案:a,c,d

--------------------------------------------------------------------------------

5. 下列关于DNA复制的说法是正确的有:( ) --类型:选择题--选择:(a)按全保留机制进行(b)按3’→5’方向进行(c)需要4种dNMP的参与(d)需要DNA连接酶的作用(e)涉及RNA引物的形成(f)需要DNA聚合酶I

--答案:d,e,f

--------------------------------------------------------------------------------

滚环复制:( ) --类型:选择题--选择:(a)是细菌DNA的主要复制方式(b)可以使复制子大量扩增(c)产生的复制子总是双链环状拷贝(d)是噬菌体DNA在细菌中最通常的一种复制方式(e)复制子中编码切口蛋白的基因的表达是自动调节的

--答案:b,d,e

最新分子生物学名词解释

分子生物学名词解释

名词解释 1. 基因(gene): 2. 结构基因(structural gene): 3. 断裂基因(split gene): 4. 外显子(exon): 5. 内含子(intron): 6. 多顺反子RNA(polycistronic/multicistronic RNA): 7. 单顺反子RNA(monocistronic RNA): 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA): 9. 开放阅读框(open reading frame, ORF): 10. 密码子(codon): 11. 反密码子(anticodon): 12. 顺式作用元件(cis-acting element): 13. 启动子(promoter): 14. 增强子(enhancer): 15. 核酶(ribozyme) 16. 核内小分子RNA(small nuclear RNA, snRNA) 17. 信号识别颗粒(signal recognition particle, SRP) 18. 上游启动子元件(upstream promoter element) 19. 同义突变(same sense mutation) 20. 错义突变(missense mutation) 21. 无义突变(nonsense mutation)

22. 移码突变(frame-shifting mutation) 23. 转换(transition) 24. 颠换(transversion) (三)简答题 1. 顺式作用元件如何发挥转录调控作用? 2. 比较原核细胞和真核细胞mRNA的异同。 3. 说明tRNA分子的结构特点及其与功能的关系。 4. 如何认识和利用核酶? 5. 若某一基因的外显子发生一处颠换,对该基因表达产物的结构和功能有什么影响? 6. 举例说明基因突变如何导致疾病。 (四)论述题 1. 真核生物基因中的非编码序列有何意义? 2. 比较一般的真核生物基因与其转录初级产物、转录成熟产物的异同之处。 3. 真核生物的基因发生突变可能产生哪些效应? (二)名词解释 1.基因组(genome) 2. 质粒(plasmid) 3.内含子(intron) 4.外显子(exon) 5.断裂基因(split gene) 6.假基因(pseudogene)

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学文献翻译

在旱地土壤中产甲烷古菌活性对养牛业的影响 维维安radl1,5,安德烈亚斯gattinger1,5,艾莉卡时ˇ一′可娃′2,3,安娜NEˇmcova′2,3,Jiri Cˇuhel2,3,米洛斯拉夫的ˇimek2,3,让查尔斯munch1,4,迈克尔schloter4和Dana elhottova′2 1土壤生态学,慕尼黑工业大学,上施莱斯海姆,慕尼黑,德国;2生物中心,土壤生物学研究所,Cˇ艾斯克′不得ˇjovice,捷克共和国;3生物科学,南波西米亚州大学,Cˇ艾斯克′不得ˇjovice,捷克共和国;4gsf国家研究中心环境与健康,土壤生态,Neuherberg学院,德国。 在本研究中,我们测试的假设是动物的行走与作为越冬牧场土壤中的甲烷有机物有关。因此,捷克共和国指出,在波西米亚南部的一个农场中,甲烷排放量和产甲烷菌种群对牛有不同程度的影响。在春天,甲烷排放与动物影响的梯度相一致。分析应用磷脂,该古细菌量最高的影响,发现部分(SI)对其有影响,其次是温和的影响(MI)没有影响。对于产甲烷菌的实时显示甲基辅酶M还原酶(MCRA)基因的定量PCR分析观察到了相同的趋势。检测单不饱和脂肪酸异戊烯基侧链的碳氢化合物(i20:1)表示的乙酸分解的存在影响牛产甲烷菌。这个结果是由mcrA基因序列分析证实得到的,这表明,所分析的克隆的33%属于甲烷。克隆序列的大部分(41%)与未培养瘤胃有关。由此可得到的假设是,相当大的一部分来自放牧本身产生甲烷的区域。相比于春天采样,在秋天,古细菌的生物量和mcrA数显著减少主要用于截面MI基因观察。可以得出结论,5个月后没有牛的影响,严重影响了部分保持其产甲烷的潜力,而在温和的冲击后甲烷生产潜力。期刊名称(2007)1,443,452–;DOI: 10.1038/ismej.2007.60;网上公布19七月2007 学科类别:微生物生态学和自然栖息地的功能多样性 关键词:多样性;甲烷排放;甲基辅酶M还原酶 引言 农业对于在土壤和植物生物量的二氧化碳(OCA,2006)气体减排和系统隔离提供了巨大的潜力。在这方面,山地草原在低投入农业系统中被认为是作为温室气体甲烷(CH4)(胡¨tsch等人。,1994)和只有微弱的来源的氧化亚氮(N2O)(莫西尔等人。,1991)。 然而,当草原用作牧场放牧时这些减排潜力可以改变。例如,克莱顿等人(1994)发现, 一个放牧的牧场的N2O排放量比不放牧的草地高三倍,并且推测踩踏和排泄的相互作用会刺激这个过程。动物踩踏时通过土壤压实造成土壤通气减少,从而增强的反硝化率(menneer等人,2005)。此外,踩踏可以使丰富的有机碳物质从粪便进入土壤,刺激微生物代谢,从而增加在较低的土壤深度氧的需求(Sˇimek 等人,2006)。厌氧环境和可用的有机碳可能有利于甲烷碳。事实上,一些研究表明,在施用有机肥后,甲烷排放量的时间会增加。

分子生物学名词解释全

1. 半保留复制(semiconservative replication):DNA复制时,以亲代DNA的每一股做模板,以碱基互补配对原则,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为半保留复制。 2.复制子replicon:由一个复制起始点构成的DNA复制单位。 57. 复制起始点(Ori C)DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸序列顺序的片段,即复制起始点。 24.(35)复制叉(replication fork)是DNA复制时在DNA链上通过解旋、解链和SSB蛋白的结合等过程形成的Y字型结构称为复制叉。 3. Klenow 片段klenow fragment:DNApol I(DNA聚合酶I)被酶蛋白切开得到的大片段。 4. 外显子exon、extron:真核细胞基因DNA中的编码序列,这部分可转录为RNA,并翻译成蛋白质,也称表达序列。 5.(56)核心启动子core promoter:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区。(Hogness区) 6. 转录(transcription):是在DNA的指导下的RNA聚合酶的催化下,按照硷基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。 7. 核酶(ribozyme):是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。 8.(59)信号肽signal peptide:常指新合成多肽链中用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。 9.顺式作用元件(cis-acting element):真核生物DNA中与转录调控有关的核苷酸序列,包括增强子、沉默子等。 10.错配修复(mismatch repair,MMR):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式;主要用来纠正DNA双螺旋上错配的碱基对,还能修复一些因复制打滑而产生的小于4nt的核苷酸插入或缺失。修复的过程是:识别出正确的链,切除掉不正确的部分,然后通过DNA聚合酶III和DNA连接酶的作用,合成正确配对的双链DNA。 直接修复direct repair:是将被损伤碱基恢复到正常状态的修复。有三种修复方式:1光复活修复2、O6-甲基鸟嘌呤-DNA甲基转移酶修复3单链断裂修复。

分子生物学名词解释

重要名词:(下划线的尤其重要) 1.常染色质:细胞间期核内染色质折叠压缩程度较低,碱性染料着色浅而均匀的区域, 是染色质的主体部分。DNA主要是单拷贝和中度重复序列,是基因活跃表达部分。2.异染色质:细胞间期核内染色质压缩程度较高,碱性染料着色较深的区域。着丝粒、端 粒、次缢痕,DNA主要是高度重复序列,没有基因活性。 3.核小体:核小体是染色体的基本组成单位,它是由DNA和组蛋白构成的,组蛋白H3、 H4、H2B、H2A各两份,组成了蛋白质八聚体的核心结构,大约200bp的DNA盘绕在蛋白质八聚体的外面,相邻两个核小体之间结合了1分子的H1组蛋白。 4.组蛋白:是染色体的结构蛋白,其与DNA组成核小体。根据其凝胶电泳性质可将其分 为H1、H2A、H2B、H3及H4。 5.转座子:是在基因组中可以移动和自主复制的一段DNA序列。 6.基因:原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是 遗传的基本单位。它包括结构蛋白和调控蛋白。 7.基因组:每个物种单倍体染色体的数目及其所携带的全部基因称为该物种的基因组。 8.顺反子:由顺/反测验定义的遗传单位,与基因等同,都是代表一个蛋白质的DNA 单 位组成。一个顺反子所包括的一段DNA与一个多肽链的合成相对应。 9.单顺反子和多顺反子: 真核基因转录的产物是单顺反子mRNA,即一个基因一条多肽链,每个基因转录都有各自的调控原件。 多顺反子是指原核生物一个mRNA分别编码多条多肽链,而这些多肽链对应的DNA片段位于一个转录单位内,享用同一对起点和终点。 10.转录单位:即转录时,DNA上从启动子到终止子的一段序列。原核生物的转录单位往 往可以包括一个以上的基因,基因之间为间隔区,转录之后形成多顺反子mRNA,可以编码不同的多肽链。真核生物的转录单位一般只有一个基因,转录产物为单顺反子RNA,只编码一条多肽链。 11.重叠基因:是指两个或两个以上的基因共有一段DNA序列重叠基因有多种重叠方式, 比如说大基因内包含小基因,几个基因重叠等等。 12.断裂基因:在真核生物基因组中,基因是不连续的,在基因的编码区域内部含有大量的 不编码序列,从而隔断了对应于蛋白质的氨基酸序列。这种不连续的基因又称断裂基因或割裂基因 13.限制性内切酶:限制性内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列, 并在相关位置切割DNA双链结构的核酸内切酶。 14.超螺旋:如果固定DNA分子的两端,或者本身是共价闭合环状DNA或与蛋白质结合 的DNA分子,DNA分子两条链不能自由转动,额外的张力不能释放,DNA分子就会发生扭曲,用以抵消张力。这种扭曲称为超螺旋(supercoil),是双螺旋的螺旋。 15.拓扑异构酶:通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来 改变DNA连环数的酶。拓扑异构酶I主要消除负超螺旋,作用一次超螺旋交叉数变化+1;拓扑异构酶II主要引入负超螺旋,作用一次L变化-2。TOPO I催化DNA的单链

分子生物学课程论文

分子生物学课程论文

PCR技术发展与应用的研究进展 王亚纯 09120103 摘要:聚合酶链式反应(polymerase chain reaction,PCR)是最常用的分子生物学技术之一,通过变性、退火和延伸的循环来完成核酸分子的大量扩增.定量PCR技术是克服了原有的PCR技术存在的不足,能准确敏感地测定模板浓度及检测基因变异等,快速PCR技术快速PCR在保证PCR反应特异性、灵敏性和保真度的前提下,在更短时间内完成对核酸分子的扩增.mRNA 差异显示PCR技术是在基因转录水平上研究差异表达和性状差异的有效方法之一.近年来已经开展了许多这三方面的研究工作,本文就定量PCR技术、快速PCR技术、mRNA差异显示PCR技术作一综述,以便更好地理解及应用这项技术。 关键字:定量PCR;荧光PCR;快速PCR;DNA聚合酶;mRNA差异显示PCR 0 前言 聚合酶链反应(polymerase chain reaction,PCR)技术由于PCR简便易行、灵敏度

高等优点,该技术被广泛应用于基础研究。但是,由于传统的PCR技术不能准确定量,且操作过程中易污染而使得假阳性率高等缺点,使其在临床上的应用受到限制[1]。鉴于此,对PCR产物进行准确定量便成为迫切的需要。几经探索,先后出现了多种定量PCR (quantitative PCR,Q-PCR)方法,其中结果较为可靠的是竞争性PCR和荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)。 随着生命科学和医学检测的不断发展,人们越来越希望在保证PCR反应特异性、灵敏性、保真度的同时,能够尽量缩短反应的时间,即实现快速PCR(Rapid PCR or Fast PCR)。快速PCR 技术不仅可使样品在有限的时间内可以尽快得到扩增,而且可以显著增加可检测的样品数量,显然,在大批量样本检测和传染病快速诊断等方面将会有重要的应用前景。例如,快速PCR在临床检测中可大大加快疾病的诊断效率;在生物恐怖袭击时能有效帮助快速鉴定可疑物中有害生物的存在与否;同时,由于PCR已经渗入到现代生物学研究的各个方面,快速PCR的实现必然可以使许多科学研究工作的进展显著加快,最终影

分子生物学名词解释等

名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子

分子生物学课程论文

生物芯片研究进展 摘要:生物芯片是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命科学和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。 关键词:生物芯片,缩微芯片实验室,疾病诊断,基因表达 正文:人们利用人类基因组计划中所发现的已知基因对其功能进行研究,把已知基因的序列与功能联系在一起的功能基因组学研究。另外,与疾病相关的研究已从研究疾病的起因向探索发病机理方面转移,并从疾病诊断向疾病易感性研究转移。由于所有上述这些研究都与DNA结构、病理和生理等因素密切相关,因此许多国家现已开始考虑在后基因组时期,研究人员是否能用有效的硬体技术来对如此庞大的DNA信息以及蛋白质信息加以利用。为此,先后已有多种解决方案问世,如DNA的质谱分析法、荧光单分子分析法、阵列式毛细管电泳、杂交分析等。 但到目前为止,在对DNA和蛋白质进行分析的各种技术中,发展最快和应用前景最好看的技术当数以生物芯片技术为基础的亲和结合分析、毛细管电泳分析法和质谱分析法。此外,在此基础上,通过与采用生物芯片技术和样品制备方法(芯片细胞分离技术和生化反应方法(如芯片免疫分析和芯片核酸扩增)相结合,许多研究机构和工业界都已开始构建所谓的缩微芯片实验室。 建立缩微芯片实验室的最终目的是将生命科学研究中的许多不连续的分析过程,如样品制备,化学反应和分离检测等,通过采用象集成电路制作过程中的半导体光刻加工那样的缩微技术,将其移植到芯片中并使其连续化和微型化。用这些生物芯片所制作的具有不同用途的生化分析仪具有下述一些主要优点,即分析全过程自动化、生产成本低、防污染(芯片系一次性使用)、分析速度可获得成千上万倍的提高、同时,所需样品及化学药品的量可获得成百上千倍的减少、极高的多样品处理能力、仪器体积小、重量轻、便于携带。 一.生物芯片的微加工制备 生物芯片的加工借用的是微电子工业和其他加工工业中比较成熟的一些微细加工工艺,在玻璃、塑料、硅片等基底材料上加工出用于生物样品分离、反应的微米尺寸的微结构,如过滤器、反应室、微泵、微阀门等微结构。然后在微结构上施加必要的表面化学处理,再在微结构上进行所需的生物化学反应和分析。 生物芯片中目前发展最快的要算亲和结合芯片(包括DNA和蛋白质微阵列芯片)。它的加工除了用到一些微加工工艺以外,还需要使用机器人技术。现在有四种比较典型的亲和结合芯片加工方法。一种是Affymetrix公司开发出的光学光刻法与光化学合成法相结合的光引导原位合成法。第二种方法是Incyte pharmaceutical公司所采用的化学喷射法,它的原理是将事先合成好的寡核苷酸探针喷射到芯片上指定的位置来制作DNA芯片的。第三种是斯坦福大学所使用的接触式点涂法。该方法的实现是通过使用高速精密机械手所带的移液头与玻璃芯片表面接触而将探针定位点滴到芯片上的[11]。第四种方法是通过使用四支分别装有A、T、G、C核苷的压电喷头在芯片上作原位DNA探针合成的。

分子生物学名词解释

1, 错义突变:DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由它所编码 的氨基酸就变成另一种的氨基酸,使得多肽链中的氨基酸顺序也相应的发生改变的突变. 2 无义突变:由于碱基对的取代,使原来可以翻译某种氨基酸的密码子变成了终止密码子的突变. 3 同义突变:碱基对的取代并不都是引起错义突变和翻译终止,有时虽然有碱基被取代,但 在蛋白质水平上没有引起变化,氨基酸没有被取代,这是因为突变后的密码子和原来的密码子代表同一个氨基酸的突变. 4移码突变:在编码序列中,单个碱基,数个碱基的缺失或插入以及片段的缺失或插入等均 可以使突变位点之后的三联体密码阅读框发生改变,不能编码原来的蛋白质的突变. 1转化:指质粒DNA或以它为载体构建的重组DNA导入细菌的过程. 2 感染:以噬菌体,粘性质粒和真核细胞病毒为载体的重组DNA分子,在体外经过包装成 具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增. 3转导:指以噬菌体为载体,在细菌之间转移DNA的过程,有时也指在真核细胞之间通过 逆转录病毒转移和获得细胞DNA的过程. 4转染:指病毒或以它为载体构建的重组子导入真核细胞的过程. 5.癌基因:是细胞内控制细胞生长的基因,具有潜在的诱导细胞恶性转化的特性.当癌基因 结构或表达发生异常时,其产物可使细胞无限制增殖,导致肿瘤的发生.包括病毒癌基因和细胞癌基因. 6., 细胞癌基因:存在于正常的细胞基因组中,与病毒癌基因有同源序列,具有促进正常细胞 生长,增殖,分化和发育等生理功能.在正常细胞内未激活的细胞癌基因叫原癌基因,当其受到某些条件激活时,结构和表达发生异常,能使细胞发生恶性转化. 7. 病毒癌基因:存在于病毒(大多是逆转录病毒)基因组中能使靶细胞发生恶性转化的基因. 它不编码病毒结构成分,对病毒无复制作用,但是当受到外界的条件激活时可产生诱导肿瘤发生的作用. 8. 基因诊断:以DNA或RNA为诊断材料,通过检查基因的存在,结构缺陷或表达异常, 对人体的状态和疾病作出诊断的方法和过程. 9 RFLP:即限制性片段长度多态性,个体之间DNA的核苷酸序列存在差异,称为DNA多 态性.若因此而改变了限制性内切酶的酶切位点则可导致相应的限制性片段的长度和数量发生变化,称为RFLP. 10 基因治疗:一般是指将限定的遗传物质转入患者特定的靶细胞,以最终达到预防或改变特殊疾病状态为目的治疗方法. 11, 反义RNA:碱基序列正好与有意义的mRNA互补的RNA称为反义RNA.可以作为一种 调控特定基因表达的手段. 12, 核酶:是一种可以催化RNA切割和RNA剪接反应的由RNA组成的酶,可以作为基因表 达和病毒复制的抑制剂. SSCP:单链构象多态性检测是一种基于DNA构象差别来检测点突变的方法.相同长度的 单链DNA,如果碱基序列不同,形成的构象就不同,这样就形成了单链构象多态性. 13, 管家基因:在生物体生命的全过程都是必须的,且在一个生物个体的几乎所有细胞中持续表达的基因. 14, 细胞全能性:指同一种生物的所有细胞都含有相同的DNA,即基因的数目和种类是一样的,但在不同阶段,同一个体的不同组织和器官中基因表达的种类和数目是不同的. 15, SD序列:转录出的mRNA要进入核糖体上进行翻译,需要一段富含嘌呤的核苷酸序列与

分子生物学名词解释1

分子生物学名词解释 第二章(主要的:核小体、半保留复制、复制子、单链结合蛋白、岗崎片段、错配修复、DNA的转座、C值矛盾、前导链与后随链。) 1. C值反常现象(C值矛盾C-value paradox): C值是一种生物的单倍体基因组DNA的总量。 真核细胞基因组的最大特点是它含有大量的重复 序列,而且功能DNA序列大多被不编码蛋白质的非 功能DNA所隔开,这就是著名的“C值反常现象”。 C值一般随着生物进化而增加,高等生物的C值一般大于低等生物。某些两栖动物的C值甚至比哺乳动物还大,而在两栖动物里面,C值变化也很大。 2.DNA的半保留复制: 由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。 3.DNA聚合酶: ●以DNA为模板的DNA合成酶 ●以四种脱氧核苷酸三磷酸为底物 ●反应需要有模板的指导 ●反应需要有3 -OH存在 ●DNA链的合成方向为5 3 4.DNA连接酶(1967年发现):若双链DNA中一条链有切口,一端是3’-OH,另一端是5‘-磷酸基,连接酶可催化这两端形成磷酸二酯键,

而使切口连接。但是它不能将两条游离的DNA单链连接起来 DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用5.DNA 拓扑异构酶(DNA Topisomerase): 拓扑异构酶?:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。主要集中在活性转录区,同转录有关。例:大肠杆菌中的ε蛋白 拓扑异构酶Π:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。同复制有关。 例:大肠杆菌中的DNA旋转酶 6. DNA 解螺旋酶/解链酶(DNA helicase) 通过水解ATP获得能量来解开双链DNA。 E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。rep蛋白沿3 ’ 5’移动,而解螺旋酶I、II、III沿5 ’ 3’移动。 7. 单链结合蛋白(SSBP-single-strand binding protein):稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。 8. 从复制原点到终点,组成一个复制单位,叫复制子.每个DNA复制的独立单元被称为复制子(replicon),主要包括复制起始位点(Origine of replication)和终止位点 9.复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉 10.DNA的半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。

现代分子生物学小论文

中国因大豆最新研究进展报告(专题三) 摘要:大豆是重要的油料作物和饲料作物,也是人类的主要食用蛋白和工业原料的来源。而转基因是一种将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰的现代技术。目前,越来越多的转基因技术运用到食品医药行业当中。大豆的转基因研究是国内外植物分子生物学研究的热点之一,通过将目的基因整合到大豆基因中,可获得抗虫大豆,其出油率也高于普通大豆。转基因大豆已成为世界大豆主产国大豆产业发展的主要动力。本文概述转基因大豆依据的主要理论,目前国内研究进展,转基因大豆的现状及其安全问题等等。 关键词:转基因大豆食品安全研究进展外源基因现状 前言:大豆是重要的油料作物和高蛋白粮饲兼用作物,含有丰富的蛋白质、脂肪和多种人体有益的生理活性物质。随着基因工程研究的升入,用转基因来改变大豆的性状已被广泛应用。转基因大豆最早的报道是1984年De Bloke等和Horsch 等的研究结果。1988年,McCabe和Hinchee分别用基因枪轰击大豆未成熟胚生长点和用农杆菌侵染大豆子叶节的方法获得转基因植株。1994年5月,美国孟山都公司培育的抗草甘膦除草剂转基因大豆首先获准在美国商业化种植。1997年,杜邦公司获得美国食品药物管理局批准推广种植高油酸转基因大豆。1998年AgrEvo公司研制的抗草丁膦大豆被批准进行商业化生产。转基因大豆品种的育成和推广是世界大豆科技史上具有里程碑意义的重大突破,已成为世界大豆发展生产的主流趋势。 1转基因大豆简介 转基因大豆最早来源于美国,1996年春,美国伊利诺伊西部许多农场主种植了一种大豆新品种,这种大豆是移植了矮牵牛的一种基因。这个新大豆品种可以抵抗杀草剂——草甘膦(毒滴混剂)。草甘膦会把普通大豆植株与杂草一起杀死。这是人类历史上第一次成功培育转基因大豆。 转基因大豆包括抗草胺膦转基因大豆,抗磺酰脲类除草剂转基因大豆,抗草甘膦转基因大豆等等。目前以抗草甘膦为目标而创制出的抗除草剂作物占绝对优势,其中尤以抗草甘膦大豆在世界范围内种植面积最广。 2转基因大豆的主要理论 2.1 转基因技术理论

分子生物学名词解释

Central dogma (中心法则):DNA 的遗传信息经RNA 一旦进入蛋白质就不能再输出了。Reductionism (还原论):把问题分解为各个部分,然后再按逻辑顺序进行安排的研究方法。Genome (基因组):单倍体细胞的全部基因。 transcriptome(转录组):一个细胞、组织或有机体在特定条件下的一组完整基因。roteome (蛋白质组):在大规模水平上研究蛋白质特征,获得蛋白质水平上的关于疾病的发生、细胞代谢等过程的整体而全面的认识。 Metabolome (代谢组):对生物体内所有代谢物进行定量分析并寻找代谢物与生病理变化的相关关系的研究方法。 Gene (基因):具有遗传效应的DNA 片段。 Epigenetics (表观遗传学现象):DNA 结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。 Cistron (顺反子):即结构基因,决定一条多肽链合成的功能单位。 Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。 recon(交换子):意同突变子。 Z DNA(Z型DNA) :DNA 的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。Denaturation (变性):物质的自然或非自然改变。 Renaturation (复性):变形的生物大分子恢复成具有生物活性的天然构想的现象。egative superhelix (负超螺旋):B-DNA 分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。 C value paradox (C值矛盾):生物 overlapping gene(重叠基因):不同的基因公用一段相同的DNA序列。体的大C值与小c值不相等且相差非常大。 interrupted gene (断裂基因):由若干编码区和非编码区连续镶嵌而成的基因。 splitting gene(间隔基因):意思与断裂基因相同。 jumping gene(跳跃基因):一段可以从原位上单独复制并断裂下来,环化后插入另一位点并对其后的基因起调控作用。 Transposon (转座子):与跳跃基因意思相同。 eudo gene(假基因):与功能基因相似却失去基因活性的基因。 Retro-transposon(反转录转座子):转座子从DNA到RNA再到DNA的转移过程。Replicon (复制子):从复制起点到复制终点的DNA区段。 emiconservative replication(半保留复制):DNA复制过程中亲代DNA双链分开作为模板合成两条新生子链,每条新生链均含有一条母链和一条新合成的链。 emi-discontinuous replication(半不连续复制):前导链以连续复制的方式完成子代DNA的合成,而后随链以不连续复制的方式完成冈崎片段的合成。 leading strand(前导链):随着复制叉的分开,以显露的单链DNA为模板聚合dNTP而延伸的链。 lagging strand (后随链):复制叉的延伸与新生链的延伸背道而驰的链。 dUMP fragment (dUMP片段):约1200个核苷酸中有一个错配而引起的DNA 链被切断而形成的大小形似冈崎片段的DNA 分子片段。 replisome (复制体):连接酶等内在的酶分子集中于复制叉处组成一个复合体协同互作,完成DNA 复制的复合体。 Telomerase (端粒酶):端粒酶是参与真核生物染色体末端的端粒DNA 复制的一种核糖核蛋白酶。由RNA 和蛋白质组成,其本质是一种逆转录酶。它以自身的RNA 作为端粒DNA 复制的模版,合成出富含脱氧单磷酸鸟苷Deoxyguanosine Monophosphate(dGMP)

分子生物学名词解释最全

第一章名词解释 1.基因(gene)是贮存遗传信息的核酸(DNA或RNA)片段,包括编码RNA和蛋白质的结构基因以及转录调控序列两部分。 2. 结构基因(structural gene)指基因中编码RNA和蛋白质的核苷酸序列。它们在原核生物中连续排列,在真核生物中则间断排列。 3.断裂基因(split gene真核生物的结构基因中,编码区与非编码区间隔排列。 4. 外显子(exon)指在真核生物的断裂基因及其成熟RNA中都存在的核酸序列。 5.内含子(intron)指在真核生物的断裂基因及其初级转录产物中出现,但在成熟RNA中被剪接除去的核酸序列。 6.多顺反子RNA(polycistronic/multicistronic RNA)一个RNA分子上包含几个结构基因的转录产物。原核生物的绝大多数基因和真核生物的个别基因可转录生成多顺反子RNA。 7.单顺反子RNA(monocistronic RNA)一个RNA分子上只包含一个结构基因的转录产物。真核生物的绝大多数基因和原核生物的个别基因可转录生成单顺反子RNA。 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA)是真核生物细胞核内的转录初始产物,含有外显子和内含子转录的序列,分子量大小不均一,经一系列转录后加工变为成熟mRNA。 9. 开放阅读框(open reading frame, ORF)mRNA分子上从起始密码子到终止密码子之间的核苷酸(碱基)序列,编码一个特定的多肽链。 10.密码子(codon) mRNA分子的开放读框内从5' 到3' 方向每3个相邻的核苷酸(碱基)为一组,编码多肽链中的20种氨基酸残基,或者代表翻译起始以及翻译终止信息。

分子生物学的研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

分子生物学名词解释 (3)

名词解释(在“分子生物学试题及答案”中找答案) 1.cDNA与cccDNA:cDNA就是由mRNA通过反转录酶合成得双链DNA;cccDNA就是游离于染色体之外得质粒双链闭合环形DNA. 2。标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列得结构块,此种确定得折叠类型通常称为超二级结构。几乎所有得三级结构都可以用这些折叠类型,乃至她们得组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMPreceptorprotein ),cAM P与CRP结合后所形成得复合物称激活蛋白CAP(cAMP activatedprotein) 4。回文序列:DNA片段上得一段所具有得反向互补序列,常就是限制性酶切位点。 5。micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA得翻译。6.核酶:具有催化活性得RNA,在RNA得剪接加工过程中起到自我催化得作用. 7。模体:蛋白质分子空间结构中存在着某些立体形状与拓扑结构颇为类似得局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基得肽段,引导蛋白质得跨膜。 9.弱化子:在操纵区与结构基因之间得一段可以终止转录作用得核苷酸序列。 10。魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因得表达.产生这一应急反应得信号就是鸟苷四磷酸(ppGpp)与鸟苷五磷酸(pppGpp).PpGpp与pppGpp得作用不只就是一个或几个操纵子,而就是影响一大批,所以称她们就是超级调控子或称为魔斑. 11。上游启动子元件:就是指对启动子得活性起到一种调节作用得DNA序列,-10区得TATA、-35区得TGACA及增强子,弱化子等. 12。DNA探针:就是带有标记得一段已知序列DNA,用以检测未知序列、筛选目得基因等方面广泛应用。 13.SD序列:就是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用得抗体. 15。考斯质粒:就是经过人工构建得一种外源DNA载体,保留噬菌体两端得COS区,与质粒连接构成. 16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴—4—氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌.称之为蓝—白斑筛选。 17.顺式作用元件:在DNA中一段特殊得碱基序列,对基因得表达起到调控作用得基因元件。 18.Klenow酶:DNA聚合酶I大片段,只就是从DNA聚合酶I全酶中去除了5’3’外切酶活性 19.锚定PCR:用于扩增已知一端序列得目得DNA。在未知序列一端加上一段多聚dG 得尾巴,然后分别用多聚dC与已知得序列作为引物进行PCR扩增. 20。融合蛋白:真核蛋白得基因与外源基因连接,同时表达翻译出得原基因蛋白与外源蛋白结合在一起所组成得蛋白质. 二、填空 1. DNA得物理图谱就是DNA分子得()片段得排列顺序。2。RNA酶得剪切分为()、()两种类型。 3。原核生物中有三种起始因子分别就是()、( )与( )。 4.蛋白质得跨膜需要()得引导,蛋白伴侣得作用就是

最新现代分子生物学试题库

核酸结构与功能 一、填空题 1.病毒ΦX174及M13的遗传物质都是单链DNA 。 2.AIDS病毒的遗传物质是单链RNA。 3.X射线分析证明一个完整的DNA螺旋延伸长度为 3.4nm 。 4.氢键负责维持A-T间(或G-C间)的亲和力 5.天然存在的DNA分子形式为右手B型螺旋。 二、选择题(单选或多选) 1.证明DNA是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。 这两个实验中主要的论点证据是(C )。 A.从被感染的生物体内重新分离得到DNA作为疾病的致病剂 B.DNA突变导致毒性丧失 C.生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D.DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子 E.真核心生物、原核生物、病毒的DNA能相互混合并彼此替代 2.1953年Watson和Crick提出( A )。 A.多核苷酸DNA链通过氢键连接成一个双螺旋 B.DNA的复制是半保留的,常常形成亲本-子代双螺旋杂合链 C.三个连续的核苷酸代表一个遗传密码 D.遗传物质通常是DNA而非RNA E.分离到回复突变体证明这一突变并非是一个缺失突变 3.DNA双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA的解链温度的正确描述?( CD ) A.哺乳动物DNA约为45℃,因此发烧时体温高于42℃是十分危险的 B.依赖于A-T含量,因为A-T含量越高则双链分开所需要的能量越少 C.是双链DNA中两条单链分开过程中温度变化范围的中间值 D.可通过碱基在260nm的特征吸收峰的改变来确定 E.就是单链发生断裂(磷酸二酯键断裂)时的温度 4.DNA的变性(ACE )。A.包括双螺旋的解链 B.可以由低温产生C.是可逆的D.是磷酸二酯键的断裂E.包括氢键的断裂 5.在类似RNA这样的单链核酸所表现出的“二级结构”中,发夹结构的形成(AD )。 A.基于各个片段间的互补,形成反向平行双螺旋 B.依赖于A-U含量,因为形成的氢键越少则发生碱基配对所需的能量也越少 C.仅仅当两配对区段中所有的碱基均互补时才会发生 D.同样包括有像G-U这样的不规则碱基配对 E.允许存在几个只有提供过量的自由能才能形成碱基对的碱基 6.DNA分子中的超螺旋(ACE )。

分子生物学论文

分子生物学课程论文 基因治疗与基因诊断的研究与发展 邓小红临床医学08级3班200805090346 摘要:基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 关键词:基因治疗基因诊断重组DNA 英文题目:Molecular biology course in dissertation Molecular biology curriculum paper gene treatment and gene diagnosis research and developmen t Deng Xiaohong clinical medicine 08 levels of 3 classes 200805090346 Summary: gene-diagnosing and gene therapy in the relatively short time from theoretical ideas into reality, mainly due to the molecular biology of theory and techniques, in particular the recombinant DNA technology is developing rapidly, so that people can build a variety of carriers in the laboratory, cloning and analysis of target genes. The disease can drill down to the molecular level research and has made significant progress. Thus, in the late 1970s was born gene diagnosis (gene diagnosis); subsequently, in 1990, United States implemented the first gene therapy (gene therapy) clinical trials programme. V isible, genetic diagnosis and gene therapy is a modern molecular biology of theory and technology combined with the medicine. Keywords: gene therapy gene-diagnosing recombinant DNA 1.引言 20世纪后半叶以来,由于分子生物学的崛起,人们进入了合成代谢与代谢调节的研究。这一阶段,细胞内两类重要的生物大分子---蛋白质与核酸,成为研究焦点。20世纪50年代初期发现了蛋白质的α螺旋的二级结构形式;更具里程碑意义的是1953年提出的DNA双螺旋结构模型,为揭示遗传信息传递规律奠定了基础,是生物化学发展进入分子生物学时期的重要标志。 20世纪70年代,重组DNA技术的建立不仅促进了对基因表达调控机制的研究,使基因操作无所不能,而且使人们主动改造生物体成为可能。基因诊断和基因治疗也是重组DNA技术在医学领域应用的重要方面。 随着对各种疑难疾病的深入研究,和分子生物学日新月异的发展,传统的诊断治疗手段无法解决的一些重要问题。通过对生物体在分子水平上的研究,基因诊断与治疗的作用逐渐显露出来,尤其是许多遗传疾病。

相关主题
文本预览
相关文档 最新文档