当前位置:文档之家› 厚松散层条件下综放开采地表沉陷规律与机理

厚松散层条件下综放开采地表沉陷规律与机理

厚松散层条件下综放开采地表沉陷规律与机理
厚松散层条件下综放开采地表沉陷规律与机理

地表沉降监测作业指导书

沉降监测作业指导书 1 目的和适用范围及标准 测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。操作方法执行标准《工程测量规范》(GB50026-2007)、《建筑变形测量规范》(JGJ 8-2007)。 2 仪器设备 水准仪全站仪 3 沉降控制点布设 特级沉降观测的高程基准点数不应少于4个;其他级别沉降观测的高程基准点数不应少于3个。高程工作基点可根据需要设置。基准点和工作基点应形成闭合环或形成由附合路线构成的结点网。 高程基准点和工作基点位置的选择应符合下列规定: 1)高程基准点和工作基点应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器振动区以及其他可能使标石、标志易遭腐蚀和破坏的地方; 2)高程基准点应选设在变形影响范围以外且稳定、易于长期保存的地方。在建筑区内,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍,其标石埋深应大于邻近建筑基础的深度。高程基准点也可选择在基础深且稳定的建筑上; 3)高程基准点、工作基点之间宜便于进行水准测量。当使用电磁波测距三角高程测量方法进行观测时,宜使各点周围的地形条件一致。当使用静力水准测量方法进行沉降观测时,用于联测观测点的

工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。当不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助点传递高程。 沉降监测点的布设应位于建(构)筑物体上。高程基准点和工作基点标石、标志的选型及埋设应符合有关规范规定。 4 沉降观测 沉降观测分为:定期对高程控制网进行复测以确定控制网的稳定性,同时对沉降观测标进行观测。 基准点应设置在变形区域以外、位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的稳定情况确定,在建筑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。当观测点变形测量成果出现异常,或当测区受到地震、洪水、爆破等外界因素影响时,应及时进行复测,并按《建筑变形测量规范JGJ 8-2007》规定对其稳定性进行分析。 有工作基点时,每期变形观测时均应将其与基准点进行联测,然后再对观测点进行观测。 沉降观测标的精度、观测仪器、观测方式均应达到相应等级的水准测量规范要求,沉降观测标必须位于水准观测线路中,不得使用碎步点方式对沉降观测标进行测量。 5 观测周期 按照《工程测量规范GB50026-2007》、《建筑变形测量规范JGJ 8-2007》中的技术要求,确定相应等级的观测周期。

地表沉降分析

地表沉降分析

————————————————————————————————作者: ————————————————————————————————日期: ?

1、前言 地下空间作为城市的重要资源,在发达国家得到了多方面的应用,随着我国经济的快速发展,城市地下空间的开发利用已经受到广泛重视,城市地下工程的兴建已经成为一种趋势。就地下铁路来看,我国从1965年开始修建地下铁道,至今已有北京、天津、上海、广州、深圳、南京等大城市建成部分地铁,武汉等其它城市也即将或将要修建地铁,我国的地铁建设已步人快速发展阶段。? 然而,在地铁工程的施工中,地表沉降事故发生的概率很高。以深圳地铁一号线的建设为例,在施工工期内,地面沉降事故占总事故的25%。事故发生地位于深圳市区繁华地段,对工程周围的建筑物以及地下管线产生了一定的影响,同时也影响了工程的进度增加了工程的费用。 所以,不论从工程进度、费用的控制方面考虑还是从工程质量安全方面来考虑,都要对地表沉降控制有足够的重视,从各个方面着手,来控制沉降的发生。? 2、地铁工程沉降控制的重要性?地表沉降的主要危害有: (1)沿海地区沉降使地面低于海面,受海水侵袭; (2)一些港口城市,由于码头、堤岸的沉降而丧失或降低了港湾设施的能力; ?(3)桥墩下沉,桥梁净空减小,影响水上交通; (4)在一些地面沉降强烈的地区,伴随地面垂直沉陷而发生的较大水平位移,往往会对许多地面和地下构筑物造成巨大危害; ?(5)在地面沉降区还有一些较为常见的现象,如深井管上升、井台破坏,高摆脱空,桥墩的不均匀下沉等,这些现象虽然不致于造成大的危害,但也会给市政建设的各方面带来一定影响。 针对地铁工程而言,进行沉降控制的重要性体现在两个方面: (1)城市地铁工程一般位于城市的繁华地段,周围建筑物密集、各种地下管线纵横复杂交错,一旦沉降事故发生,将可能造成建筑物开裂、倾斜,地下管线断裂等事故。影响市民正常生活,造成各种纠纷,进而影响工程施工的进度,增加工程的费用。 2(?)沉降事故在地铁工程的施工中属于多发事故。同时其发生的直接表现为地下隧道拱顶的下沉或坍塌,而这种塌陷的发生又多由围岩涌水、涌泥,支护失效,工程爆破等原因引起。这些原因的存在和发生,可以导致施工现场的人员伤亡、设备损坏,进而影响工程进度、增加工程费用,造成严重的后果。 可以看出,事故的多发性和事故后果的严重性,使沉降事故成为地铁施工中的重大风险因素,在施工过程中进行沉降控制技术的研究和应用使十分必要的。 3??、地铁工程沉降控制技术 3.1?地面沉降发生的机理分析?地铁工程以上地面的岩层或土层在自然状态下,一般处于应力平衡的稳定状态。在地下工程施工中,要通过人工、机械或者爆破等方式进行土石方开挖。土石方的移除、土石层孔隙水的排出,必然会改变土石地层的应力状态,使之处于非平衡状态。这种状态可以在短时间内或者经过较长的时间效应变化之后显现出来,出现坍塌、变形等现象,进而导致地面沉降。 3.2地面沉降发生的原因分析 3.2.1?土层的沉降原因分析 (1)土层自身的特点:天然土体一般是由矿物颗粒构成骨架体,孔隙水和气体填充骨架体而组成的三相体系。饱和土由土颗粒和水组成,土颗粒之间存在胶结物,有些没有粘结。但是它们都能传递荷载,从而形成传力骨架,叫做土骨架。外载荷作用在土体上,一部分由孔隙水承担,叫做孔隙水压力,另一部分则由土骨架承担,就是有效应力,对引起压缩和产生强度有效。孔隙水压力可以分成两部分,一个是静水压力,在荷载施加之前就存在,一个是超孔隙水压力,由外载荷引起。土体的变形是孔隙流体及气体体积减小、颗粒重新排列、颗粒间距离缩短和骨架体发生错动的结果。粘性土有一定的厚度,水总是在土层透水面先排出,使孔隙

煤矿地表沉陷岩移观测设计

内蒙古友恒煤炭有限责任公司益民煤矿5201工作面地表岩移观测设计 部门:地测科 2016-1-1

由于5201工作面是益民煤矿5-2煤层首采工作面,同时我矿对5-2煤开采对地表的影响没有具体的观测资料数据,因此对该工作面应布设地表岩移观测站,详细了解5201工作面的采动对上方地表影响情况,以便为以后的开采做出合理、科学的安排。通过此次观测得到一系列技术资料和数据,为以后5-2煤的合理、安全开采提供可靠依据,解决本采区的安全开采问题,并为留设村庄、建筑物保护煤柱提供技术资料数据,从而最大程度地保护地表生态环境。为此我们对5201工作面地表沉陷此设计。 呈上审批: 编制: 总工: 本要求以《煤矿测量规程》和《工程测量规范》为标准制定,仪器以全站仪为主。如使用其它仪器,如RTK但必须精度达到相应的要求。

矿长:

目录 5201工作面地表岩移观测技术要求 0 一、前言 0 二、工作面概况 0 三、基本要求 (1) 四、建立观测网 (2) 1、建立观测基准点: (2) 2、建立工作控制点网: (3) 3、设置观测点线: (3) 4、控制点和观测点的设置应符合下列要求: (3) 五、施工标准 (4) 六、观测工作 (6) 七、观测资料的整理与分析 (8)

八、成果的提交 (9) 附录1:《5201工作面地质说明书》 (10) 附录2:观测站设计图 (10)

5201工作面地表岩移观测技术要求 一、前言 由于5201工作面是益民煤矿首采工作面,同时我矿对5-2煤开采对地表的影响没有可靠完整的资料数据,因此对该工作面应布设地表岩移工作站,详细了解5201工作面的采动对上方地表影响情况,以便为以后的开采做出合理、科学的安排。通过此次观测得到一系列技术资料和数据,为以后5-2煤的合理、安全开采提供可靠依据,为留设村庄、建筑物保护煤柱提供技术资料数据,从而最大程度地保护地表生态环境。 二、工作面概况 首采5201工作面的大概情况:顺槽长度1300米,工作面长度为250米。煤层倾角平均为1°。采动区域的四角坐标为:

15-05-地表残余沉陷变形机理数值模拟与预计参数分析-2016年第2期

地表残余沉陷变形机理数值模拟与预计参数分析 易四海 (中煤科工集团唐山研究院有限公司,河北唐山063012) [摘要]采用数值模拟计算,通过对覆岩移动过程的模拟研究,指出了地表沉陷由岩体变形 破坏到岩体密实沉陷的发展过程,揭示了岩体密实沉陷延续是引起地表残余沉陷变形的机理;通过对岩体密实阶段地表沉陷分布规律的模拟研究,证实地表残余变形可以用概率积分法进行预计。根据数值模拟及现场实测数据,确定了长壁开采条件下地表残余沉陷变形的概率积分法预计参数。 [关键词] 残余沉陷变形;数值模拟;沉陷过程;预计参数;长壁开采 [中图分类号]TD325 [文献标识码]A [文章编号]1006-6225(2016)02-0029-04Forecast Parameters and Numerical Simulation of Mechanism of Surface Residual Subsidence Deformation YI Si-hai (CCTEG Tangshan Research Institute ,Tangshan 063012,China ) Abstract :Overburden strata movement process was studied by numerical simulation ,the results showed that surface subsidence expe- rienced the process that from rock mass deformation to rock mass subsidence ,it revealed that rock mass subsidence development was reasons that induced surface residual subsidence deformation.Surface residual deformation could be predicted by probability integral method according numerical simulation of surface subsidence distribution law during rock mass subsidence stage.On the basis of numer-ical simulation and measured data ,predicting parameters of probability integral method of surface residual subsidence deformation with long wall mining situation were confirmed. Key words :residual subsidence deformation ;numerical simulation ;subsidence process ;predicting parameters ;long wall mining [收稿日期]2015-08-19 [DOI ]10.13532/https://www.doczj.com/doc/b55013353.html,11-3677/td.2016.02.009[基金项目]国家自然科学基金项目(51474129) [作者简介]易四海(1980-),男,湖北公安人,副研究员,博士,主要从事开采沉陷规律与“三下”采煤方面的研究工作。[引用格式]易四海.地表残余沉陷变形机理数值模拟与预计参数分析[J ].煤矿开采,2016,21(2):29-32. 开采沉陷延续时间较长,地表将在很长时间内存在残余沉陷变形,对采煤塌陷区地表新建建 (构)筑物产生不利影响。因此,了解和掌握采煤塌陷区地表残余沉陷规律十分重要。但是,限于采 煤塌陷区地表残余沉陷延续时间长、数值较小,一般难以用实测方法掌握其全部发展规律。目前,对采煤塌陷区地表残余沉陷变形的预测已有了一些研究 [1-3] ,对采煤塌陷区建设利用具有一定的指导意义,但在对残余沉陷变形预测参数取值时大多凭经验,缺乏足够的理论支持,给采煤塌陷区地表建筑带来了一定的安全隐患。 为此,本文采用数值模拟计算,研究覆岩移动过程及地表残余沉陷变形的分布规律,依据实测数据建立地表残余沉陷变形的预计方法并确定相关参数,为采煤塌陷区地表安全利用提供理论依据。1 采煤沉陷数值模拟 采用离散元法进行模拟试验。试验设计煤层采厚M =3.0m ,采宽L =125m ,倾角α=0?,采深 H 0=100m ,松散层厚度H s =20m ,基岩厚度H j = 80m ,基岩由砂岩、泥岩和砂质泥岩等岩性组成。 图1为数值计算模型网格剖分图 。 图1 数值计算模型剖分 1.1地表沉陷过程 地下煤层采出后引起的地表沉陷是一个时间和空间过程。由于地表沉陷孕育与发展过程非常复杂,许多学者从不同的角度对其进行了研究 [4-6] , 这些研究多从地表点的移动量及剧烈程度的角度进 行描述。而实际上,地表移动是岩层移动的延伸和表象,岩层移动是发生在岩体内部的力学现象,只有从岩层移动的角度来研究地表沉陷过程才能真实揭示岩层与地表移动的机理与规律。 图2为数值模拟采空区上方不同高度岩层内测 9 2第21卷第2期(总第129期) 2016年4月煤矿开采 COAL MINING TECHNOLOGY Vol.21No.2(Series No.129) April 2016 中国煤炭期刊网 w w w .c h i n a c a j .n e t

沉降观测规范

沉降观测 1 一般规定 1.1 建筑沉降观测可根据需要,分别或组合测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。对于深基础建筑或高层、超高层建筑,沉降观测应从基础施工时开始。 1.2 各类沉降观测的级别和精度要求,应视工程的规模、性质及沉降量的大小速度确定。 1.3 布置沉降观测点时,应结合建筑结构、形状和场地工程地质条件,并应顾及施工和建成后的使用方便。同时,点位应易于保存,标志应稳固美观。 1.4 各类沉降观测应根据剧本规范第9.1节的规定及时提交相应的阶段性成果和综合成果。 2 建筑场地沉降观测 2.1 建筑场地沉降观测应分别测定建筑相邻影响范围之内的相邻地基沉降与建筑相邻影响范围之外的场地地面沉降。 2.2 建筑场地沉降点位的选择应符合下列规定: 1 相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。其点位间距应视基础类型、荷载大小及地质条件,与设计人员共同确定或征求设计人员意见后确定。点位可在建筑基础深度1.5~2.0倍的距离范围内,由墙外向外由密到疏布设,但距基础最远的观测点应设置在沉降量为零的沉降临界点以外; 2 场地地面沉降观测点应在相邻地基沉降观测点布设线路之外的地面上均匀布设。根据地质地形条件,可选择使用平行轴线方格网法、沿建筑物四角辐射网法或散点法布设。

2.3 建筑场地沉降点标志的类型及埋设应符合下列规定: 1 相邻地基沉降观测点标志可分为用于监测安全的浅埋标和用于结合科研的深埋标两种。浅埋标可采用普通水准标石或用于直径25cm的水泥管现场浇灌,埋深宜为1~2m,并使标石底部埋在冰冻线以下。深埋标可采用内管外加保护管的标石形式,埋深应与建筑基础深度相适应,标石顶部须埋入地面下20~30cm,并砌筑带盖的窨井加以保护; 2 场地地面沉降观测点的标志与埋设,应根据观测要求确定,可采用浅埋标志。 2.4 建筑场地沉降观测的路线布设、观测精度及其他技术要求可按照本规范第5.5节的有关规定执行。 2.5 建筑场地沉降观测的周期,应根据不同任务要求、产生沉降的不同情况以及沉降速度等因素具体分析确定,并符合下列规定: 1 基础施工的相邻地基沉降观测,在基坑降水时和基坑土开挖过程中应每天观测一次。混凝土地板浇完10d以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。此后可每周观测一次至回填土完工; 2 主体施工的相邻地基沉降观测和场地地面沉降观测的周期可按照本规范第5.5节的有关规定确定。 2.6 建筑场地沉降观测应提交下列图表: 1 场地沉降观测点平面布置图; 2 场地沉降观测成果表; 3 相邻地基沉降的距离-沉降曲线图; 4 场地地面等沉降曲线图。

浅析地面沉降的危害

浅析地面沉降的危害、发生机理及其预防措施 (内蒙古第五地质矿产勘查开发院吴文平任国文) 一、地面沉降的定义及其特点 广义地讲,地面沉降是指地壳表面一切自然力或人类活动影响下所发生的区域性地面下降,就工程意义而言地面沉降是指某一区域内由于开采地下水或其他地下流体(如石油、天然气)导致的地表浅层第四纪松散堆积物压密或进一步固结引起的地面标高下降的现象。地面沉降的特点:①波及范围广,下沉速率缓慢,难以察觉,一旦发生了地面沉降,即使不考虑产生的原因,沉降了的地面也是可能完全复原的;②在同一沉降区域内存在一处或多处沉降中心,沉降中心的位置和沉降量与地下流体开采点的分布和开采量密切相关。 二、地面沉降的危害 地面沉降所造成的破坏和影响是多方面的。主要为区域性地面标高的损失而引起环境恶化给工农业生产、交通运输、城市建设和人民生活造成危害和严重的经济损失,其具体环境灾害表现如下: 1、在滨江或滨海区域易受河水或海水的侵袭,引起潮水、江水倒灌,给城市、农田造成严重经济损失。地面沉降也使内陆平原城市或地区遭受洪水灾害的频率增大、危害程度加重,尤其那些新构造盆地如江汉盆地、洞庭湖盆地、汾渭盆地及辽河盆地等。 2、对城市公共设施、交通运输、港口码头及水利设施的损害。例如城市中下水管道变形排水能力下降,河道桥下净空减小通航能力降低,既有河、海堤坝或防洪墙防洪、潮的能力降低,道路设施破坏,港口码头失效货物装卸能力下降等。 3、地面沉降的不均匀往往使地面和地下建筑遭受巨大的破坏,危及稳定、安全。如建筑物墙壁开裂、高楼脱空并使桩基产生负摩阻力,深井井管上升、井台破坏,桥墩不均匀下沉、自来水管弯裂漏水等。 三、地面沉降的分布规律及成因 1、地面沉降的分布规律 地面沉降的地域分布具有明显地带性,其范围主要局限于存在厚层第四纪堆积物的平原、盆地、河口三角洲或滨海地带。例如长江、黄河、海河及辽河下游平原和河口三角洲地区,这些地区的第四纪沉积厚度大,固结程度差,颗粒细,层次多,压缩性高;地下水含水层多,补给径流条件差,开采时间长,强度大;城镇密集、人口多,工农业生产发达。这些地区的地面沉降首先从城市地下水开采中心开始形成沉降漏斗,进而向外围扩展,形成以城镇为中心的大面积沉降区。 2、地面沉降的成因 地面沉降发生的原因主要有自然因素和人为因素,自然因素主要是指新构造运动、强烈地震及海平面上升、欠固结土层自然固结等。人为因素主要是指大量抽取地下气、液体,建设大面积地面建筑群,固体矿床开采等。随着人类工程及经济活动的能力及强度的逐渐增强,其生产活动对地面沉降的影响通常已占主导地位。无论是何种因素,地面沉降都是因为改变了地层中原有应力状态,使地层发生变形的结果。城市地面沉降主要是因各种目的而进行的浅层疏干排水和抽取深层的气、液体,使地层内的气、液压降低,土颗粒间有效应力增加,地层压密固结的结果。这种因抽取地下水而形成的地面沉降,是地面沉降现象中发育最普遍,危害最严重的一类,其特点是沉降速率大,持续时间长,特别是含水层下部存在巨厚层高压缩性粘性土时。 四、预测地面沉降量的估算方法

地表沉陷区监控

地表沉陷区监控及回填管理规定小汪沟铁矿应用无底柱分段崩落法开采,回采初期形成的采空区已冒透地表,用岩石对地表塌陷坑进行回填。在地下矿体回采过程中,地表回填区域和回采岩移影响区域将会不断沉陷,为保证沉陷区上部作业安全,特制定本管理规定,望相关人员严格遵照执行。 一、监控范围 小汪沟上位采区、下位采区已回填及岩移影响区域、腰接子露天采坑。 二、监测责任单位及主要职责 1、运输处:地面塌陷区警戒线设置;沉陷区巡查;运输道路维护;塌陷、沉陷区域排岩回填现场管理及排岩量统计。 2、动力厂:地面排水管线维护、监控线路维护、动力线路维护。 3、生产机动处:地面排水防洪系统维护 4、技术处:井下采场监测;地面沉陷范围监测;采场回采区域更新,平剖面图更新;监测孔观测;地面塌陷范围圈定;制定岩石回填要求;发布塌陷预警信息。 三、监测要求 主要检测内容有观:测孔、监测点、塌陷范围、断裂线、

采场平剖面图,监测要求如下: 1、监测孔:每周观测一次,有变动时每周观测两次,测量孔底深度及残留孔长度,描述沉陷范围动态。 2、沉陷范围及断裂线日常管理: 对塌陷范围进行巡查,发现明显变化立即通知公司相关部门,并对道路沉陷区域进行职守维护,标定回填岩量及位置。 3、塌陷范围及断裂线测绘: 塌陷区现状每月更新一次,需标明断裂线倾角、倾向、宽度、标高等参数。 4、监控点:每两周测绘一次,并随塌陷范围变化进行调整,监控数据见附表1。 监测期间如发现塌陷区域有较大或重大变化,需第一时间通知处长、主管副总经理。 5、运输处按矿岩回采空间平衡原则和已下达的排岩要求进行日常管控,月排岩量上位采区不少于2.6万m3(5.0万吨),下部采区不少于17万m3(30万吨)。 四、检查考核 如违反上述规定,视情节情况考核相关责任单位或个人100~500元。

开采沉陷形成机理及其预测方法

开采沉陷形成机理及其预测方法 有用矿物被采出以后,开采区域周围的岩体的原始应力平衡状态受到破坏,应力重新分布,达到新的平衡。在此过程中,使岩层和地表产生连续的移动、变形和非连续的破坏(开裂、冒落等),这种现象称为“开采沉陷”(Mining subsidence)。 有用矿物的开采可以是井工方法开采,也可以是露天方法开采;开采的有用矿物可以是层状的也可以是非层状的。本材料主要指的是层状有用矿物(特别是煤层)的井工开采,“开采沉陷”也是特指煤层地下开采后产生的开采沉陷。 岩体本身是一种非常复杂的介质,它不仅是出各种不同性质的岩层组成,而且还由于各种地质作用(如褶皱、断层、开裂、火成岩侵入、陷落柱等)而产生了大量的不连续面。岩体在受到各种不同开采方法的开采影响时,产生的开采沉陷是一个在时间和空间上都是非常复杂的过程。在时间上来说,在移动过程中,开采沉陷的形式和大小在不同的时间是不同的,也就是说,此时的开采沉陷是“动态的”;随着时间的推移,开采沉陷的形式和大小逐渐趋向于稳定,开采沉陷变成“静态的”或“最终的”。从空间上来说,若地下开采的范围较小、开采的矿物的埋藏深度较大,则开采沉陷波及的范围往往只局限于开采区域周围的岩体;若开采范围较大、开采矿物的埋藏深度较小,则开采沉陷波及的范围就会从岩体发展到地表,引起“地表移动”。由于人类的生产和生活活动大部分都是在地表进行,所以地表移动对人类的影响更为普遍。 第一节煤矿地下开采引起的地表移动与变形 一、地表移动的形式 所谓地表移动,是指采空区面积扩大到一定范围后,岩层移动发展到地表,使地表产生移动和变形,在地表沉陷的研究中称这一过程和现象为地表移动。开采引起的地表移动过程,受多种地质采矿因素的影响,因此,随开采深度、开采厚度、采煤方法及煤层产状等因素的不同,地表移动和破坏的形式也不完全相同。在采深和采厚的比值较大时,地表的移动和变形在空间和时间上是连续的、渐变的,具有明显的规律性。当采深和采厚的比值较小(一般小于30)或具有较大的地质构造时,地表的移动和变形在空间和时间上将是不连续的,移动和变形的分布没有严格的规律性,地表可能出现较大的裂缝或塌陷坑。地表移动和破坏的形式,

施工过程中的建筑物沉降规律分析

施工过程中的建筑物沉降规律分析 摘要:本文通过对北京市水科院综合楼(C座)工程沉降观测作业的具体实施以及对沉降观测成果中大量的数据 进行细致的分析和研究,得出了一套完整的、合理的、能够指导施工生产的建筑物沉降与变形理论。这包括对沉降观测水准点的布置及测设、沉降观测、建筑物变形与裂缝观测以及在沉降观测过程中经常遇到的技术问题和处理措施等。其目的在于在施工过程中准确无误地掌握后浇带的浇筑时间,避免建筑物由于不均匀沉降而出现结构裂缝。 关键词:后浇带,沉降,测设,变形 Abstract: this article through to the Beijing ShuiKeYuan building (C a) engineering settlement observation of the concrete implementation of homework and subsidence observation results of a large amount of data and detailed analysis and research, and draw the conclusion that a set of complete and reasonable, can guide the construction production building settlement and deformation theory. This included the settlement observation point of the arrangement and the level set, settlement observation, building deformation and fracture observation and in settlement observation frequently

地面沉降研究及其防治

地面沉降研究及其防治 摘要:地面沉降是城市主要地质灾害之一,主要是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种区域性的缓变地质灾害,成灾慢,但损失大,不易治理。随着中国城市化进程的加快, 地面沉降规模扩大, 危害加剧。本文主要介绍了国内外地面沉降的现状、引起沉降的原因、地面沉降的机理和地面沉降灾害防治措施。 关键字:地质灾害;地面沉降;地裂缝;地下水 Abstract: the ground subsidence is one of the city’s main geo logical hazards, mainly in the natural and artificial factors effect, because the surface soil crust and lead to regional ground elevation compression reduced a regional geological disasters of slowly, with slow, but the loss of large, is not easy to control. With the acceleration of China’s urbanization process, ground subsidence scale expanding and harm the worse. This paper mainly introduces the present situation of domestic and foreign land subsidence, cause, the cause of subsidence land subsidence mechanism and ground subsidence disaster prevention and control measures. Key word: geological disasters; The ground settlement; To crack; groundwater 1 地面沉降概述 地面沉降是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象,是一种不可补偿的永久性环境和资源损失。地面沉降具有生成缓慢、持续时间长、影响范围广、成因机制复杂和防治难度大等特点,是一种对资源利用、环境保护、经济发展、城市建设和人民生活构成威胁的地质灾害。地面沉降是我国乃至世界范围较为普遍的地质灾害,对社会经济的可持续发展影响巨大。我国的地面沉降主要出现在上海、天津、江苏、河北等17个省市的东、中部地区,沉降总面积超过7×104 km2 ,最大累计沉降量已达3 m,主要分布于长江三角洲、华北平原、松嫩平原和下辽河平原、汾渭河谷平原和一些山间盆地。由于地面沉降,近几年来全国各地地裂缝和地面塌陷等地质灾害频频发生,有城市甚至被预言会在几十年后消失,防治地面沉降已经成为关系国计民生的迫切任务。 2 地面沉降的类型和特征 地面沉降按其成因可划分为五种类型:压实压密型、塌陷型、升降运动

国内外地面沉降现状与研究

国内外地面沉降现状与研究 摘要:系统地介绍了国内外地面沉降的现状、引起沉降的原因、地面沉降的机理和地面沉降灾害预测与监测。特别针对上海地区随着大规模的城市建设产生的由工程环境效应引起的地面沉降及其监测与研究做了阐述。 关键词:地面沉降;地质灾害;工程环境效应 0、引言 地面沉降是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象,是一种不可补偿的永久性环境和资源损失。地面沉降具有生成缓慢、持续时间长、影响范围广、成因机制复杂和防治难度大等特点,是一种对资源利用、环境保护、经济发展、城市建设和人民生活构成威胁的地质灾害。地面沉降是我国乃至世界范围较为普遍的地质灾害,对社会经济的可持续发展影响巨大。 1、地面沉降现状 1.1、国外地面沉降现状 现有文献资料表明,1891年墨西哥城最早记录地面沉降现象,但当时由于地面沉降量不大,危害也不明显[1],所以没有引起人们的重视。目前平均沉降量达到0.3cm/a,最大累计沉降量超过7.5m,有的地区甚至超过15m。 日本于1898年在新泻最早发生地面沉降,至1958年地面沉降速率达

530mm/a,1952-1956年新泻是日本地面沉降最严重的地区。日本产生严重地面沉降的城市或地区还有东京、大阪和佐贺县平原,其它地区还有名古屋、川崎、山口、尼崎及西宫等[2]。 上个世纪意大利的Ravenna地区发生了大面积的地面沉降[324]。起初沉降不大,每年数毫米;第二次世界大战后,由于过度抽取地下水,以每年110mm的沉降量剧增。 美国于1922年最早在加州萨克拉门托SanJoaquin流域发现沉降,1920-1969年地下水位下降达137m,累积地面沉降达2.6m,影响范围9100km2。至20世纪70年代初期,美国已有37个州因开采地下流体而产生的不同程度的地面沉降现象;至1995年,美国50个州均有地面沉降发生[5]。据统计[6],目前世界上已有60多个国家和地区发生地面沉降,包括美国、中国、日本、墨西哥、意大利、泰国、英国、俄罗斯、委内瑞拉、荷兰、越南、匈牙利、德国、印度尼西亚、新西兰、比利时、南非等。 1.2、国内地面沉降现状20世纪20年代初,中国最早在上海和天津市区发现地面沉降灾害,至20世纪60年代两地地面沉降灾害已十分严重[7]。20世纪70年代,长江三角洲主要城市及平原区、天津市平原区、华北平原东部地区相继产生地面沉降;80年代以来,中小城市和农村地区地下水开采利用量大

煤矿区地表沉陷速度剖面线计算软件开发

煤矿区地表沉陷速度剖面线计算软件开发 刘义新1,2,3,张俊英1,2 (1.煤炭科学技术研究院有限公司安全分院,北京100013;2.煤炭资源高效开采与洁净利用国家重点实验室 (煤炭科学研究总院),北京100013;3.北京市煤矿安全工程技术研究中心,北京100013) [摘一要]一煤矿区地表沉陷规律一般采用地表下沉二水平移动二地表倾斜二曲率和地表水平变形等5个指标来描述和分析三随着煤矿高效开采的发展,工作面快速开采可导致地表沉陷的速度快,给地表受护对象带来严重损坏,但缺乏利用 地表沉陷速度 作为参数进行分析研究三在对 地表沉陷速度 定义的基础上,以此为软件开发的数学模型,进行了煤矿区地表沉陷速度剖面线计算的软件开发,给出了软件的一些功能和应用三该软件的开发为矿区地表沉陷速度规律的研究提供了方便三 [关键词]一地表沉陷速度;剖面图;软件开发[中图分类号]TD325.3一 [文献标识码]A一 [文章编号]1006-6225(2018)03-0072-03 Section Line Calculation Software Development of Surface Subsidence Speed in Coal District LIU Yi-xin 1,2,3,ZHANG Jun-ying 1,2 (1.Safety Institute,China Coal Research Institute Co.,Ltd.,Beijing 100013,China; 2.State Key Laboratory of Coal Resource High Effective Mining &Clean Utilization (China Coal Research Institute),Beijing 100013,China; 3.Beijing Mine Safety Engineering Technology Research Center,Beijing 100013,China) Abstract :About five indexes were used to described and analyzed coal district surface subsidence principle,which include surface subsidence,horizontal movement,surface incline,curvature and surface horizontal deformation.With high-efficient mining develop-ment of coal mine,rapidly mining leaded to rapidly surface subsidence,so objects needed to be protected on surface,but the parame-ters surface subsidence speed was applied to studied seldom.On the basis of surface subsidence speed meaning,and it act as mathematics model of software development,section line calculation software of surface subsidence speed in coal district was developed, some functions were put forward,and the software offered convenience for studying of surface subsidence speed principle of coal district.Key words :surface subsidence speed;sectional map;software development [收稿日期]2018-02-26 [DOI]10.13532/j.cnki.cn11-3677/td.2018.03.018[基金项目]国家自然科学基金资助项目(51404139) [作者简介]刘义新(1980-),男,山东栖霞人,博士,副研究员,从事矿山开采沉陷和 三下 采煤二特殊采煤等方面的研究工作三[引用格式] 刘义新,张俊英.煤矿区地表沉陷速度剖面线计算软件开发[J ].煤矿开采,2018,23(3):72-74,29. 一一煤炭地下开采引起的地表沉陷是一个十分复杂的过程,其表现形式多样[1-2]三其中,地表移动盆地是煤矿开采导致地表显现最常见的表现形式,通 常采用 两种移动二三个变形 作为指标进行描述地表沉陷规律,即地表下沉二水平移动二地表倾斜二曲率和地表水平变形合计5个指标三目前,这些指标在我国煤矿区地表沉陷规律分析二沉陷预测和 三下 压煤开采等方面得到广泛和成熟应用[3-4]三近年来,随着煤矿高效开采的发展,煤矿区工作面开采速度均比以前产生较大变化,由以前绝大部分工作面小于60m /月,发展到现在很少有工作面开采速度小于2m /d,多数开采速度5~8m /d,少数达16m /d三因此,在采深二地表下沉值等参数变化不大的情况下,工作面快速开采可导致地表沉陷的速度快,尤其在浅埋深条件下地表沉陷速度会更加明显,从而给地表受护对象带来严重损坏,给受护对象的维护带来不确定性三目前,我国对地表沉陷速度相关方面的研究和地表沉陷速度计 算软件较缺乏[5],因此,本文在对 地表沉陷速度 定义的基础上,以 地表沉陷速度 计算公式为软件数学模型,进行了煤矿区地表沉陷速度剖面线计算的软件开发,以期方便对矿区地表移动观测站进行地表沉陷速度方面的整理二分析及研究三1一软件数学计算模型 地表沉陷速度定义为相邻两次地表沉陷值与两次观测的间隔天数之比,包括地表下沉速度二地表倾斜速度二地表曲率速度二地表水平移动速度和地表水平变形速度三主要利用地表沉陷速度来表征地表沉陷在不同时间的发展变化过程和地表沉陷的变化快慢与程度三地表沉陷速度各参数定义如下: (1)地表下沉速度一是指地表各点相邻两次观测的地表下沉差值除以两次观测的间隔天数三地表下沉速度V W (mm /d)计算公式为: V W =W nm -W nm -1 t (1) 2 7第23卷第3期(总第142期) 2018年6月煤一矿一开一采 COAL MINING TECHNOLOGY Vol.23No.3(Series No.142) June一2018 万方数据

开采沉陷预计方法概述

开采沉陷预计方法概述 摘要:本文主要介绍了当前使用的开采沉陷预计方法(基于实测资料的经验方法、影响函数法和理论模拟法)的原理、特点及应用情况,并简要介绍了开采沉陷预计的发展趋势,相信会对开采沉陷工作具有一定的帮助意义。 关键词:开采沉陷;预计方法;概率积分法;理论模拟法 1 引言 开采沉陷预计是矿山开采沉陷的核心内容之一,它对开采沉陷的理论研究和生产实践都有重要意义[1]。由于采矿引起的地面沉陷损坏地面建筑、公路、铁路等,不但给人民生活带来了威胁,而且破坏环境。开采沉陷的预计,对建筑物和生态环境的保护有重要意义。因此,有必要对开采沉陷预计方法进行探讨,以指导矿山的开采。开采沉陷预计方法很多,按建立预计方法的途径可分可分为三类:基于实测资料的经验方法、影响函数法和理论模拟法[2-4]。 2 开采沉陷方法简介 基于实测资料的经验方法是通过对大量的已知开采沉陷实测资料进行数据处理,确定开采沉陷中各种移动变形值的函数形式和计算预计参数的经验公式。这种方法在预测时,首先根据开采的地质条件,确定经验公式中的预计参数,再代入公式确定预计函数进而求出移动和变形值。这种方法是当前最为可靠的一种预测方法,常见的经验方法有:典型曲线法和剖面函数法等。 理论模拟法把岩体抽象为某个数学的、力学或数学-力学的理论模型,按照这个模型计算受开采影响岩体产生的移动、变形和应力的分布情况。如认为岩层和地表是一种连续的介质,则此模型属于连续介质模型;否则,就属于非连续介质模型。此法所用的函数一般均由理论研究得出,所用的参数常用实验室试验或理论推导求得,一般与现场实测资料没有直接关系,常用的理论模型法主要有连续介质力学法等。 影响函数法是介于经验方法和理论模型方法之间的一种方法,它的实质是根据理论研究或其他方法确定微小单元开采对岩层或地表的影响(以影响函数表示),把整个开采对岩层和地表的影响看作采区内所有微小单元开采影响的总和,并据此计算整个开采引起的岩层和地表的移动和变形,目前此方法中所用的参数根据实测资料获得。常用的影响函数方法有概率积分法等[5]。 下面分别对各个方法进行简单介绍。 2.1 典型曲线法 典型曲线法是用无因次的典型曲线表示移动盆地主断面上的移动和变形曲线的一种方法,它适用于矩形或者近似矩形的采区的地表移动变形预计。典型曲线法由于其分布和参数均是直接基于实测资料,因此其预计误差较小。但是建立典型曲线需要大量的观测数据,在实测数据不足的地区不能使用典型曲线法。;另外,此方法原则上只适用于矩形或近似矩形采区的地表移动和变形预计,在形状不规则的工作面开采时预计误差较大,这些限制了典型

重力沉降规律及设备

重力沉降规律及其设备 摘要:介绍了重力沉降的规律以及重力沉降的四种类型,对一些常用的重力沉降设备进行了总结。 关键词:重力沉降规律;设备 1.重力沉降 利用分散介质与分散物密度的差异,在重力作用下,使之得到分离的过程。重力沉降原理:固体颗粒在做同一水平运动的同时做向下的沉降运动,由于颗粒密度的不同,导致沉降速度不同。密度大的先沉降,密度小的后沉降,因此使之分离。沉降类型有自由沉降、絮凝沉降、成层沉降和压缩沉降。 1.1自由沉降 废水中的悬浮固体浓度不高,而且凝聚性时发生自由沉降。固体颗粒不改变形状和尺寸,不互相粘和,各自独立地完成沉降过程。发生自由沉降的颗粒的沉降速度在经过一定的沉降时间后保持不变,现象是水从上到下逐步变清。在沉砂池和初沉池的初期沉降类型是自由沉降。 1.2絮凝沉降 固体浓度也不高(ss为50-100mg/L),但具有凝聚性时发生絮凝沉降。在发生絮凝沉降的过程中,颗粒互相碰撞、粘合,结合成较大的絮凝体而沉降;沉降的过程中颗粒尺寸不断变化;颗粒的沉降速度是变化的。水是逐步变清的,但可观察到颗粒的絮凝现象。在初沉池的后期和二沉池的初期沉降类型为絮凝沉降。 1.3成层沉降 废水中的悬浮颗粒物的浓度提高到一定程度时(ss大于500mg/L)发生成层沉降。沉降过程中每个颗粒的沉降将受到其周围颗粒存在的干扰,沉降有所降低,在聚合力的作用下,颗粒群结合成为一个整体,各自保持相对不变的位置共同下沉。可观察到水与颗粒群之间有明显的分界面,沉降的过程实际上是该界面下沉的过程。在二沉池的后期和浓缩池的初期发生成层沉降。 1.4压缩沉降 废水中悬浮物的浓度很高时发生压缩沉降。沉降时固体颗粒互相接触,互相支撑,在上层颗粒的重力作用下,下层颗粒间隙中的液体被挤出界面,固体颗粒群被浓缩。颗粒群与水之间有明显的界面,但颗粒群部分比成层沉降时密集,界

国内外地面沉降现状与研究

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国内外地面沉降现状与研究 国内外地面沉降现状与研究摘要:系统地介绍了国内外地面沉降的现状、引起沉降的原因、地面沉降的机理和地面沉降灾害预测与监测。 特别针对上海地区随着大规模的城市建设产生的由工程环境效应引起的地面沉降及其监测与研究做了阐述。 关键词:地面沉降;地质灾害;工程环境效应 0 、引言地面沉降是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象,是一种不可补偿的永久性环境和资源损失。 地面沉降具有生成缓慢、持续时间长、影响范围广、成因机制复杂和防治难度大等特点,是一种对资源利用、环境保护、经济发展、城市建设和人民生活构成威胁的地质灾害。 地面沉降是我国乃至世界范围较为普遍的地质灾害,对社会经济的可持续发展影响巨大。 1 、地面沉降现状 1.1、国外地面沉降现状现有文献资料表明,1891 年墨西哥城最早记录地面沉降现象,但当时由于地面沉降量不大,危害也不明显[1],所以没有引起人们的重视。 目前平均沉降量达到 0.3cm/a,最大累计沉降量超过 7.5m,有的地区甚至超过 15m。 日本于 1898 年在新泻最早发生地面沉降,至 1958 年地面沉 1 / 9

降速率达530mm/a,1952-1956 年新泻是日本地面沉降最严重的地区。 日本产生严重地面沉降的城市或地区还有东京、大阪和佐贺县平原,其它地区还有名古屋、川崎、山口、尼崎及西宫等[2]。 上个世纪意大利的 Ravenna 地区发生了大面积的地面沉降[324]。 起初沉降不大,每年数毫米;第二次世界大战后,由于过度抽取地下水,以每年110mm的沉降量剧增。 美国于 1922 年最早在加州萨克拉门托 SanJoaquin 流域发现沉降,1920-1969年地下水位下降达 137m,累积地面沉降达 2.6m,影响范围 9100km2。 至 20世纪 70 年代初期,美国已有 37 个州因开采地下流体而产生的不同程度的地面沉降现象;至 1995 年,美国 50 个州均有地面沉降发生[5]。 据统计[6],目前世界上已有 60 多个国家和地区发生地面沉降,包括美国、中国、日本、墨西哥、意大利、泰国、英国、俄罗斯、委内瑞拉、荷兰、越南、匈牙利、德国、印度尼西亚、新西兰、比利时、南非等。 1.2、国内地面沉降现状 20 世纪 20 年代初,中国最早在上海和天津市区发现地面沉降灾害,至 20 世纪 60 年代两地地面沉降灾害已十分严重[7]。 20 世纪70 年代,长江三角洲主要城市及平原区、天津市平原区、华北平原东部地区相继产生地面沉降;80 年代以来,中小城市和农村

相关主题
文本预览
相关文档 最新文档