当前位置:文档之家› 机器人系统辨识

机器人系统辨识

机器人系统辨识
机器人系统辨识

机器人动力学参数辨识

专业:控制理论与控制工程姓名:徐勇军

学号:2010522091

一.引言

机器人系统是一个非线性、强耦合、时变的复杂系统。在现有机器人控制方法中,大多是基于模型的控制方法,如前馈补偿法、计算力矩法及自适应控制等,而是机器人动力学模型参数对机器人控制系统的性能有着很大的影响。但是如何获得准确的动力学模型参数是很难的,因为在机器人动力学方程中的各项系数)(),,(),(θθθθG H D ?

本质上是时变的、非线性和耦合的,因此要确定精确的系数值,只有对机器人的动力学参数进行辨识估计。

目前,常用的机器人动力学方程有Lagrange 方程、Gauss 原理、Newton-Euler 方程等等。本文从机器人动力学Lagrange 方程出发,导出一种适用于进行动力学参数辨识的机器人动力学方程的表述形式。

辨识方法的选择:目前,有很多成熟的方法可用于模型的参数辨识,如极大似然法、辅助变量法、随机逼近法和最小二乘法等。鉴于最小二乘法在参数辨识中对量测噪声及具有任意分布规律的干扰噪声都具有不变性;同时,考虑到该方程所获得的参数估计值有着最佳统计特性,在实用中亦具备多种通用算法与程序,故本文采用最小二乘法来解决机器人动力学参数的辨识问题。

二、机器人动力学

根据Lagrane_Euler 方程,机器人动力学模型可用一个二阶非线性微分方程来描述,其形式如下:

)())(())(),(()())((t t q G t q t q C t q t q M τ=++?

?? (1) 式中,n R t ∈)(τ为输入量,表示施加在机器人各个关节上的力/力矩向量;

n R t q t q t q ∈?

??

)(),(),(为输出量,分别代表机器人的位置、速度及加速度向量;

n

R t q M ∈))((是惯性矩阵;n R t q t q C ∈?

))(),((为哥式力与离心力向量;n R t q G ∈))((是

重力项。

由方程(1),很容易得知))(),(()),((t q t q C t q M ?

和))((t q G 是)(t q 与)(t q ?

的非线性函数,同时还包含一组未知参数向量n R ∈Φ(该参数向量是由各个关节的质量、转动惯量及各个关节的几何尺寸所决定,是一组常参数向量)。只要Φ确定了,那么该机器人的精确数学模型就得到了,就可以对机器人进行控制,使机器人完成各种指定的操作和任务,也可以进行各种分析和研究。

三、机器人参数辨识推导

由(二)中所讨论的结果可知,如果我们用参数辨识的思想得出参数向量Φ,那么就可以得到精确的数学模型;因此,下面结合最小二乘法辨识思想,来讨论如何得到向量Φ。

对于任意n 关节的机器人,其动力学方程对参数向量Φ是线性的,也即,动力学方程可写成:

Φ=?

??),,(q q q W τ (2)

式中,),,(?

??q q q W 是一个描述连杆运动的m n ?的信息矩阵,用i φ来表示Φ的第i 个分量,既可以是一个独立参数,也可以使几个参数的线性组合,这取决于给定机械臂的运动学结构。根据最小二乘估计法,未知动力学参数向量Φ,由(2)可以确定为:

τ

+

=ΦW (3)

式中,+W 表示W 的广义逆矩阵。在(2)式中,W 的各个元素师机器人关节角度、速度和加速度的函数,是一个非奇异矩阵。在实际中,W 的各个元素师根据机器人关节角度、速度和加速度的测量值来计算的,假设有N 个点的测量数据:

?????????

???=)()2()1(N ττττ ,????

?

???????=)()2()1(N W W W W (4)

这样,Φ的估计值^

Φ可表示为:

τ

T

T

W W W 1

^

)(-=Φ (5)

四、仿真实验

以图1所示的二自由度平面连杆机械臂为例:

图1:机械臂平面图形

根据Lagarange_Euler 法(忽略重力项),可以得到此机械臂的动力学方程为:

??????=????

??????

---+??????????????

--??????2112211222211212)sin()sin()cos()cos(ττθθθθθθθθθθθθb b c b b a (6) 其中,2/,3/,3/22222221l m c l m b l m l m a ==+=;1θ关节1的角度,2θ表示关节2的角度;1τ是关节1的力矩,2τ是关节2的力矩。 将上式改写为参数方程(2)的形式,即

1

θ2

θ1

m 2

m 0

X 0

Y 1

X 1

Y 2Y 1

l 2

l

??

??

?

?????-+----=???????????

??212211211

2221221)sin()cos(00)sin()cos(),,(θθθθθθθθθθθθθθq q q W (7) T c b a ][=Φ,T ][21τττ= (8)

输入输出信号的获取:系统辨识时把机器人的关节转矩作为输入信号,若没有关节转矩传感器,激励信号是很难采集的。同样把关节的角加速度、角速度、角位移作为输出信号,需装有关节角加速度传感器,数据越多,辨识就精度越高。

设机器人的轨迹参数为四次多项式,初始角度

T ]3015[=θ,[]T

f 6030=θ,]10,0[∈t ;

?????-+=-+=3

223

2

106.09.030)(03.045.015)(t t t t t t θθ,?????-=-=??222

118.08.1)(09.09.0)(t t t t t t θθ,?????-=-=????t

t t

t 36.08.1)(18.09.0)(21θθ 表4.1给出机械臂测得的相关参数:

表4.1传感器所测参数值

参数 数值 次数

1

2

3

4

5

6

7

8

9

10

11

15 15.42 16.56 18.24 20.28 22.5 24.72 26.76 28.44 29.58 30

1?

θ 0 0.81 1.44 1.89 2.16 2.25 2.16 1.89 1.44 0.81 0 1??θ

0.9 0.72 0.54 0.36 0.18 0 -0.18 -0.36 -0.54 -0.72 -0.90 2θ

30 30.84 33.12 36.48 40.56 45 49.44 53.52 56.88 59.16 60 2?

θ 0 1.62 2.88 3.78 4.32 4.5 4.32 3.78 2.88 1.62 0 2?

1.8 1.44 1.08

0.72 0.36

0 -0.36 -0.72 -1.08 -1.44 -1.80

6.8383

2.7638

-5.0072 -14.3217

-22.96 -28.6378

-29.6077

-25.4197

-17.4787

-9.2139

-5.85

-2.25

2.5794

3.2045

4.1053

5.0232 5.6905 5.8297 3.8282 1.8016

-0.4358

-2.25

由(7)式可得:

??????=7.27794.0003383.29.0)1(W ,??????-=16.29545.0001725.172.0)2(W ,???

???-=62.15853.10

08402.854.0)3(W ,??????-=08.14132.2002455.1836.0)4(W ,???

???-=54.01705.3008938.2618.0)5(W ,??????-=09373.1007493.70)6(W ,??????---=54.04275.3002523.3218.0)7(W ,??????---=72.02869.1000763

.736.0)8(W ,??????---=08.15127.0008998.454.0)9(W ,??????----=16.21942.0001773

.672.0)10(W ,??????----=7.245.00

035

.19.0)11(W 程序流程图如图2所示:

图2:程序流程图

Matlab 程序:

输入信号序列θ,τ

画各个输入和输出观测值图形

给样本矩阵ω和τ赋值

根据式(5)算估计值 Φ

从Φ中分离出幷显示出被辨识的参数

thea1\thea2\thea3

停机

clc

for t=0:1:10

a=15+0.45*t^2-0.03*t^3; %关节1角度

a1=0.9*t-0.09*t^2; %关节1角速度

a11=0.9-0.18*t; %角加速度

b=30+0.9*t^2-0.06*t^3; %关节2角度

b1=1.8*t-0.18*t^2; %关节2角速度

b11=1.8-0.36*t; %角加速度

t1=cos(b*pi/180)*(a11+b11)+2*a11+b11+a11-sin(b*pi/180)*(b1)^2-2*sin(b*pi/180)*a1*b1;%力矩1 t2=cos(b*pi/180)*a11+a1+b11+sin(b*pi/180)*(a1)^2; %力矩2

w=[a11 (b11+a11)*cos(b*pi/180)-(b1+a1)^2*sin(b*pi/180) 0;0

a11*cos((b)*pi/180)+a1^2*sin((b)*pi/180) b11+a11];

end

w1=[0.9 2.3383 0;0 0.7794 2.7];w2=[0.72 -1.1725 0;0 0.9545 2.16];

w3=[0.54 -8.8402 0;0 1.5853 1.62];w4=[0.36 -18.2455 0;0 2.4132 1.08];

w5=[0.18 -26.8938 0;0 3.1705 0.54];w6=[0 -32.2176 0;0 3.5797 0];

w7=[-0.18 -32.2523 0;0 3.4275 -0.54];w8=[-0.36 -26.4919 0;0 2.6582 -1.08];

w9=[-0.54 -16.5154 0; 0 1.4416 -1.62];w10=[-0.72 -6.1773 0;0 0.1942 -2.16];

w11=[-0.9 -1.35 0;0 -0.15 -2.7];

W=[w1 ;w2;w3;w4;w5;w6;w7;w8;w9;w10;w11]; %W

T1=[6.8383;-2.25];T2=[2.7638;2.5794];T3=[-5.0072;3.2045];

T4=[-14.3217;4.1053];T5=[-22.96;5.0232];T6=[-28.6378;5.6905];

T7=[-29.6077;5.8297];T8=[-25.4197;3.8282];T9=[-17.4787;1.8016];

T10=[-9.2139;-0.4358];T11=[-5.85;-2.25];

T=[T1;T2;T3;T4;T5;T6;T7;T8;T9;T10;T11]; %T

X=inv(W'*W)*W'*T %cang shu

输出结果为:

X =

5.1940

0.8972

0.1583

因此,在传感器满足精度的条件下,可以利用传感器测的机器人各个关节的角度和力矩信息就可以得出任何构型(模型基于(1)式)机器人的动力学参数,所以在不方便测量机器人构型参数的情况下,采用辨识的方法辨识参数是一种有效地方法。

图形程序:

%figure

t=0:10;

a=15+0.45*t.^2-0.03*t.^3; %关节1角度 b=30+0.9*t.^2-0.06*t.^3; %关节2角度 a1=0.9*t-0.09*t.^2; %关节1角速度 a11=0.9-0.18*t; %角加速度

b1=1.8*t-0.18*t.^2; %关节2角速度 b11=1.8-0.36*t; %角加速度

t1=cos(b*pi/180).*(a11+b11)+3*a11+b11-sin(b*pi/180).*b1.^2-2*sin(b*pi/180).*a1.*b1;%力矩1 t2=cos(b*pi/180).*a11+a1+b11+sin(b*pi/180).*a1.^2; %力矩2 figure(1); subplot(2,1,1);

plot(t,a),grid on;title('关节1角度变化'); subplot(2,1,2);

plot(t,b),grid on;title('关节2角度变化'); figure(2);

subplot(2,1,1);

plot(t,t1),grid on;title('关节1力矩变化'); subplot(2,1,2);

plot(t,t2),grid on;title('关节2力矩变化'); 仿真曲线如图3所示:

012345678910

15

20

25

30关节1角度变化

012345678910

30

40

50

60关节2角度变化

1

2

3

4

5

6

7

8

9

10

-30-20-10010关节1力矩变化

012345678910

-5

5

10关节2力矩变化

图3:机器人测量参数图

参考文献

[1]郭良康,张启先;机器人动力学参数辨识,北京航空学院学报,1988

[2]陈虹,严法高等;基于角度模型的机器人驱动系统参数辨识,扬州大学学报,2007

[3]鲍平安,蒋平等;一种新的机器人动力学模型参数辨识法—递推学习方法,中国控制会议论文集,1995

[4]刘杨正,解海滨;机器人动力学模型辨识研究的综述,邢台职业技术学院学报,2001 [5]刘德满,刘宗富;工业机器人动力学模型参数辨识的新方法,东北工学院学报,1993 [6]李杨民,刘又午等;机器人的动力学参数辨识,组合机床与自动化加工技术,1994 [7]李祖枢,张华等;3关节单杠体操机器人的动力学参数辨识,控制理论与应用,2008

[8]张光海,毛宗源等;受限柔性机器人力/位置控制装置、建模与辨识,广西大学学报,1998 [9]高群,宗志坚等;机器人结构参数辨识的两步法及其仿真,系统仿真学报,2007 [10]刘叔军,盖晓华等;《MATLAB7.0控制系统应用与实例》,机械工业出版社,2006

系统辨识建模

上海大学2015 ~2016学年冬季学期研究生课程考试 小论文格式 课程名称:系统建模与辨识课程编号: 09SB59002 论文题目: 基于改进的BP神经网络模型的网络流量预测 研究生姓名: 李金田学号: 15721524 论文评语: 成绩: 任课教师: 张宪 评阅日期:

基于改进的BP神经网络模型的网络流量预测 15721524,李金田 2016/3/4 摘要:随着无线通信技术的快速发展,互联网在人们的日常生活中占据了越来越重要的位置。网络中流量监控和预测对于研究网络拓扑结构有着重要的意义。本文参考BP算法,通过分析算法的优势和存在的一些问题,针对这些缺陷进行了改进。通过建立新的流量传输的传递函数,对比了经典的传递函数,并且在网络中进行了流量预测的实验和验证。新方法在试验中表现出了良好的实验性能,在网络流量预测中有很好的应用,可以作为网络流量预测的一个新方法和新思路,并且对研究网络拓扑结构有着重要的启发作用。网络流量预测在研究网络行为方面有着重要的作用。ARMA时间序列模型是比较常见的用于网络流量预测的模型。但是用在普通时间序列模型里面的一些参数很难估计,同时非固定的时间序列问题用ARMA模型很难解决。人工神经网络技术通过对历史数据的学习可能对大量数据的特征进行缓存记忆,对于解决大数据的复杂问题很合适。IP6 网络流量预测是非线性的,可以使用合适的神经网络模型进行计算。 A Novel BP Neural Network Model for Traffic Prediction of The Next Generation Network. Abstract:With the rapid development of wireless communication technology, the internet occupy an important position in people’s daily life. Monitoring and predicting the traffic of the network is of great significant to study the topology of the network. According to the BP algorithm, this paper proposed an improved BP algorithm based on the analysis of the drawback of the algorithm. By establishing a new transfer function of the traffic transmission, we compare it with the previous transmission function. Then, the function is used to do experiments, found to be the better than before. This method can be used as a new way to predict the network traffic, which has important implications for the study of the network topology. Network traffic prediction is an important research aspect of network behavior. Conventionally, ARMA time sequence model is usually adopted in network traffic prediction. However, the parameters used in normal time sequence models are difficult to be estimated and the nonstationary time sequence problem cannot be processed using ARMA time sequence problem model. The neural network technique may memory large quantity of characteristics of data set by learning previous data, and is suitable for solving these problems with large complexity. IP6 network traffic prediction is just the problem with nonlinear feature and can be solved using appropriate neural network model.

MATLAB常用工具箱

MATLAB有三十多个工具箱大致可分为两类:功能型工具箱和领域型工具箱. 功能型工具箱主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能用于多种学科。而领域型工具箱是专业性很强的。如控制系统工具箱(Control System Toolbox)、信号处理工具箱(Signal Processing Toolbox)、财政金融工具箱(Financial Toolbox)等。 下面,将MATLAB工具箱内所包含的主要内容做简要介绍: 1)通讯工具箱(Communication Toolbox)。 令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析 ——信号编码 ——调制解调 ——滤波器和均衡器设计 ——通道模型 ——同步 可由结构图直接生成可应用的C语言源代码。 2)控制系统工具箱(Control System Toolbox)。 鲁连续系统设计和离散系统设计 * 状态空间和传递函数 * 模型转换 * 频域响应:Bode图、Nyquist图、Nichols图 * 时域响应:冲击响应、阶跃响应、斜波响应等 * 根轨迹、极点配置、LQG 3)财政金融工具箱(FinancialTooLbox)。 * 成本、利润分析,市场灵敏度分析 * 业务量分析及优化 * 偏差分析 * 资金流量估算 * 财务报表 4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox * 辨识具有未知延迟的连续和离散系统 * 计算幅值/相位、零点/极点的置信区间 * 设计周期激励信号、最小峰值、最优能量诺等 5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。 * 友好的交互设计界面 * 自适应神经—模糊学习、聚类以及Sugeno推理 * 支持SIMULINK动态仿真 * 可生成C语言源代码用于实时应用

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

Matlab各工具箱功能简介(部分)

Toolbox工具箱 序号工具箱备注 一、数学、统计与优化 1 Symbolic Math Toolbox 符号数学工具箱 Symbolic Math Toolbox?提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB?、Simulink?和Simscape?生成代码。 Symbolic Math Toolbox 包含MuPAD?语言,并已针对符号运算表达式的处理和执行进行优化。该工具箱备有MuPAD 函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD 语言编写自定义的符号函数和符号库。MuPAD 记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML 或PDF 的格式分享带注释的推导。 2 Partial Differential Euqation Toolbox 偏微分方程工具箱 偏微分方程工具箱?提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。 你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。 3 Statistics Toolbox 统计学工具箱

4 Curve Fitting Toolbox 曲线拟合工具箱 Curve Fitting Toolbox?提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。 5 Optimization Toolbox 优化工具箱 Optimization Toolbox?提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、以及将优化的方法结合到其算法和应用程序中。 6 Global Optimization Toolbox 全局优化工具箱 Global Optimization Toolbox 所提供的方法可为包含多个极大值或极小值的问题搜索全局解。它包含全局搜索、多初始点、模式搜索、遗传算法和模拟退火求解器。对于目标

MATLAB工具箱介绍

MATLAB工具箱介绍 序号工具箱备注 数学、统计与优化 1Symbolic Math Toolbox符号数学工具箱 2Partial Differential Euqation Toolbox 偏微分方程工具箱 3Statistics Toolbox统计学工具箱4Curve Fitting Toolbox曲线拟合工具箱5Optimization Toolbox优化工具箱 6Global Optimization Toolbox 全局优化工具箱 7Neural Network Toolbox神经网络工具箱 8Model-Based Calibration Toolbox 基于模型矫正工具箱 信号处理与通信 9Signal Processing Toolbox 信号处理工具箱 10DSP System Toolbox DSP[size=+0]系统工具箱 11Communications System Toolbox 通信系统工具箱 12Wavelet Toolbox小波工具箱 13Fixed-Point Toolbox定点运算工具箱14RF Toolbox射频工具箱 15Phased Array System Toolbox 相控阵系统工具箱 控制系统设计与分析 16Control system Toolbox控制系统工具箱 17System Indentification Toolbox 系统辨识工具箱 18Fuzzy Logic Toolbox模糊逻辑工具箱19Robust Control Toolbox鲁棒控制工具箱 20Model Predictive Control Toolbox 模型预测控制工具箱 21Aerospace Toolbox航空航天工具箱

Matlab系统辨识尝试之详细过程1

Matlab系统辨识尝试之详细过程1 前面介绍了Matlab系统辨识工具箱的一些用法,这里拿一个直观的例子来尝试工具箱的具体用法。比较长,给个简单目录吧: 1.辨识的准备 2.辨识数据结构的构造 3.GUI辨识 4.辨识效果 5.对固有频率的辨识 6.结构化辨识 7.灰箱辨识 8.加入kalman滤波的灰箱辨识 1.辨识的准备 在辨识前,首先要根据自己辨识的情况,确定要辨识的状态空间模型的一些特点,如连续还是离散的;有无直通 分量(即从输入直通到输出的分量);输入延迟;初始状态等。了解了这些情况就可以更快速的配置辨识时的一些设 置选项。 2.辨识数据结构的构造 使用原始数据构造iddata结构: data=iddata(y,u,Ts); 这里以一个弹簧质量系统的仿真为例 代码如下,其中用到了函数MDOFSolve,这在之前的博文介绍过(https://www.doczj.com/doc/b5442026.html,/?p=183),拿来用即可。如果发现运行有错误,可以将MDOFSolve函数开头的一句 omega2=real(eval(omega2)); 注释掉。 %弹簧质量系统建模 clc clear close all m=200; k=980*1000;

c=1.5*1000; m1=1*m; m2=1.5*m; k1=1*k; k2=2*k; k3=k1; %%由振动力学知识求固有频率 M=[m10;0m2]; K=[k1+k2-k2;-k2k3+k2]; [omega,phi,phin]=MDOFSolve(M,K); fprintf('固有频率:%fHz\n',subs(omega/2/pi)); %%转化到状态空间 innum=2; outnum=2; statenum=4; A=[0100; -(k1+k2)/m10k2/m10; 0001; k2/m20-(k3+k2)/m20]; B=[00; 1/m10; 00; 01/m2]; C=[1000; 0010]; D=zeros(outnum,innum); K=zeros(statenum,innum); mcon=idss(A,B,C,D,K,'Ts',0);%连续时间模型 figure impulse(mcon) %%信号仿真,构造数据供辨识 n=511;%输入信号长度 Ts=0.001; t=0:Ts:(n-1)*Ts; u1=idinput(n,'prbs');%输入1为伪随机信号 u2=zeros(n,1);%输入2为空 u=[u1u2]; simdat=iddata([],u,Ts);%形成输入数据对象 e=randn(n,2)*1e-7; simopt=simOptions('AddNoise',true,'NoiseData',e);%添加噪声yn=sim(mcon,simdat,simopt);%加噪声仿真 y=sim(mcon,simdat);%无噪声仿真

Matlab+Toolbox+工具箱1

Matlab Toolbox 工具箱 Matlab工具箱已经成为一个系列产品,Matlab主工具箱和各种工具箱(toolbox )。

工具箱介绍 Matlab包含两部分内容:基本部分和根据专门领域中的特殊需要而设计的各种可选工具箱。 Symbolic Math PDE Optimization Signal process Image Process Statistics Control System System Identification ……

一、工具箱简介 ?功能型工具箱——通用型 功能型工具箱主要用来扩充Matlab的数值计算、符号运算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能够用于多种学科。

?领域型工具箱——专用型 领域型工具箱是学科专用工具箱,其专业性很强,比如控制系统工具箱(Control System Toolbox);信号处理工具箱(Signal Processing Toolbox);财政金融工具箱(Financial Toolbox)等等。只适用于本专业。

控制系统工具箱 Control System Toolbox ?连续系统设计和离散系统设计 ?状态空间和传递函数以及模型转换?时域响应(脉冲响应、阶跃响应、斜坡响应) ?频域响应(Bode图、Nyquist图) ?根轨迹、极点配置

Matlab常用工具箱 ?Matlab Main Toolbox——matlab主工具箱?Control System Toolbox——控制系统工具箱?Communication Toolbox——通讯工具箱?Financial Toolbox——财政金融工具箱?System Identification Toolbox——系统辨识工具箱 ?Fuzzy Logic Toolbox——模糊逻辑工具箱?Bioinformatics Toolbox——生物分析工具箱

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

系统辨识及自适应控制实验..

Harbin Institute of Technology 系统辨识与自适应控制 实验报告 题目:渐消记忆最小二乘法、MIT方案 与卫星振动抑制仿真实验 专业:控制科学与工程 姓名: 学号: 15S004001 指导老师: 日期: 2015.12.06 哈尔滨工业大学 2015年11月

本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用; 第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响; 第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。 一、系统辨识 1. 最小二乘法的引出 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。设单输入-单输出线性定长系统的差分方程为: ()()()()()101123n n x k a x k a k n b u k b u x k n k +-+?+-=+?+-=,,,, (1.1) 错误!未找到引用源。 式中:()u k 错误!未找到引用源。为控制量;错误!未找到引用源。为理论上的输出值。错误!未找到引用源。只有通过观测才能得到,在观测过程中往往附加有随机干扰。错误!未找到引用源。的观测值错误!未找到引用源。可表示为: 错误!未找到引用源。 (1.2) 式中:()n k 为随机干扰。由式(1.2)得 错误!未找到引用源。 ()()()x k y k n k =- (1.3) 将式(1.3)带入式(1.1)得 ()()()()()()()101111()n n n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+?+-=+-+?+ -++-∑ (1.4) 我们可能不知道()n k 错误!未找到引用源。的统计特性,在这种情况下,往往把()n k 看做均值为0的白噪声。 设 错误!未找到引用源。 (1.5)

过程建模与系统辨识课程报告

过程建模与系统辨识课程报告 班级: 姓名: 学号: 课题:人体运动计算机仿真建模方法地研究 1.人体运动计算机仿真地理论基础 (1)人体运动计算机仿真地理论 所谓人体运动计算机仿真地理论, 是指人体运动领域及其计算机仿真技术应用时作为基本立论地专业理论知识依据, 也就是指导人们从事人体运动计算机仿真应用与研究活动赖以建立和存在地专业领域内地前提和一些基本思想.总之, 因为仿真技术具有“学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候和场地空间条件限制”等独特优点, 故而, 无论在交通工具安全、人机项目、虚拟设计、机器人、医疗康复、体育运动以及影视娱乐等诸多领域, 应用计算机仿真技术研究人体运动都有着其它技术所无法比拟地价值和效益.因此, 本文着眼于人体运动生物力学、计算机仿真等领域地知识基础, 从计算机仿真技术及其在人体运动领域地应用发展、人体及其运动建模等主要层面进行研究成果地综述性讨论, 旨在进一步促进人体运动领域应用计算机仿真技术在理论与实践上得以不断拓宽和深入发展. (2)人体及其运动建模 当人体被作为一种系统来看待时, 其本身及其运动包含了众多不

同层面而复杂地因素和交互作用.因此, 要深刻理解和把握人体及其运动, 模型化方法是不可或缺地.概略来说, 人体及其运动模型地构造主要有两种方式( 或者两者地结合) : 第一种方式从逻辑上看是演绎为主地, 即将人体系统分成子系统, 且子系统地性质和关系已被成熟地理论知识或规律所涵盖, 进而把这些子系统用数学方法加以联结得到整个系统地模型, 因为它无须对人体实际系统进行试验, 故而, 这种方式通常就被称为建模; 第二种方式则主要是归纳地, 它主要依据从实际人体地实验数据( 记录人体系统地输入输出) 并进而进行数据分析来建立数学模型或图象模型, 通常被称为系统辩识.就人体运动地力学模型而言, 从最简化地质点、刚体, 到多刚体、柔性多体等模型, 都以阐释人体机械运动形式地机理为目标, 其主要内容涵盖多体系统力学模型、非完整系统力学模型等, 并为人体地动力学研究提供了理论基础.在计算机仿真地交互效果上, 人体地逼真形象模型是在计算机图形学与先进仿真技术不断融合促进下发展起来地, 又在虚拟现实技术大力推动下, 三维“虚拟人”模型亦不断推出, 其中主要有如下几种形式: 骨架、体素、曲线、球体堆积、曲面等模型形式. (3)人体运动计算机仿真地理论地发展 随着系统仿真技术及相关地计算机图形学、数据库技术、虚拟现实技术地交互融合与推动, 加上以人体或其运动为核心地不同领域地强烈需求地推动, 虚拟人体及其运动成为当前研究发展地热点, 在建模方法与技术地核心理论基础方面, 人工智能( 专家知识、神经网

系统辨识

系统辨识理论综述 郭金虎 【摘要】全面论述了系统辨识理论的提出背景以及理论成果,总结了系统辨识理论的基本原理、基本方法以及基本内容,并对其应用及发展做了全面的讨论。 【关键词】系统辨识;准则函数 1概述 系统辨识问题的提出是由于随着科学技术的发展,各门学科的研究方法进一步趋向定量化,人们在生产实践和科学实验中,对所研究的复杂对象通常要求通过观测和计算来定量的判明其内在规律,为此必须建立所研究对象的数学模型,从而进行分析、设计、预测、控制的决策。例如,在化工过程中,要求确定其化学动力学和有关参数,已决定工程的反应速度;在热工过程中,要求确定如热交换器这样的分布参数的系统及动态参数;在生物系统方面,通常希望获得其较精确的数学模型,一般描述在生物群体系统的动态参数;为了控制环境污染,希望得到大气污染扩散模型和水质模型;为进行人口预报,做出相应的决策,要求建立人口增长的动态模型;对产品需求量、新型工业的增长规律这类经济系统,已经建立并继续要求建立其定量的描述模型。其他如结构或机械的振动、地质分析、气象预报等等,都涉及系统辨识和系统参数估计,这类要求正在不断扩大。 2系统辨识的基本原理 2.1系统辨识的定义和基本要素 实验和观测是人类了解客观世界的最根本手段。在科学研究和工程实践中,利用通过实验和观测所得到的信息,或掌握所研究对象的特性,这种方式的含义即为“辨识”。关于系统辨识的定义,1962年,L.A.Zadeh 是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中,确定一个与所测系统等价的模型”。1978年,L.Ljung 也给出了一个定义:“辨识既是按规定准则在一类模型中选择一个与数据拟合得最好的模型”。可用图2-1来说明辨识建模的思想。 0 G g G 等价准则系统原型 系统模型激励信号y g y e J u 图2-1 系统辨识的原理

MATLAB中常用的工具箱

6.1.1MA TLAB中常用的工具箱 MA TLAB中常用的工具箱有: Matlab main toolbox——matlab主工具箱 Control system toolbox——控制系统工具箱Communication toolbox——通信工具箱 Financial toolbox——财政金融工具箱 System identification toolbox——系统辨识工具箱 Fuzzy logic toolbox ——模糊逻辑工具箱 Higher-order spectral analysis toolbox——高阶谱分析工具箱Image processing toolbox——图像处理工具箱 Lmi contral toolbox——线性矩阵不等式工具箱 Model predictive contral toolbox——模型预测控制工具箱 U-Analysis ang sysnthesis toolbox——u分析工具箱 Neural network toolbox——神经网络工具箱 Optimization toolbox——优化工具箱 Partial differential toolbox——偏微分奉承工具箱 Robust contral toolbox——鲁棒控制工具箱 Spline toolbox——样条工具箱 Signal processing toolbox——信号处理工具箱 Statisticst toolbox——符号数学工具箱 Symulink toolbox——动态仿真工具箱 System identification toolbox——系统辨识工具箱 Wavele toolbox——小波工具箱 6.2优化工具箱中的函数 1、最小化函数 2、最小二乘问题 3、方程求解函数

自适应控制习题(系统辨识)

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社, 2007) 【2-1】 设某物理量丫与XI 、X2、X3的关系如下:丫=0 1X1 + 0 2X2+0 3X3 由试验获得的数据如下表。试用最小二乘法确定模型参数 0 1、0 2和0 3 X1:0.620.4 0.420.820.660.720.380.520.450.690.550.36 X2:12.014.214.612.110.88.2013.010.58.8017.014.212.8 X3:5.206.100.328.305.107.904.208.003.905.503.806.20 Y: 51.649.948.550.649.748.842.645.937.864.853.445.3 【2-3】 考虑如下模型 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(入 =0.95)和递推最小二乘法 估计模型参数(限定数据长度 N 为某一数值,如N=150或其它数值),并将结果加以比 较。 【2-4】 对于如下模型 (1 _0.8z 1 0.15z 2 )y(k) 一(z 2 0.5z 3 )u(k) - (1 - 0.65z 1 - 0.1z 2 )w(k) 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB^的函数“ randn ”产生)。 【3-1】 设有不稳定系统: (1z 1)y(k) - z ^(10.9z 1)u(k) 期望传递函数的分母多项式为 Amz z m r 且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2} 设有被控过程:一 - _ (1 1.7z 1 0.6z 2)y(k)z 2(11.2z 1 )u(k) 一 ~ - 一 - -1.3z 0.5z u(t)w(t) I 0.3z 2 1 - - T ()(10.5 ),期望输出y 跟踪参考输入y , y(t)

自适应控制习题(系统辨识)

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社,2007) 【2-1】 设某物理量Y 与X1、X2、X3的关系如下:Y=θ1X 1+θ2X 2+θ3X 3 由试验获得的数据如下表。试用最小二乘法确定模型参数θ1、θ2和θ3 X1: 0.62 0.4 0.42 0.82 0.66 0.72 0.38 0.52 0.45 0.69 0.55 0.36 X2: 12.0 14.2 14.6 12.1 10.8 8.20 13.0 10.5 8.80 17.0 14.2 12.8 X3: 5.20 6.10 0.32 8.30 5.10 7.90 4.20 8.00 3.90 5.50 3.80 6.20 Y: 51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3 【2-3】 考虑如下模型 )()(3.03.115.0)(212 1t w t u z z z z t y ++-+=---- 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(λ=0.95)和递推最小二乘法估计模型参数(限定数据长度N 为某一数值,如N=150或其它数值),并将结果加以比较。 【2-4】 对于如下模型 )()1.065.01()()5.0()()15.08.01(213221k w z z k u z z k y z z ------+-++=+- 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB 中的函数“randn ”产生)。 【3-1】 设有不稳定系统: )()9.01()()1(111k u z z k y z ---+=- 期望传递函数的分母多项式为)5.01()(11---=z z Am ,期望输出m y 跟踪参考输入r y ,且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2】 设有被控过程: )()2.11()()6.07.11(1221k u z z k y z z ----+=+- 给定期望传递函数的分母多项式为)08.06.01()(211---+-=z z z A m ,试按照极点配置方法设计控制系统,使期望输出无稳态误差,并写出控制表达式u(k)。

系统辨识设计

基于最小二乘法的机械手参数辨识 1 引言 1.1 机械臂概况 工业机械臂是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械臂是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。 机械臂是模拟人的上臂而构成的。为了抓取空间中任意位置和方位的物体,需有6个自由度,即6个关节。一般情况下,全部关节皆为转动型关节,而且其前3个关节一般都集中在手腕部。关节型机械臂的特点是结构紧凑,所占空间体积小,相对的工作空间最大,还能绕过基座周围的一些障碍物,是机械臂中使用最多的一种结构形式,比较典型的如PUMA、SCARA等[1]。多关节机械臂的优点是:动作灵活、运动惯性小、通用性强、能抓取靠近机座的工件,并能绕过机体和工作机械之间的障碍物进行工作,目前广泛应用于工业自动化生产线上。 1.2 机械臂的研究现状 早在20世纪50年代,由于高性能的飞机自动驾驶仪控制需要人们就对自适应控制进行了广泛的研究,但由于计算能力和控制理论的水平,这种思想没有得到成功的推广与应用。经过几十年的努力,自适应控制理论得到了进一步的发展和完善。近年来,国内外学者对自适应控制已做了卓越的研究工作,也取得了可喜的研究成果,有许多研究成果已经应用到生产实际中[3]。 随着科学技术的发展和社会的进步,机器人的应用越来越普及,不仅广泛应用于工业生产和制造部门,而且在航天、海洋探测、危险或条件恶劣的特殊环境中获得了大量应用。并且,它还逐渐渗透到了日常生活及教育娱乐等各个领域。而机器人中控制问题始终比较难解决,怎么样能够更好的控制机器人就成为当今研究的重点,在此研究自适应控制来解决机器人的控制问题。当操作机器人的工作环境及工作目标的性质和特征在工作过程中随时发生变化时,控制因素具有未知性和不确定的特性。这种未知因素和不确定性将使控制系统的性能变差,不能满足控制要求。采用一般反馈技术或开环补偿方法不能很好的解决这一问题。如要解决上述问题,就要求控制器能在运行过程中不断地测量受控对象的特性,

Matlab各工具箱功能简介(部分)

Toolbox工具箱序号工具箱备注一、数学、统计与优化 1 Symbolic Math Toolbox 符号数学工具箱Symbolic Math Toolbox? 提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为 MATLAB、Simulink 和Simscape? 生成代码。?? Symbolic Math Toolbox 包含 MuPAD 语言,并已针对符号运算表达式的处理和执?行进行优化。该工具箱备有MuPAD 函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用 MuPAD 语言编写自定义的符号函数和符号库。MuPAD 记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML 或PDF 的格式分享带注释的推导。 2 Partial Differential Euqation Toolbox 偏微分方程工具箱偏微分方程工具箱?提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。 3 Statistics Toolbox 统计学工具箱

Statistics and Machine Learning Toolbox 提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo 仿真的随机数,以及执行假设检验。回归和分类算法用于依据数据执行推理并构建预测模型。对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征选择、逐步回归、主成份分析、规则化和其他降维方法确定影响您的模型的主要变量或特征。该工具箱提供了受监督和不受监督机器学习算法,包括支持向量机(SVM)、促进式 (boosted) 和袋装 (bagged) 决策树、k-最近邻、k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模 型。4 Curve Fitting Toolbox 曲线拟合工具箱Curve Fitting Toolbox? 提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。在创建一个拟合之后,您可以运用多种后处理方法进行绘 图、插值和外推,估计置信区间,计算积分和导数。 5 Optimization Toolbox 优化工具箱 Optimization Toolbox? 提供了寻找最小化或最大化目标并同时满足限制条件

哈工大研究生选修课系统辨识与自适应控制考点

系统辨识考点 1、辨识定义: 是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。 2、系统辨识步骤 辨识目的及 先验知识 试验设计 输入输出数据 采集、处理 模型结构选取 与辨识 模型参数辨识 模型验证 合格? 最终模型Y N 3、递推最小二乘辨识模型 4、广义最小二乘和增广最小二乘的区别 广义最小二乘法是对系统过程模型的输入、输出和过程噪声加以变换(滤波)变成一般最小二乘法的标准格式,再用一般最小二乘法()1111???T N N N N N N y ++++=+-θθK φθ()111111T N N N N N N -++++=+K P φφP φ111T N N N N N +++=-P P K φP

对系统的参数进行估计。 增广矩阵法就是使系统模型变成符合一般最小二乘法的标准格式的,并将模型参数和噪声模型参数同时估计出来的方法。 增广矩阵法用近似估计的噪声序列代替白噪声序列。这和广义最小二乘法的不同点在于:后者噪声模型参数的估计和系统模型参数的估计是交替地进行的。 5、数据饱和的原因和解决方法 ① 参数缓慢变化(易产生数据饱和现象) 解决方法:渐消记忆最小二乘、限定记忆最小二乘 ② 参数突变但不频繁????? 6、自适应系统定义、分类 自适应控制系统是一种特殊形式的非线性控制系统。系统本身的特性(结构和参数)、环境及干扰的特性存在各种不确定性。在系统运行期间,系统自身能在线地积累与实行有效控制有关的信息,并修正系统结构的有关参数和控制作用,使系统处于所要求的(接近最优的)状态。 ?????????????????????????????????增益列表补偿法最小方差控制算法预测控制算法随机自适应控制系统极点配置控制算法控制算法参数最优化设计方法模型参考自适应控制系统李亚普诺夫稳定性理论设计方法波波夫超稳定性理论设计方法PID

相关主题
文本预览
相关文档 最新文档