当前位置:文档之家› 注塑生产新技术

注塑生产新技术

注塑生产新技术
注塑生产新技术

注塑成型新技术

高分子材料的成型方法主要有挤出成型、注塑成型、吹塑成型、压延成型、压制成型等,其中,注塑成型因可以生产和制造形状较为复杂的制品、易于与计算机技术结合、易于实现自动化生产等优点,在高分子材料的成型加工中占有极其重要的位置。注塑成型技术广泛应用于汽车、家电、电子设备、办公自动化设备、建材等诸多领域。近年来,这些工业领域迅速发展,给注塑成型技术的发展提供了强大的推动力,使注塑成型技术在发展速度上、水平上都得到了迅猛的发展,特别是对于注塑成型新技术的发展更是起到了强大的推动作用。本文着眼于注塑成型新技术的最新发展动向,介绍了几种用途较为广泛的注塑成型新技术。近几年来,注塑成型新技术发展动向主要集中在:新型气辅注塑成型技术、多组分注塑成型新技术、微孔发泡注塑成型技术、微注塑成型技术等方面。

1 新型气辅注塑成型技术

气体辅助注塑成型技术(Gas-assisted InjectionMolding Technology) 是自往复式螺

杆注射机问世以来,注塑成型技术最重要的发展之一。它通过高压气体在注塑制件内部产生中空截面,利用气体积压,减少制品残余内应力,消除制品表面缩痕,减少用料,显示传统注塑成型无法比拟的优越性。一般气体辅助注塑成型的过程是:先向模具型腔中注入经过准确计量的塑料熔体,再直接注入压缩气体;气体在塑料熔体的包围下沿阻力最小的方向扩散前进,对塑料熔体进行穿透和排空,作为动力推动塑料熔体充满模具型腔并对塑料熔体进行保压,待制品冷却凝固后再开模顶出。近年来,气体辅助注塑成型技术发展迅速,出现了一些创新性技术,如水辅助注塑成型技术、冷却气体气辅技术、气辅共注成型技术、外部气辅注塑技术及振动气辅技术等。

1.1 水辅助注塑成型技术

水辅助注塑成型技术(Water-Assisted Injection Molding Technology) 是以德国Aachen 大学塑料加工研究所为代表的研究人员基于气辅成型原理开发出的新的注塑成型技术。由于气体的热容量比较小、导热性差,气体辅助注塑时,制件相当于单面冷却,因而其成型周期往往比普通注塑长。水辅助注塑成型技术的原理与气体辅助注塑成型技术基本相同,只是用水代替气体注入熔体中心。其工艺

过程为:(1)将熔体注满型腔,进行短暂保压;(2)将水注入熔体中心,在水的压力下,制件中心的熔体倒流回注塑系统;(3)经过一段时间保压后,减压将水排出制件。排水所需的压力可以由水的蒸发产生,或者通过加入水中的CO2 的蒸发产生。在注塑直径为30mm的PP中空制件的比较实验中发现,水辅助注塑的冷却时间比气体辅助注塑减少了75%。按照成型工艺过程的不同,水辅助注塑成型有短射( 欠料注塑) 法、返流法、溢流法和流动法4种工艺方法[1]。

1.2 冷却气体气辅成型技术

在气辅成型过程中,尽管气体辅助成型降低了塑件的壁厚,但在工艺过程中,冷却阶段在成型周期中所占比例最大。当气体( 氮气) 将塑件穿透时,其冷却作用是非常小的。如果制品在脱模时冷却不够充分,则内部残余热量会形成表面再结晶,从而导致制品质量降低或者变形,严重的时候制品内部会出现气泡。为避免以上情况的发生,可以采取延长模具冷却时间或使用次级冷却装置的措施,但会增加成本。冷却气体辅助成型技术便是针对以上的问题而出现的一种新的气辅成型方法。在冷却气体辅助成型工艺中,气体通常被冷却至–20℃ ~180℃。冷却气体形成的过程是:常温气体通过一个腔室,在其中被液氮冷却。这种冷却气体辅助成型技术的主要优势在于:当冷却气体穿透熔体时,在模腔内会产生塞流效应,塞流产生的残余壁厚比传统气体辅助成型要小;冷却气体也防止了制件内部起泡,并能产生较光滑的内表面[2]。

1.3 气辅共注成型技术

气辅共注成型技术(Co-Injection and Gas-Assisted Injection Molding)是将聚合物共注成型技术与气辅技术相结合而得到的一种新工艺。聚合物共注成型技术是同时或者先后向模腔内注入不同的聚合物熔体,形成多层结构的一种成型技术,而与共注成型工艺相比多了一个注气过程;相对气辅成型而言,则多了一个多层结构的形成过程[3-5]。

气辅共注成型的过程包括三个阶段:(1)共注塑阶段。此阶段与一般共注成型工艺类似,只是在形成表/ 内层结构后,当表层和内层所注入的材料总量占型腔总体积一定比例时,停止注塑熔体,此过程可谓气辅过程的“欠料注塑”,只是注入两种以上的熔体;(2)气辅注塑阶段。气体对内层熔体进行穿透,随着气体的推进,被气体“排挤”的内层熔体又带动表层熔体向前流动;(3)保压冷却,释压脱模,获得制品。为了实现聚合物的气辅共注成型,必须对原有共注成型设备进行改造,即在共注成型设备的基础上增加一套气辅系统。

1.4 外部气体辅助成型技术

外部气体辅助注塑成型技术(External Gas Molding Technology) 是与传统的内部

气体注塑成型不同的一种气体辅助注塑方法。传统的气体辅助成型技术是将气体注入塑料熔体内以形成中空的部位或管道,而新型气辅成型技术是将气体注入模腔表面的局部密封位置中(相当于在塑料熔体外部),故称之为“外气注塑”[6]。

1.5 振动气辅成型技术

一般的气体辅助注塑成型属于非动态成型工艺,而振动气体辅助注塑成型(Vibrated Gas-Assist Molding) 工艺最大的不同便是引入振动波,使常规气体辅助注塑成型时注入的“稳态气体”,变为具有一定振动强度的“动态气体”,从而利用气体作为媒介将振动力场引入到气辅注塑成型的充模、保压和冷却过程中,使其成为动态的成型工艺[7]。

2 多组分注塑成型技术

多组分注塑(Multi-Component Injection Molding)是由至少两种不同的材料通过注塑成型得到所需部件的加工过程,其整合各组分的优越性能,可以生产普通单组分注塑过程无法实现的特殊性能制品。这种由两种或更多种材料组成的产品,与传统的由一种材料成型的注塑产品相比具有不同的物理特性。多组分注塑成型的独特之处在于[8] :(1)可将不同加工特性的材料复合成型;(2) 提高制品手感和外观,集多种性能于一体;(3) 缩短了产品的设计、生产及成型周期,降低了成本;(4) 省略了传统注塑成型后二次加工、装配的过程。

2.1 多组分注塑成型工艺

当前,多组分注塑成型主要有共注塑成型、三明治成型、双色注塑成型、包覆成型、多色注塑成型等技术[9] ,而根据各组分在其成型过程中结合形式的不同,大致可分为顺序注塑成型和叠加注塑成型两大类。

2.1.1 顺序注塑成型

顺序注塑成型是指依次注入物料的工艺过程,这一过程是通过特殊的多组分喷嘴来实现的。其过程是先向模腔中注入第一种熔融组分形成制品表层,然后通过切换多组分喷嘴的切换阀,注射第二种组分,形成制品的内核部分,其过程如图1 所示。就常见的双组分夹芯注塑来说,可以将两组分某方面的性能互补,扬长避短,以达到单组分制品无法获得的性能。顺序注塑成型应用最多的有以下三大类:(1)对于大体积制品,内核利用回收的物料,而外层为起装饰作用的新材料;(2)对于要求承受弯曲应力等载荷的制品,其外层使用玻纤增强材料,而内核可以采用非增强材料;(3)对于厚壁制品,常使用发泡物料制成其内核[10-11]。

图1 顺序注塑成型示意图

Fig.1 The schematic diagram of sequence injection molding

2.1.2 叠加注塑成型

叠加注塑成型过程是通过不同的浇口或流道将多种组分( 通常是两种) 注塑到一起,或者将一种组分叠加在另一种组分之上。与顺序注塑成型相比,其关键在于模具部分的改进和变化。叠加注塑成型又可分为“熔融/ 熔融”注塑成型和“固体/熔融”注塑成型两种[10]。“熔融/ 熔融”注塑成型也就是一般说的共注塑成型,其特点是同时把两种熔融组分经由不同的浇口注入模腔。“固体/ 熔融”注塑成型的特点是在第一种熔融组分部分固化后,再注塑第二种,甚至第三种、第四种组分。如模内自组装注塑成型,是在第一种组分完全固化后,通过内部或外部的传递机构转移至下一成型位置,注入下一组分,实现多组分注塑,如图2 所示[10,12]。

图2 模内自组装注塑成型示意图

Fig.2 The schematic diagram of norm inner self-assembled injection molding

2.2 多组分注塑成型设备

不同的成型工艺需要由对应的成型设备来实现。对应于上述多组分注塑成型工艺的分类,相应成型设备的注射单元的主要形式有:(1)数个注射单元水平方向相互平行或互成一定角度的布局(L型或V 型) 设计或在竖直面内垂直分布;(2)两个注射单元共用一个喷嘴,注塑部分允许两种组分交替顺序注塑或间歇顺序注塑。多组分成型设备的代表有德国(Krauss Maffei) 克劳斯? 玛菲公司的Revolution 旋转压板双组分注塑系统等[13]。

2.3 多组分注塑成型技术的发展趋势

随着塑料注塑制品的广泛应用,多组分技术在当代注塑技术中具有巨大的机遇

和希望。与单一组分的普通注塑技术相比,多组分技术在设计和功能上具有明显的优势。不同热塑性塑料共成型、弹性体塑料和热固性塑料共成型、超壁双组分成型、装饰性衬里成型等是多组分技术的趋势[14]。另外,用多组分技术制出的具有磁性、导热或导电性等填充型功能热塑性塑料制件也成为当前研究热点。

3 粉末注塑成型技术

粉末注塑成型(Powder Injection Molding) 是将现代塑料注塑成型技术引入粉末冶金领域而形成的一门新型粉末冶金成型新技术。它是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具注塑成型坯件,并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、一定功能的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。

3.1 粉末注塑成型的工艺过程及技术特点

粉末注塑成型的工艺流程,如图3 所示。(1)选取符合粉末注塑成型技术要求的金属粉末和有机黏结剂;(2)在一定温度下,采用适当的方法将粉末和黏结剂混合成均匀的喂料;(3)用注塑成型机将制成粒状后的喂料注入模腔内后冷凝成型,得到成型坯件;(4)对成型坯件进行脱脂处理;(5)烧结成型坯件,得到最终产品。

图3 粉末注塑成型的工艺流程

Fig.3 The flow chart of powder injection molding

粉末注塑成型技术在制造具有复杂形状、均匀组织结构和高性能、高强度、高精度的产品方面显示了独特的优势。不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品、材质不均匀、机械性能低,不易成型薄壁、复杂结构的缺点,特别适合于大批量生产小型、复杂形状以及具有特殊要求的金属零件,采用粉末注塑成型进行大批量生产有较大的成本优势,生产成本只有传统工艺的20%~60%。粉末注塑成型技术的出现,给各行各业设计和制造人员提供了崭新的设计思路和制造技术,采用粉末注塑成型技术可以大胆采用原来由于可加工性和加工经济性差而不得不放弃的一些结构复杂的设计方案。还可使原来由于加工困难、而不得不采用的组合件、拼装件进行一次复合完成加工[15-16]。

3.2 粉末注塑成型工艺的新发展

近几年,粉末注塑成型技术得到快速发展。其最大特点是粉末注塑成型技术与其他成型技术相结合,得到了许多优异的产品。微型注塑成型和双组分注塑成型与粉末注塑成型结合:以微型拉伸试样作为研究对象,证明双组分注塑成型粉末产品切实可行,开发的产品实例为一种微型加热针。Arburg 公司注塑了质量为0.0679g 的陶瓷产品,用作绝缘材料[17-18] 。振动辅助注塑成型:殷小春等[19] 对振动辅助注塑成型应用于金属粉末注塑成型过程进行了研究。结果表明:振动力场可以使不同径向位置处的模腔最大压力随振动振幅、频率的增加而减小,从而可以在不影响制品性能的条件下降低注塑成型压力,以拓宽金属粉末注塑成型的适用范围。

今后,粉末注塑成型技术研究和开发的主要方向是:开发高效、低成本的预混合粉生产技术;研究和开发工艺性能更佳的新型黏结剂,建立起黏结剂设计原理和数据库[20] ;开发粉末注塑成型过程模拟与仿真技术,为模具设计和注塑工艺制定奠定理论基础;发展低温、快速脱脂和低温烧结技术,减小缺陷和变形。

4 微孔发泡注塑成型

微孔泡沫塑料(MCF) 是指微孔直径为0.1~10.0μm,微孔密度达109~1 015 个

/cm3 ,材料密度比发泡前减少5%~98% 的泡沫塑料。与不发泡塑料相比,微孔泡沫塑料具有优良的冲击性能、高疲劳寿命、低介电常数和热导率。由于微孔发泡塑料达到了既降低材料的成本又提高其性能的双重效果,性价比更高,因此具有极大的应用前景。利用气体超临界液体状态在整个聚合体中产生分布均一和尺寸统一的微小的气孔(根据聚合体不同的材质及应用,其尺寸通常为

5~100μm)是微孔发泡注塑成型的技术特点。微孔发泡注塑成型技术与传统塑料发泡技术比较[21],既不需要化学发泡剂,也不需要以烃基为原料的物理催化剂、泡沫剂及其他助剂。合理利用微孔注塑成型技术可以扩大产品结构形式、提高生产效率、降低生产成本。按照成型过程的连续性,可将微孔发泡注塑成型工艺分为间隙式微孔发泡塑料注塑成型和连续微孔发泡塑料注塑成型。

4.1 间隙式微孔发泡塑料注塑成型

间隙式微孔发泡塑料注塑成型是早期进行微孔注塑成型的一种方法,工艺过程[22-23] 是先在高压下使气体(CO2) 均匀地溶解于固态聚合物中(在聚合物玻璃态下进行),形成固态聚合/ 气体饱和体系,加热至熔融状态。然后在高压下注塑成型,并降低温度和压力至某一状态,使聚合物熔体中的气体过饱和,析出形成大量的气泡核,最后快速冷却阻止气泡生长,由此成型微孔发泡塑料。这种利用压力使惰性气体渗入固态聚合物中成型微孔泡沫塑料的方法只适用于间歇式生产,生产效率比较低,不及其他连续的微孔发泡注塑技术。

4.2 连续微孔发泡塑料注塑成型

美国Trexel 公司提供的MuCell 技术[24] 被认为是第一种适合市场推广的微孔发泡注塑技术,其工艺过程可以分为以下4 步:(1)超临界状态下的气体( 如CO2) 在螺杆后退阶段通过机筒注塑进入聚合物熔体中,形成单相溶液;(2)当

高压下机筒内的熔体注塑进人压力较低的模具时,由于压力变化,单相溶液经历热力学不稳定的状态,大量的成核点形成泡沫气室;(3)气体扩散到泡沫中,引起气泡膨胀;(4)当气泡长大到一定尺寸时,冷却定型。MuCell 在注塑成型技术上的突破,为注塑制品生产提供了其他注塑工艺所不具有的巨大能力,为新型制品设计、优化工艺和降低产品成本开拓了新的途径。

其他连续微孔发泡塑料注塑成型工艺有:Ergocell 微孔发泡塑料注塑成型[24] 、超临界流体微孔发泡塑料注塑成型[25] 等。

5 微注塑成型技术

近年来,微系统技术的应用已从微电子元件、微型光学仪器、微型医疗仪器、微型传感器扩展到磁盘读写装置、喷墨打印等。为了能够生产具有实用价值的微细组件,许多新兴制造技术随之产生,包括光刻,电铸及脱模技术(LIGA)、紫外光蚀刻技术(UV)、放电加工(EDM)、微注塑成型、精密磨削和精密切削等

[26-27]。其中,微注塑成型技术以容易实现低成本大规模生产具有精密微细结构零件的优点,成为世界制造技术的研究热点之一[28-29]。

5.1 微注塑成型技术的工艺特点

微注塑成型的工艺过程,如图4 所示。与普通注塑成型相比,具有如下的优点:(1)原料利用率提高。微注塑系统可以显著缩小流道的尺寸,从而提高原料的利用率;经过优化设计的流道,其物料利用率可达60%;(2)制品精度高。可控制的注射量、缩小的浇口和流道都有利于提高制品的精度,目前微注塑制品的尺寸误差可控制在0.01mm 之内,质量误差不超过0.00008g;(3)生产周期缩短。浇口、流道尺寸缩小及变温控制系统加快了制品的充模、冷却速度,缩短了成型周期。一般采用用微注塑成型的零件,其成型循环时间较从前缩短40% 左右[30-31]。

图4 微型注塑的工艺过程

Fig.4 The process of micro-injection molding

5.2 微注塑成型设备

微注射机是微注塑成型的关键。与传统注塑成型技术相比,微注塑成型技术对生产设备有许多特殊要求,主要表现为以下几个方面:(1)高注射速率;(2)精密注射量计量;(3)快速反应能力。按驱动方式分类,可分为液压/ 气压式驱动、全电式驱动和电液复合式驱动。按塑化和注射单元的机构设计分类,可分为螺杆式、柱塞式、螺杆柱塞混合式及其他特殊形式。螺杆式微注射机的代表型号有德国Dr.BOY 公司的BOY12A,日精树脂工业株式会社的HM7-DENKEY,树研工业的JMW-015S-5T 及东芝的EC5。柱塞式微注射机代表机型有西班牙Cronoplast 公司的Babyplast6/10,英国MCP公司的Rabbit2/3 和美国Medical Murray 公司的Sesame。螺杆柱塞混合式微注射机的代表型号有英国MCP 公司的

12/90HSP,日本Sodick 公司的TR18S3A 及Battenfeld 公司的Microsystem50[32]。

6 结语

目前,注塑成型技术是塑料加工中最常用的方法之一,可用来生产空间几何形状非常复杂的塑料制件。近年来,各种注塑成型技术取得了显著的进步,其发展总趋势是不断满足高分子制向高度集成化、高度精密化、高产量等方面发展的要求,实现对制品材料的聚集态、相形态、组织态等方面的控制,或实现对制品进行异质材料的复合,最大程度地发挥聚合物的特性,达到制品高性能的目的。深入研究塑料注塑成型技术与注塑成型设备,克服制品中的缺陷,对科技进步与

人们高标准的生活要求有重要意义。参考文献(略)

薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展 摘要:由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证。本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向。关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层。近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着“轻、薄、短、小”方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来。薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决。薄壁注塑成型技术的概念目前关于薄壁注塑成型还没有统一的定义,Mahishi 和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型。由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念。常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要。常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题。所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去。薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传

注塑成型工艺流程图

注塑成型工艺流程图 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为:

1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分)温度控制。

高质量低成本的MuCell微发泡注塑成形技术

微孔发泡(Microcellular Foamine)是指以热塑性材料为基体,通过特殊的加工工艺,使制品中间层密布尺寸从十到几十微米的封闭微孔。微孔发泡注塑成型技术突破了传统注塑的诸多局限,在基本保证制品性能不降低的基础上,可以明显减轻制件重量和成型周期,大大降低设备的锁模力,并具有内应力和翘曲小,平直度高,没有缩水,尺寸稳定,成型视窗大等优势。与常规注塑相比较,特别在生产高精密以及材料较贵的制品中,在许多方面都独具优势,成为近年来注塑技术发展的一个重要方面。 微孔发泡技术发展概述 上世纪80年代,美国麻省理工学院(MIT)首先提出微孔发泡的概念,希望在制品中产生高密度的封闭泡孔,从而在减少材料用量的同时提高其刚性,并避免对强度等性能造成的影响。 Trexel公司于上世纪90年代中成立并获得MIT的所有专利授权,将微孔发泡技术商品化并继续大力发展,现在已在世界各地获得70多个相关的专利。MuCell现已成为了一个非常成熟的革新技术在全世界被广泛使用。 图 1 加入Mucell系统的注塑机 MuCell微孔发泡技术的使用先从美国、欧洲开始,再延伸到日本及东南亚等地区,虽然在中国刚刚起步,但经过一年多的发展,用户正在迅速增长。经过多年来全球不同用户在商业设备、汽车部件、电子电器等各种产品中大批量生产使用,MuCell微孔发泡技术的优点得到了验证,用户在提高产品质量的同时获取了更高的经济回报。 基本原理 1

微孔发泡成型过程可分成三个阶段:首先是将超临界流体(二氧化碳或氮气)溶解到热融胶中形成单相溶体;然后通过开关式射嘴射人温度和压力较低的模具型腔,由于温度和压力降低引发分子的不稳定性从而在制品中形成大量的气泡核,这些气泡核逐渐长大生成微小的孔洞。 图 2 微泡成型过程 发泡后的制品横切面放大图如下,我们从中可以明显看到表层还是未发泡的实体层,这是由于模具温度较低,表面树脂冷却迅速,细胞核没有成长的时间,所以还是未发泡的实体。 图 3 发泡体的结构 MuCell的加工流程 2

注塑车间质量控制流程图

上海金秋塑料制品有限公司 注塑车间质量控制流程 1、目的 为了确保对注塑产品质量有影响的各工序按规范作业,以保证这些检验处于受控状态。保证产品的制造过程满足入库要求。 2、范围 适用于注塑车间产品生产过程中的质量控制。 3、职责 3.1.巡检员负责按订单要求或相应的工艺文件进行注塑过程的产品质量控制. 3.2抽检负责对当班的注塑产品入库前全面检查 3.3检验中如有疑问及争执,须由上级协调处理。 4.1 首检、记录和标识: 4.1.1注塑生产过程中,操作工必须做好自检记录,检验产品的外观,巡检员做好开机前产品的首件签字封样,并填写《首件检验报告》,生产过程中要按巡检员要求进行产品抽检工作,每次检验项目要完整,并同时对打包产品、作业台产品和机台随机产品三个环节进行验证,发现问题,及时纠正和协调处理。 4.1.2抽检员有权要求操作工对自检不合格的产品进行返工,并对返工产品进行记录、标识和复查,直至达到产品质量要求,否则不允许入库,对不合格的产品在交接班时要确保信息完全传达给下班次人员,以防不良品继续产生; 4.1.3检验主管每天要将巡检报表收回并检查巡检记录的情况,对记录有不实或存在疑问则找相关质检员了解确认,如属工作粗心、失误、责任心不足则要求进行通报批评并,对多次未按检验工作指导执行人员将考虑换岗或其它处分; 4.1.4各注塑工段完成品合格后,操作工应在产品外包上作好表示,才能转入下一道工序,注塑的成品、半成品、合格和不合格品等,应按规定的区域整齐放置,并按标识和可追溯性管理原则进行标识,检验员有权对过程进行控制和协调,对标识不规范有权要求员工整改或停机整顿。 4.2 过程再确认: 4.2.1 换料和换模后产品的检验和确认

注塑成型工艺

目录 第一章注塑成型 (1) 1.1 概述 (1) 1.2 注射成型的工艺过程 (1) 第二章注射成型 (3) 2.1加料 (3) 2.2加热塑化 (3) 2.3注射成型 (4) 第三章设备选型 (6) 3.1 设备选型总原则及要求 (6) 3.1.1 设备选型的原则 (6) 3.1.2 设备选型的要求 (6) 3.2 注塑机的选择 (7) 第四章参考文献 (8)

第一章注塑成型 1.1 概述 注塑是一种工业产品生产造型的方法。产品通常使用橡胶注塑和塑料注塑。注塑还可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备,注射成型是通过注塑机和模具来实现的。 塑料注塑是塑料制品的一种方法,将熔融的塑料利用压力注进塑料制品模具中,冷却成型得到想要各种塑料件。有专门用于进行注塑的机械注塑机。目前最常使用的塑料是聚苯乙烯。 1.2 注射成型的工艺过程 完整的注塑成型工艺过程包括成型前的准备,注射成型和成型后的加工处理三个阶段,归纳见图1-1: 塑料性能检测丨丨切除流到货物 预热、干燥丨制品初检→热处理 着色、造粒↓↑丨机械加工 嵌件预热、安放→→注射成型丨热处理 涂脱模剂↑丨修饰 试模丨丨装配 清洗料筒质量检验 成型前准备注射成型成型后的加工处理 图1-1 注塑成型工艺过程 1.2.1 计量加料与预塑化 加料量应等于制品的质量与浇道内料柱质量之和。加料时由料斗口下端的计量装置控制。当注射保压动作完成后,螺杆后退时,粒料均匀的落入机筒内被预塑化。 预塑化是当加入机筒内的粒料在一定温度范围内被转动的螺杆推向机筒前端,在温度作用下再加上螺杆转动中的挤压,剪切和摩擦力等综合条件影响,原料塑化成熔融状

结合多种工艺.注塑转移成型

注塑成型新工艺 结合多种工艺 目前,很多成型商已采用了诸如三明治成型、注射压力成型以及气体或水的辅助成型工艺来生产超薄壁零件或玻纤增强的内表面光滑的中空零件。塑料加工研究院的注塑成型和模具技术部门建议,如果将上述各种先进工艺组合起来,可以得到更高级的加工件,并能够降低成本,克服单一方法的局限性。 塑料加工研究院的注塑成型和模具技术部门评价说,将三明治成型、注射压力成型以及气体或水的辅助成型相结合,这种组合工艺完全是从在模具里成型“皮-芯-皮”的三明治结构开始的。把三明治成型与注射压力成型相结合,加工的零件具有更均匀的芯-皮分布。在注射压力成型工艺中,使用较低的注射或充模压力,不仅可以使加工件中的物料定向程度较低,减少收缩和变形,而且还可以降低对模腔的耐压要求。 此外,有加压这个步骤,可以获得较小的皮厚或总壁厚。塑料加工研究院的注塑成型和模具技术部门认为,利用“三明治成型+注射压力成型”工艺,可以生产出采用传统成型工艺根本无法实现的薄壁加工件。采用传统的三明治注射成型工艺,可以实现的最薄的壁厚为1.5 mm,而采用三明治/压力工艺后,制作出的工件壁厚仅为1 mm。当然,传统的三明治成型工艺允许用户把加工件里芯材的百分比加大。 塑料加工研究院的注塑成型和模具技术部门还进行了如下试验,即通过“三明治成型+水辅助成型”的组合工艺,用长玻纤PP和无填料PP来成型扶手。根据以往的经验,用注水的办法会使短玻纤增强的尼龙66或长玻纤PP这类纤维增强材料形成空心,导致加工件内表面的质量很差,而且空心腔的尺寸也会发生偏差。因此,塑料加工研究院的注塑成型和模具技术部门认为,玻纤填充树脂的流动特性使水辅助成型工艺很难或者无法实现。因此,他们采用30%长玻纤增强PP作为表皮、无填料PP作为芯来进行三明治试验。扶手模具的直径为30 mm,长度为500 mm。通过注水,使无填料的物料形成空心。这样,外层材料具有了刚性、韧性以及抗张力和迸裂强度,而内层材料具有了良好的阻隔性能,内表面也很光滑。目前,这种方法已经被用于工业生产中。 注塑转移成型 一种被称作注塑转移成型(ITM)的新工艺不仅可以使多腔成型的热塑性塑料小零件获得很好的一致性,还可以得到更好的成型质量。这种借鉴了热固性塑料转移成型工艺的新工艺是将热流道注塑和压力成型两者进行组合的工艺。 据塑料加工研究院的注塑成型和模具技术部门介绍,在传统的热流道注塑成型中,熔体进入多个腔室的温度和压力是不一样的,这意味着每个腔室具有不同的粘度、不同的填充量和不同的冷却状况,最终将导致零件的尺寸和性能也不相同。此外,传统注塑模具的另一个局限性是,通常对热流道的设计都是针对具体的模具或物料,对于完全不同的模具或物料而言,这个热流道就不一定适用了。 为此,塑料加工研究院研制了一种模具。在模具的固定侧采用了特殊的电加热,在热半模里有一个熔体转移室,用来储存来自螺杆的熔体,并借助于一个活塞/气缸系统把熔体转移到模腔里去;冷半模在移动压板一侧。利用固定在半模里的隔热板来减少冷、热半模之间的热传导。当模具的开模线合拢时,活塞/气缸系统对熔体转移室施压,通过短门,将物料直接推入模腔。在这个系统里,注塑和

注塑成型新工艺

注塑转移成型 一种被称作注塑转移成型(ITM)的新工艺不仅可以使多腔成型的热塑性塑料小零件获得很好的一致性,还可以得到更好的成型质量。这种借鉴了热固性塑料转移成型工艺的新工艺是将“使用热流道注塑”和“压力成型”进行组合的工艺。 据塑料加工研究院的注塑成型和模具技术部门介绍,在传统的热流道注塑成型中,熔体进入多个腔室的温度和压力是不一样的,这意味着每个腔室具有不同的粘度、不同的填充量和不同的冷却状况,最终将导致零件的尺寸和性能也不相同。此外,传统注塑模具的另一个局限性是,通常对热流道的设计都是针对具体的模具或物料,对于完全不同的模具或物料而言,这个热流道就不一定适用了。 为此,塑料加工研究院研制了一种模具。在模具的固定侧采用了特殊的电加热,在热半模里有一个熔体转移室,用来储存来自螺杆的熔体,并借助于一个活塞/气缸系统把熔体转移到模腔里去;冷半模在移动压板一侧。利用固定在半模里的隔热板来减少冷、热半模之间的热传导。当模具的开模线合拢时,活塞/气缸系统对熔体转移室施压,通过短门,将物料直接推入模腔。在这个系统里,注塑和保压是由静止不动的模具而不是通过螺杆来实现的。在保压阶段之后,转移室开始充填下一个周期的物料。在这个过程中,主开模线(它的开与合都与转移室的动作互不相干)一直保持合拢,直到加工件充分冷却为止。 据说,这种工艺具有许多好处。模具的熔体转移部分与该部分的几何形状无关,因此无需为不同的模具而做相应的改变;由于注塑体积是由腔室的运动距离来决定的,所以可以降低多腔模具的造价,同时不需要再使用昂贵的热流道温度控制器;因为熔体的通道很短,而且熔体是直接从蓄集室的门进入模腔,所以所需要的压力比传统热流道可提供的压力更低,熔体完全能够均匀地充满所有模腔;作用在熔体上的剪切力和应力更小了,有利于长玻纤增强料或者瓷粉掺混料的成型,并使得加工件的收缩率和翘曲变形更小。 目前,塑料加工研究院已经使用了多达12个模腔的模具对长玻纤增强聚丙烯材料进行注塑成型试验,并取得了成功。据说,他们很快就会用超过100个模腔的模具来进一步测试这种工艺。

注塑模具制造新技术及新趋势

注塑模具制造新技术及新趋势 为了能够为注塑加工商生产出可节约投资成本和时间成本,以及提高注塑生产效率的模具,模具制造商们不断使用新材料和新技术,而这些新材料和新技术则在一定程度上代表了注塑模具制造的新趋势。 1、新材料促进模具嵌件的发展 有一种新材料能够降低注射模具制造商的投资成本和时间成本。这种新合金名为钴铬MP1,专为在快速成型(RP)设备上采用金属激光直接烧结(DMLS)工艺而开发。该材料由德国快速成型设备和材料供应商EOS(ElectroOpticalSystems)GmbH公司生产。现在北美的用户可通过EOS北美公司和美国MorrisTechnologies公司来购买这种材料。 MorrisTechnologies公司是一家注塑模具开发公司,这家公司首次将该材料应用于商业化制造。在该公司的使用过程中,这种钴铬合金被证明具有高强度、耐高温性能和抗腐蚀性能。MorrisTechnologies曾是美国第一家引入EOS公司的EosintM-级快速成型机的公司,因为当时该公司已预见到了基于DMLS的快速成型的巨大市场。然而通过实验发现,当时市场上还没有一种材料能够满足其诸多客户的应用需求。 “有许多项目需要快速成型解决方案,但是客户的实验条件需要材料具有更好的耐高温性和耐腐蚀性以及更高的机械性能。”MorrisTechnologies公司的总裁GregMorris说,“即使花费更多的时间和金钱,不锈钢或者其他合金仍然不能满足他们的要求。” 为了解决上述问题,MorrisTechnologies公司选择了EOS的钴铬MP1材料。Morris表示,该合金的洛式硬度在30~40之间,能够生产小型复杂的模具产品,而这些产品目前通常需要采用电火花加工或者机加工方法来制造。 由于这种材料的结构层非常薄,只有20μm,因此产品可被完全烧结。Morris相信这种材料和金属激光直接烧结技术能够帮助注塑模具制造工业以更低的成本生产精细的型芯和型腔嵌件。“目前很多模具制造商之所以没有采纳该技术,在我看来,是因为许多人认为他们只有采用以前的方式制造模芯和模腔才算最好。”Morris解释说。 2、清除保守 模具制造商LinearMold&Engineering公司总裁JohnTenbusch毫不犹豫地采纳了上述技术。因为Tenbusch发现EOS公司的金属激光直接烧结快速成型设备的新客户甚至已延伸到了墨西哥和南美洲。 在注塑模具的制造过程中,采用典型的电火花设备(EDM)进行烧焊是比较流行的,而线切割在快速成型模具制造中的使用也在逐渐增长。对此,Tenbusch解释说:“采用线切割可以帮助我们节约时间,也就是说,我们使用线切割来切割出型腔,而像嵌件这样的精细部件则使用DMLS工艺来加工。” Tenbusch介绍,这种方法的准确率很高,而且不需要定很多测点,同时肋筋能够被分开而作为排气口。使用线切割也能够加工一些不锈钢嵌件,并将它们置于模具中。如果所用材料足够硬,且寿命足够长的时候,加工人员就没有必要对部件细节进行电火花加工了,如对于常用的预硬化高拉伸渗氮模具钢便是如此。使用线切割可在4~5周的时间内完成模具的制造,而这种速度加快的根本原因在于用EOS的DMLS设备代替了电火花设备。 钴铬MP1是EOS公司的新型不锈钢17-4家族中的一个系列,按照计划今年推向市场的是MaragingSteelMS1,这是一种18马氏体300钢(型号:1.2709),其性能至少等同于甚至

成型工艺流程及条件介绍

成型工艺流程及条件介绍第一節成型工艺 1.成型工艺参数类型 (1). 注塑参数 a.注射量 b.计量行程 c.余料量 d.防诞量 e.螺杆转速 f.塑化量 g.预塑背压 h.注射压力和保压压力 i.注射速度 (2)合模参数 a.合模力 b.合模速度

c.合模行程. d.开模力 e.开模速度 f.开模行程 g.顶出压力 h.顶出速度 i.顶出行程 2.温控参数 a.烘料温度 b.料向与喷嘴温度 c.模具温度 d.油温 3.成型周期 a.循环周期 b.冷却时间 c.注射时间

d.保压时间 e.塑化时间 f.顶出及停留时间 g.低压保护时间 成型工艺参数的设定须根据产品的不同设置. 第二节成型条件设定 按成型步骤:可分为开锁模,加热,射出,顶出四个过程. 开锁模条件: 快速段中速度 低压高压速度 锁模条件设定: 1锁模一般分: 快速→中速→低压→高压 2.快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到

80-90%,如果用到特快就只能设定在45-55%,压力则可设定 于50-75%,位置段视产品的深浅(或长短)不同,一般是开模 宽度的1/3. 3.中速段,在快速段结束后即转换成中速,中速的位置一般 是到模板(包括三板模,二板模)合在一块为止,具体长度应 视模板板间隔,速度一般设置在30%-50%间,压力则是 20%-45%间. 4.低压设定,低速设定一般是在模板接触的一瞬间,具体位 置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同. 5.高压设定,按一般机台而言,高压位置机台在出厂时都已 作了设定,相对来讲,是不可以随便更改的,比如震雄机在 50P.速度相对低压略高,大约在30-35%左右,而压力则视乎 模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛 边也较多,甚至于可设在90%还略显不足. 加热工艺条件设定

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

注塑机工艺流程

塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。(莱普乐注塑机节能改造网提供) 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较

动画图解注塑成型流程完整版

动画图解注塑成型流程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

动画图解注塑成型流程 1.何谓注塑成型 所谓注塑成型(InjectionMolding)是指,受热融化的材料由高压射入模腔,经冷却固化后,得到成形品的方法。该方法适用于形状复杂部件的批量生产,是重要的加工方法之一。 注射成型过程大致可分为以下6个阶段 合模 注射 保压

冷却 开模 制品取出 上述工艺反复进行,就可连续生产出制品。 2.注塑成型机 注塑成型机可分为合模装置与注射装置。 合模装置主要作用是实现模具开闭以及顶出制品。合模装置可分为如图所示的连杆式和直接利用油压实行合模的直压式。 注射装置是使树脂材料受热融化后射入模具内的装置。如图所示从料头把树脂挤入料筒中,通过螺杆的转动将熔体输送至机筒的前端。在那个过程中,在加热器的作用下加热使机筒内的树脂材料受热,在螺杆的剪切应力作用下使树脂成为熔融状态,将相当于成型品及主流道,分流道的熔融树脂滞留于机筒的前端(称之为计量),螺杆的不断向前将材料射入模腔。

当熔融树脂在模具内流动时,须控制螺杆的移动速度(射出速度),并在树脂充满模腔后用压力(保压力)进行控制。当螺杆位置,注射压力达到一定值时我们可以将速度控制切换成压力控制。 3.模具 所谓模具(Mold)是指,树脂材料射入金属模型后得到具有一定形状的制品的装置。虽然在图中没有标明,事实上为了控制模具的温度,在模具上还有使冷媒(温水或油)通过的冷却孔,加热器等装置。 已成为熔体的材料进入主流道,经分流道,浇口射入模腔内。经过冷却阶段后打开模具,成型机上的顶出装置会把顶出杆顶出,将制品推出。

注塑工艺过程

注塑工艺过程 第八章注塑成型过程 及注塑模具计算机辅助设计中的流变学问题 1.注塑成型过程的流变分析 1.1 注塑成型过程简介 注塑成型,又称注射模塑,是热塑性塑料制品重要的成型方法。可用于生产形状结构复杂,尺寸精确,用途不同的制品,产量约占塑料制品总量的30% 。近年来,热固性塑料,越来越多的橡胶制品,带有金属嵌件的塑料制品也采用注射成型法生产。精密注射成型,气辅注射成型,多台注射机共注射及注射成型过程的全自动控制等为注射成型工艺发展的新领域。 注塑成型的主要设备是柱塞式或螺杆式往复注射机,以及根据制品要求设计的注射模具。塑化好的熔体靠螺杆或柱塞的推力注入闭合的模腔内,经冷却固化定型,开模得到所需的制品(见图8-1)。 图 8-1 典型注射成型设备示意图

注塑过程是循环往复、连续进行的。全部注塑过程由一个主循环和 两个辅助工序组成,见图8-2。 图 8-2 注塑过程循环示意图 与该过程相对应,一个循环中模腔内物料承受的压力随时间或温度的 变化曲线如图8-3 所示。图中各段时间的总和为一个注塑成型周期。 图 8-3 典型注塑周期的程序图 1-柱塞前进时间; 2-合模时间; 3-开模时间; 4-残余压力; a—静置时间;b —充模时间;c—保压时间;d —倒流时间;e—封口时间; f—封口后冷却时间 要得到令人满意的注塑制品,除掌握准确的时间程序外,还要借助于流变学理论,掌握模腔内的物料填充情况,即掌握流道和模腔内的压力变化程序和温度变化程序。 目前已经能够运用流变学和传热学理论,采用计算机辅助设计方法,数值计算模具设计中遇到的一些与流道设计、传热管路设计有关的问题,数字模拟流道和模腔内的物料填充图和压力、温度场分布图,为模具设计提供有价值的资料。 但是由于各种模具内流道形状复杂,模具温度不稳定,物料注射速度高,非牛顿流动性突出,流动过程间歇,所以对这样一个复杂的注射过程要求得其精确解几乎是不可能的。 下面首先运用流变学基本方程,结合若干经验公式,对注模过程中模腔内压力的变化进行分析,说明一些有意义的现象;然后介绍注射模具计算机辅助设计中的流变学方法。 一般螺杆式往复注射机及模具的功能区段可分为三段:塑化段,注射段,充模段。 塑化段同螺杆挤出机,物料在其中熔融、塑化、压缩并向前输送。 注射段由喷嘴、主流道、分流道、浇口组成,物料在其中的流动如同在毛细管流变仪中的流动。 充模段是关键,熔体由浇口进入模腔,发生复杂的三维流动以及不稳定传热、相变、固化等过程,流动情况十分复杂。 为简便起见,选择几何形状最简单的圆盘形模具和管式流道入口进行研究。

注塑成型工艺流程及工艺参数

注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。 3.冷却阶段 在注塑成型模具中,冷却系统的设计非常重要。这是因为成型塑料制品只有冷却固化到一定刚性,脱模后才能避免塑料制品因受到外力而产生变形。由于冷却时间占整个成型周期约70%~80%,因此设计良好的冷却系统可以大幅缩短成型时间,提高注塑生产率,降低成本。设计不当的冷却系统会使成型时间拉长,增加成本;冷却不均匀更会进一步造成塑料制品的翘曲变形。 根据实验,由熔体进入模具的热量大体分两部分散发,一部分有5%经辐射、对流传递到大气中,其余95%从熔体传导到模具。塑料制品在模具中由于冷却水管的作用,热量由模腔中的塑料通过热传导经模架传至冷却水管,再通过热对流被冷却液带走。少数未被冷却水带走的热量则继续在模具中传导,至接触外

注塑成型概述及未来发展

注塑成型概述及未来发展 注塑成型 注塑成型技术概述 注塑成型工艺是塑料制品加工中非常重要技术类型,大多数行业的塑料件加工均需要注塑成型工艺来完成。所涉及的行业及领域甚广,如食品、电子电器、仪表仪器、汽摩、日用、化工、农业、运输等行业都可使用到注塑成型工艺制造的塑料元件。下面我们来介绍下注塑成型工艺在国内的发展情况及其未来发展趋势。 注塑成型是塑料制品成型的一种重要方法。几乎所有的热塑性塑料、多种热固性塑料和橡胶都可用此法成型。在中国,目前注塑成型制品约占塑料制品总量的30%左右,注塑机占塑料机械总产值的38%左右。注塑成型可制造各种形状、尺寸、精度、性能要求的制品。注塑制品包括小到几克甚至几毫克的各种仪表小齿轮、微电子元件、医疗微器械等,大到几千克的电视机、洗衣机外壳、汽车用塑料件,甚至几万克的制品。 注塑成型技术有重大突破 南昌大学柳和生教授承担的第二批江西省主要学科跨世纪学术和技术带头人培养计划项目–气体辅助注塑成型技术研究及气辅注塑成型机研制项目,日前在南昌通过由江西省科技厅主持的验收。该项目的研制成功,为推动我国注塑成型技术进步,为塑料制品企业改进气辅注塑工艺奠定了扎实的理论和实验基础。 微型注塑技术开创新时代 微型注塑技术是一种可在工作表面上造出微细结构的工艺,从而为成品提供不同的功能,例如不吸水的特性、减少流动阻力、导光性等。目前,微型注塑技术可造出少至20mm的微细结构,09年被北京塑料制品厂引进。实施微型注塑技术需要特殊的加工及模具技术及设备,例如采用外部加热系统(感应发热元件),其优点有二:可以实现模腔表面温度的局部控制;可以大幅缩短加热和冷却时间。

注塑车间管理制度00431

前言 注塑加工是一门知识面广,技术性和实践性很强的行业。注塑生产过程中需使用塑零原料、色粉、水口料、模具、注塑机、周边设备、工装夹具、喷剂、各种辅料及包装材料等,这些给注塑车间的管理带来了很大的工作量和一定的难度,与其它行业或部门相比,对注塑车间各级管理人员的要求更高。 注塑生产需要24小时连续运作,一般为两班或三班制工作方式,注塑车间的工作岗位的不同,对不同岗位人员的技能要求亦不同。要想使注塑车间的生产运作顺利,需要对每个环节和各个岗位所涉及的人员、物料、设备、工具等进行管理,主要包括:原料房、碎料房、配料房、生产现场、后加工区、工具房、半成品区、办公室等区域的运作与协调管理工作。 对注塑部建立一套“优质、高效、低耗”的运作管理体系,是每一位注塑生产管理工作者努力达到的目标。在实际注塑管理工作中,由于工作方法和观念方面的原因,很多注塑管理者每天忙于处理各种问题,“跟着问题后面跑”,干得非常辛苦,而且问题越来越多,工作越来越累,压力越来越大… 本教材是专为学习“注塑车间管理”知识的人员编写的,内容主要包括注塑部合理的组织架构、注塑厂生产运作流程、原料/色粉的管理、注塑机/周边设备的管理、注塑模具的管理、注塑生产计划的管理、注塑生产现场的管理、碎料房/混料房的管理、工装夹具的管理、看板管理、量化管理、工具/辅料的管理、零件品质管理、注塑安全生产管理、注塑厂主要管理制度及各岗位人员工作职责等实用知识,供大家在实际工作中借鉴和运用,触类旁通。本教材突出实用性、系统性、专业性和全面性,传授注塑车间管理的经验、方法与技巧,“学以致用、立竿见影”,能快速提升学习者管理注塑车间的能力和水平,少走弯路、减少问题的性生,减轻工作压力,让工作更有成效。

注塑车间生产流程

注塑车间组织机构图

注塑车间员工岗位职责 一.车间经理岗位职责 1.车间经理对分管总经理负责,在分管总经理的领导下,全面负责车间各 项管理工作。 2.负责车间生产,品质,5S现场,安全,及设备的管理,确保各项指标的 完成。 3.组织实施运营部下达的生产计划,并对订单的完成情况进行跟踪,对突 发的模具问题及质量问题进行及时的协调解决。保证全面完成生产任务。 4.负责贯彻实施公司的各项管理制度与措施,负责对车间员工的日常管理, 不断提高员工的综合素质。 5.对车间的各类报表,原始资料的及时性,真实性负责。 6.有权按照有关规定对车间的员工提出奖惩建议。 7.根据公司质量部门的要求,配合车间质检人员做好相关的质量培训,提 高员工的质量意识。 8.加强对车间原/辅材料使用的控制,确保在提高产量,保证质量的前提下 不断降低生产成本。 9.领导车间做好5S管理,创造良好的工作环境。 10.配合公司其他部门开展工作,做好横向的沟通协调。 二.车间班长岗位职责 1.在车间经理的直接领导下开展工作,严格遵守,认真贯彻落实各项方针 政策和规章制度。 2.负责本班的安全生产管理和组织安排工作,并监督员工严格遵守安全生 产条例,一切按计划,按程序,有目标的进行工作。 3.依据质量部的品质目标,按照生产计划推动本班生产工作的开展。 4.做好本班生产过程中品质,效率,产能,交货日期,原料损耗的跟进和 管理工作。 5.负责生产注塑机,模具,机械手工装的使用/维护及保养工作。及时的反 馈本班生产过程中因模具,设备,品质出现的异常情况。 6.提前30分钟到车间了解各机台的生产情况及注意事项,交接好生产现 场的5S管理情况。并做好书面记录,并在记录上签名确认。 7.每班组织开展班前会,并在会上传达当班要求及注意事项,并对前一班 所出现的问题进行总结,做好预防工作。有新产品投入时,或是出现批量不良情况时,可在班前会上给品质留出时间进行员工培训。 8.负责对注塑成型工艺的进行合理调整,对生产周期合理控制,努力提高 生产效率,保证质量达标。按要求严格控制不良品的产生,并及时的对各机台不良品出现进行分析,及时改善,并向部门经理汇报。 9.跟进本班生产的产品,需返工的产品必须当班处理完,若有订单结束情 况做好收尾工作,有紧急插单的情况做好配合工作。 10.严格管理员工生产机台,工作台及车间整体的5S现场。 11.认真检查生产日报表上各项数量的准确性,本班生产出的所有产品下班 前保证全部入库。 三.车间工艺员岗位职责 1.在车间经理和班长的安排下开展工作,

注塑成型工艺参数

注塑成型工艺参数 第一节注塑工艺参数 在制品和模具确定之后,注塑工艺参数的选择和调整对制品质量将产生直接影响。注塑工艺具体是指温度、压力、速度、时间等有关参数,实际成型中应综合考虑,在能保证制品质量(如外观、尺寸精度、机械强度等)和成型作业效率(如成型周期)的基础上来决定。尽管不同的注塑机调节方式各有所异,但是对工艺参数的设定和调整项目基本是相同的。注塑工艺参数与注塑机的设计参数是有关联的,但是在这里主要是从注塑工艺角度理解这些参数。 一、注塑参数 1.注射量:注射量是指注塑机螺杆(或柱塞)在注射时,向模具 内所注射的物料熔体量(g )。因此,注射量是由聚合物的物理性能及螺杆中料筒中的推进容积来确定的。 由此可见,选择注射量时,一方面必须充分地满足制品及其浇注系统的总用料量,另一方面必须小于注塑机的理论注射容积。如果选取用注射量过小则会因注射量不足而使制品产生各种缺陷,但过大又造成能源的浪费。 所以注塑料机不可用来加工小于注射量 10% 或超过注射量 70% 的制品,据统计世界上制品生产厂家大约有 1/3 的能源浪费在不合理地机型选择上。 2.计量行程(预塑行程):每次注射程序终止后,螺杆是处在料 筒的最前位置,当预塑程序到达时,螺杆开始旋转,物料被输送到螺杆头部,螺杆在物料的反压力作用下后退,直至碰到限位开关为止。这个过程称计量过程或预塑过程,螺杆后退的距离称计量容积,也正是注射容积,其计量行程也正是注射行程。因此制品所需的注射量是用计量行程工来调整的。 由此可知,注射量的大小与计量行程的精度有关,如果计量行程调节

太小会造成注射量不足,如果计量行程调整太大,使料筒前部每次注射后的余料太多,使熔体温度不均或过热分解,计量行程的重复精度的高低会影响注射量的波动.料温沿计量行程的分布是不均匀的,增加计量行程会加剧料温的不均匀性.螺杆转速、预塑背压和料筒的温度都将对熔体温度和温差有显着地影响. 在注射前处于螺杆头部计量室外中的熔体温度最高,虽然也有温差,但在这时较小,在注射后,螺杆槽中熔体的温度最低,停留一段时间之后熔体温度上升.这种温差可以采用调整螺杆转速轴向背压或使用新型螺杆等办法使其得到改善。 3.余料量:螺杆注射完了之后,并不希望把螺杆头部的熔料全部注射出去,还希望留存一些,形成一个余料量。这样,一方面可防止螺杆头部和喷射接触发生机械破损事故,另一方面,可通过此余料垫来控制注射量的重复精度达到稳定注塑制品质量的目的。如果余料垫过小,达不到缓冲目的,如果过大会使余料累积过多。近代注射塑机是通过螺杆注射终止时的极限位置来控制冲量的:如果位移传感器所检测的实际值超出缓冲垫的设定范围(一般 2-10mm )。 4.防延量:防延量是指螺杆计量(预塑)到位后,又直线地倒退一段距离,使计量室中熔体的比体积增加,内压下降,防止熔体从计量室外向外流出(通过喷嘴或间隙)。这个后退动作称防流延动作,防流延量可视聚合物沾度、相对密度和制品的情况进行设定,过大的防延量会使计量室中的熔料夹杂汽泡,严重影响制品质量。 5.螺杆转速:螺杆转速影响注塑物料在螺杆中输送;影响塑化能力、塑化质量和成型周期等因素的重要参数。随着转速提高塑化能力会增加。提高螺杆转速,流量加大,熔融温度的均匀性却有所改善。熔体温度和螺杆转速之间随着螺杆转速的提高,熔体温度也有所提高。 螺杆转速根据注塑条件用注塑机的额定螺杆转速,以额定量

相关主题
文本预览
相关文档 最新文档