当前位置:文档之家› 频率电压变换课设报告

频率电压变换课设报告

频率电压变换课设报告
频率电压变换课设报告

课程设计报告

(一)选定设计方案,画出电路图。本组本次设计共有两个供选方案。

(1) 用通用型运算放大器构成微分器,其输出与输入的正弦波与频率成正比。 (2) 直接应用频率电压转换变换专用集成块LM331其输出与输入的脉冲信号

重复成正比。

因为方案二的性价比更高,所以选择第二种方案。 (3) 系统构成的主要流程图。

正弦波 方波 直流 V o3 1v~5v f i=200Hz V o1 V o2 -0.2v ~ 2000Hz 0.2v~2v ~-2v

(二)拟出设计,调试步骤,画出电路。分析并计算主要参数值。 1、设计

(1)本次设计函数发生器采用实验台的函数波形发生器。确定可调范围设在200Hz----2000Hz,在调试过程中,挑选中间的几个值进行测试。

(2)F/V 变换采用集成块LM331构成的典型电路。通过参考书和报告上的指导书确定相关参数,测定输出的电压范围在0.4-4V 。 (3)反相器采用比例为-1,通过集成芯片OP07实现。

(4)反相加法器同样用芯片OP07实现,通过调节V R 的大小。使输出的电压在1-5V 。

F/V 转换 比较器 函数波形发生器 反相器

反相加法器

2、调试步骤

(1)当正弦波输入比较器之后输出的应该是方波。其幅值和形状在误差范围内。(2)当方波输入F/V变换采用集成块后输出的为直流电压,根据公式,看频率与电压成正比。

(3)当直流进入反相器后,输入与输出的比值为-1。

(4)当负电压进入反相加法器后输出的电压值在1-5V。

(5)整体调试后,当频率改变,最后的电压值相应的改变。

3、画出整机原理图

整机原理图

4、分析并计算主要元件参数值

(1) F/V 转换部分:(ⅰ)LM331的内部原理图

-输入

比较器

定时比较器

+

+56

7

1s

Q

T

C t

R t

V CC 2/3V CC

9/10V CC

s

置“1”端置“0”端

R

R L

C L

-V 0

fi 图5-1-1

+V CC

Q

+①脚是输出端(恒流源输出), ⑥脚为输入端(输入脉冲链), ⑦脚接比较电平.

工作过程及工作波形如图所示:

2/3V CC

v ct

t

1.1R t C t

t

0V 0

v CL

t

3.5v p-p

V

CC

1/f i

t

1

s

t

图5-1-2

当输入负脉冲到达时,由于⑥脚电平低于⑦脚电平,所以S=1(高电平),Q =0(低电平)。此时放电管T 截止,于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。与此同时,电流开关S 使恒流源I 与①脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。

经过1.1R t C t 的时间,V Ct 增大到2/3V CC 时,则R 有效(R=1,S=0),Q =0,C t 、C L 再次充电。然后,又经过1.1R t C t 的时间返回到C t 、C L 放电。

以后就重复上面的过程,于是在R L 上就得到一个直流电压V o (这与电源的整流滤波原理类似),并且V o 与输入脉冲的重复频率f i 成正比。 C L 的平均充电电流为i ×(1.1R t C t )×f i C L 的平均放电电流为V o /R L 当C L 充放电平均电流平衡时,得:

V o =I ×(1.1R t C t )×f i ×R L

式中I 是恒流电流,I=1.90V/R S

式中1.90V 是LM331内部的基准电压(即2脚上的电压)。 于是得:

i t t S

L

o f C R R R 09

.2V = 可见,当R S 、R t 、C t 、R L 一定时,V o 正比于f i ,显然,要使V o 与f i 之间的关系保持精确、稳定,则上述元件应选用高精度、高稳定性的。

对于一定的f i ,要使V o 为一定植,可调节R S 的大小。恒流源电流I 允许在10μA~500μA 范围内调节,故R S 可在190k Ω~3.8 k Ω范围内调节。一般R S 在10k Ω左右取用。

(ⅱ)LM331用作FVC的典型电路

LM331用作FVC的电路如图5-1-3所示:

10K

10K

R

X

R

t

6.8K

0.01

100K

10

12K

22K

{R S

f

i

470p

1

2

3

4

5

6

7

8

LM331

lo

图5-1-3

+

+V

CC mA

2.0

2

V

R CC

x

-

=

在此,V CC=12V

所以R x=50kΩ取R x=51 kΩ

i

t

t

S

L

o

f

C

R

R

R

09

.2

V=

取R S=14.2 kΩ

则V o=f i×10 –3V

由此得V o与f i在几个特殊频率上的对应关系如下表所示。

表5-1-1 V o 和fi 的关系

Fi(Hz) 200 600 1000 1500 2000 V o(V)

0.2

0.6

1.0

1.5

2.0

图中f i 是经过微分电路470pF 和10 k Ω加到○6脚上的。○6脚上要求的触发电压是脉冲方波。

(2)反相器

反相器的电路如图5-1-6所示。

2

34

51k

6

7100k

R 4R L

100k

V CC

+V CC

-V EE V o1

V i1

R 5图5-1-6

OP07

+

-

因为都是直接耦合,为减小失调电压对输出电压的影响,所以运算放大器采用低失调运放OP07。

由于LM331的负载电阻R L =100k Ω(见图5-1-3),所以反相器的输入电阻应为100 k Ω,因而取R L =100 k Ω。 反相器的A u =-1,所以 R 4=R L =100 k Ω

平衡电阻R 5=R L //R 4=50 k Ω 取 R 5=51 k Ω。

(3)反相加法器

用反相加法器是因为它便于调整—--可以独立调节两个信号源的输出电压而不会相互影响。电路如图5-1-7所示:

2

3

46

7

R 10

R 6

V o3

+V CC

-V EE

V o

V R

R 11

图5-1-7

OP07

R 9

R 9

103o 610o V R R

V R R V --

= (1) 已知V o3= -V o2= -f i ×10-3V ∵R 9

103i 610o V R R

10f R R V -?=

- 技术要求

f i =200Hz 时,V o =1V f i =2000Hz 时,V o =5V

即 V o=(5/9+fi/450)V

(2)

对照⑴式和⑵式,可见应有 -(R10/R9)×Vr=5/9 若取R 10=R 9=20 k Ω,则 V r = -5/9V

450

f

10f R R i 3i 610=?- ∴R 6=9k Ω,用两个18 k Ω电阻并联获得。 平衡电阻R 11≈R 11//R 6//R 9=4.7 k Ω。 为了保证V r 的值直接从-12v 引入,

V R =(R 8//R 9)/[R w2+R 7+(R 8//R 9)]=5/9

若取R 8=1 k Ω, 则R 8//R 9=0.952 k Ω R w2+R 7=19.6 k Ω 取R 7=15 k Ω

R w2用10 k Ω电位器。

整机原理图中的C

2、C

3、

C

4、

C5均为滤波器电容,以防止自激和输出直流电压上产

生毛刺,电用电位器。容值均为10uF/16V

(三)测量与调整

观察整机原理图有关点的波形。

可在200Hz~2000Hz内的任一频率上观察。

V i1应为直流电平≈0,幅度≈0.22V cc的正弦波。

V o1应为单极性的正方波,幅度≈V cc。

V i2应为直流电平≈V cc的正负脉冲。

V o2应为正直流电压,V o3应为负直流电压吗,V o应为正直流电压。

测量整机原理图中有关节点的直流电压

首先要保证频率计,电压表完好,即保证测得的频率、电压数值正确,将函数波形发生器的输入信号频率f i调到200Hz。此时

V o2=0.2V。否则调整R w5。

V o3=-0.2V。否则调整R15

V R=-5/9V。否则调整R w6

V o应=1V。否则分别检查V R、V o3产生的输入。

V R产生的输出应为VR。否则调整R20。

V o3产生的输出应为-4/9V,否则调整R18、R19。

固定电阻的调整可用一个接近要求值的电阻和一个小电阻的电阻串联来实现。根据5-1-2中的频率点,测出对应的V o2、V o3、V R、V o,应基本符合下表的值。

表5-1-2 有关点直流电压与f i的关系

f i(Hz) 200 650 1100 1550 2000

V o2(V) 0.2 0.65 1.1 1.55 2.0

V o3(V) -0.2 -0.65 -1.1 -1.55 -2.0

V R(V) -5/9 -5/9 -5/9 -5/9 -5/9

V o(V) 1.0 2.0 3.0 4.0 5.0

(四)设计总结与思考

1、本次设计由于比较器处于承接位置,只有比较器输出合适的方波才能为频率电压转换器提供合适的脉冲电压,当由函数发生器的电压设为NV时,脉冲电压必须按NV的电压范围确定LM331的选值电压范围;采用滞回比较器用稳压管控制输出电压;调出合适的方波为一个难点,本次设计采用近似的2.4V作为峰值的Ut。

2、由于本次设计为了防止整个电路产生自激和输出电流上产生毛刺,采用了滤波电容,但是设计还存在很大的误差范围。所以在Vr相对调试过程中设置了滑动变阻器。

3、如果LM331输出偏大可调节Rs的大小,恒流源电流工作允许在10uA~500uA 范围内存在。

所以有公式V o=207(Rl/Rs)RtCtf;Rs可在190K~3.8K范围调节。

(五)附录

本设计所用的集成芯片:ICL8038、uA741、LM311、LM331、OP07

ⅰ、精密函数信号发生器ICL8038

ⅱ、集成运放uA741

基于LM331频率电压转换器电路设计

基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建 说明 LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1 将可在负载电阻R4 。电路图

注意事项 该电路可组装在一个VERO板上。 我用15V直流电源电压(+ VS),同时测试电路。 LM331可从5至30V DC之间的任何操作。 R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。 根据公式,VS = 15V,R3 = 68K。 输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。壶R6可用于校准电路。

电压频率转换器设计(含电路图)

《模拟电子技术基础》课程设计报告题目电压/频率变换器 班级电科1124 姓名冯刚毅 学号201211911406 成绩 日期

课程设计任务书

一电压/频率变换器的设计方案简介 1.1 实验目的及应用意义 1.学习简单积分电路的设计与由555定时器组成的单稳态触发器。 2.用multisim设计出实验原题图,使V I变化范围:0∽10V,f o变化范围:0∽10kHz;并分析其功能原理。 1.3 设计思路 电压/频率变换器的输入信号频率f。与输入电压V i 的大小成正比,输入控制电压V i常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 本设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C再次充电。由此实现V i 控制电容充放电速度,即控制输出脉冲频率。 1.4 原理框图设计

电压频率转换器原理框图1.5 电路图

二电压频率变换器各单元电路设计 2.1 积分器设计 积分器采用集成运算放大器和R C 元件构成的反向输入积分器。具体电路如下: 2.2 单稳态触发器设计 单稳态触发器采用555 定时器构成的单稳电路。具体电路如下:

2.3 电子开关设计 电子开关采用开关三极管接成反向器形式,当触发器的输出为高电平时,三极管饱和导通,输出近似为0,当触发器输出为低电平时,三极管截止,输出近似等于+Vcc。 2.4 恒流源电路设计 恒流源电路可采用开关三极管T,稳压二极管D z 等元件构成。具体电路如下所示。当V1’为0时,D2,D3 截止,D4 导通,所以积分电容通过二极管放电。当V1’为1 时,D2,D3 导通,D4 截止,输入信号对积分电容充电。在单稳态触发器的输出端得到矩形脉冲。

LM331压频变换器的原理及应用

LM331压频变换器的原理及应用 1. 概述 LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 LM331的内部电路组成如图1所示。由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。 2. 工作原理 2.1 电压—频率变换器 图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。此时由于复零晶体管截止,电源Vcc也通过电阻Rt对电容Ct充电。当电容Ct两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容Ct通过复零晶体管迅速放电;电流开关打向左边,电容Cl对电阻RL 放电。当电容CL放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。图3画出了电容Ct、Cl充放电和输出脉冲f0的波形。设电容CL的充电时间为t1,放电时间为t2,则根据电容CL上电荷平衡的原理,我们有:(IR-VL/RL)t1=t2VL/RL 从上式可得: f0=1/(t1+t2)=VL/(RLIRt1) 实际上,该电路的VL在很少的范围内(大约10mV)波动,因此,可认为VL=Vt,故上式可以表示为: f0==Vt/(RLIRt1) 可见,输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。式中IR由内部基准电压源供给的1.90V参考电压和外接电阻Rs决定,IR=1.90/Rs,改变Rs的值,可调节电路的转换增益,t1由定时元件Rt和Ct决定,其关系是t1=1.1RtCt,典型值Rt=6.8kΩ,

电压频率变换器的设计讲解

机械与电子工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目电压频率变换器 所学专业名称电气信息类 班级电类114班 学号********** 学生姓名王*金 指导教师汪* 2012年12月23日

机电学院模拟电子技术课程设计 任务书 设计名称:电压频率转换器 学生姓名:王*金指导教师:汪* 起止时间:自2012 年12 月10 日起至2012 年12 月25 日止 一、课程设计目的 1).熟悉集成电路及有关电子元器件的使用; 2).了解电压平频率转换器主体电路的组成及工作原理; 3).学习电路中基本电路的应用以及单稳态触发器等综合应用。 二、课程设计任务和基本要求 设计任务: 1).熟悉和应用比较器的构成及设计方法,尤其是迟滞比较器的应用。 2).熟悉和应用积分器的构成和设计方法,了解电容在其中的工作原理。 3).熟悉和简单应用二极管作电子开关的构成和设计方法。 4).熟悉迟滞比较器与积分器之间的波形转换。 5).熟悉掌握运用multisim画图、调试和仿真。 基本要求: 1).有明确的设计方案使操作简便易行。 2).设计一个将直流电压转换成给定频率的矩形波,包括:积分器;电压

比较器。 3).输入为直流电压0-10V。 4).输出为f=0-500Hz的矩形波。 5).按规定格式写出课程设计报告书。

机电学院模拟电子技术课程设计指导老师评价表

目录 摘要和关键词 (1) 第一章设计指标 (2) 1.1 设计指标 (2) ◆ 1.1.1设计内容 (2) ◆ 1.1.2设计要求 (2) 第二章系统设计原理及内容 (2) 2.1 设计思想 (2) 电压/频率转换器原理框 (2) 第三章电路各模块方案设计 (3) 3.1 积分器的设计方案 (3) 3.2比较器的设计方案 (4) ◆ 3.2.1电压比较器 (4) ◆ 3.2.2过零比较器 (5) 3.3单稳态触发器 (6) 3.4低通滤波器 (6) 3.5模块的整合 (7) ◆ 3.5.1 电压/频率 (7) ◆ 3.5.2 频率/电压 (7) 第四章结束语 (8) 4.1心得体会 (8) 元件清单 (9) 参考文献 (9)

利用LM331进行频率电压转换

. 频率/电压变换器* 一、概述 本课题要求熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求 当正弦波信号的频率f i 在200Hz~2kHz 范围内变化时,对应输出的直流电压V i 在1~5V 范围内线形变化; 正弦波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V 电源供电. 三、设计过程 1.方案选择 可供选择的方案有两种,它们是: 》 ○ 1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○ 2直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○ 2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理 LM331的管脚排列和主要性能见附录 LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC ) LM331用作FVC 时的原理框如图5-1-1所示. R +V CC 此时,○ 1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下: ;

2/3V CC v ct V 0 v CL p-p V CC 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

此时放电管T 截止,于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。与此同时,电 流开关S 使恒流源I 与○1脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。 经过的时间,V Ct 增大到2/3V CC 时,则R 有效(R=1,S=0),Q =0,C t 、C L 再次充电。然后,又经过的时间返回到C t 、C L 放电。 以后就重复上面的过程,于是在R L 上就得到一个直流电压V o (这与电源的整流滤波原理类似),并且V o 与输入脉冲的重复频率f i 成正比。 C L 的平均充电电流为i ×()×f i C L 的平均放电电流为V o /R L 当C L 充放电平均电流平衡时,得 V o =I ×()×f i ×R L 式中I 是恒流电流,I=R S 式中是LM331内部的基准电压(即2脚上的电压)。 于是得i t t S L o f C R R R 09 .2V = " 可见,当R S 、R t 、C t 、R L 一定时,V o 正比于f i ,显然,要使V o 与f i 之间的关系保持精确、稳定,则上述元件应选用高精度、高稳定性的。 对于一定的f i ,要使V o 为一定植,可调节R S 的大小。恒流源电流I 允许在10μA~500μA 范围内调节,故R S 可在190k Ω~ k Ω范围内调节。一般R S 在10k Ω左右取用。 2.LM331用作FVC 的典型电路 LM331用作FVC 的电路如图5-1-3所示。 f i lo mA 2.02 V R CC x -=

频率电压变换器

低频电子线路课程设计频率/电压变换器 电子信息工程三班 江海东 学号:2220083421

一、概述 本课题要求设计一个频率/电压变换电路,电路的输入信号为正弦波,电路的输出信号是直流电压,当输入信号的频率变化时,输出的直流电压随输入信号的频率发生线性变化。为电路的设计提供集成频率——电压变换器LM331和集成运放LM324这两种集成芯片,芯片的技术资料和使用方法查阅相关资料。 熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求: 1、输入信号:波形:正弦波; 峰—峰值:200mV; 频率变化范围:200Hz~2.0kHz。 2、输出信号:直流电压; 电压变化范围:1.0~5.0V;随频率线性变化。 3、电源电压:-12V~+12V范围内选择。 三、设计过程: 1、实验仪器:电源两个,函数信号发生器一台,万用表一块,电压表一块,示波器一个,面包板一个,LM331及LM324芯片各一个,电阻、电容、电位器、导线若干。 2、LM331的简要工作原理: LM331 可用作频率――电压转换(FVC); LM331用作FVC时的原理框如图5-1-1所示:

R +V CC 此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:

2/3V CC v ct V 0 v CL p-p V CC 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

5.2频率电压变换器.

5.2 频率/电压变换器 本课题介绍一种频率/电压变换器的设计方法,通过本课题要求熟悉集成频率集成频率/电压变换器LM331的主要性能和典型应用,掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 一、设计要求 1. 技术要求 (1)当正弦波信号的频率f i在200Hz?2kHz范围内变化时,对应输出的直流电压V在1V?5V范围内线性变化。 (2)正弦波信号源采用函数波形发生器(参见 5.1节)。 (3)采用土12V电源供电。 2. 方案选择 可供选择的方案有两种: (1)用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比。 (2)直接应用频率电压变换专用集成块LM331,其输出与输入的脉冲信号重复频率成正比。 因第2种方案的性价比较高,故本题用LM331实现。 3^ LM331的工作原理 LM331的引脚排列和主要性能见附录。LM331即可用作电压/频率转换,也可用作频率/电压转换。 LM331的原理框图如图5-2-1所示。此时,①脚是输出端(恒流源输出),⑥脚为输入端(输入脉冲链),⑦脚接比较电平。 图5-2-1 LM331原理框图 该器件的工作过程(结合图5-2-1所示的波形)如图5-2-2所示

其中1.90V 是LM331内部的基准电压(即②脚上的电压)。于是得 V o = 2.09^R t C t f t 可见,当 眩、R 、G 、R —定时,V O 正比于f i ,显然,要使V O 与f i 之间的关系保 持精确、稳定,则应选用高精度、高稳定性的元件。 当输入负脉冲未达到 时,由于⑥脚电平?Vcc , 高于⑦脚电平,所以 S=0 (低电平)。当输入负脉冲 到达时,由于⑥脚电平低 于⑦脚电平,所以S=1(高 电平),Q' =0(低电平)。 此时放电管T 截止,于是 C 有Vcc 经R 充电,其上 电压V et 按指数规律增大。 与此同时,电 流开关S 使 恒流源I 与①脚接通,使 C L 充电,V C L 按线性增大(因 为是恒流源对C L 充电)。 经过1.1R t C t 的时间, V et 增大到2/3VCC 时,则R 有效(R=1, S=0), Q' =1, 于是T 导通,e 通过T 迅 速放电。与此同时,开关 使恒流源I 接地,从而Q 通过R.放电,V CL 减小。 当下一个输入负脉冲 到达时,又使S=1, Q' =0, e 、C L 再次充电。然后,又 经过I.IR t C 的时间返回 到G 、C L 放电。 以后就重复上面的过 程,于是在R.上得到一个 直流电压V O (这与电源的 整流滤波原理类似),并且 V O 与输入脉冲的重复频率 f i 成正比。 C L 的平均充电电流为I x ( I.IR t C t ) 电平均电流平衡时,有 V O =I x ( I.IR t C t ) 式中I 是恒流源电源 图5-2-2 LM331工作波形 X f i ,平均放电电流为 V O /R L ,当Q 充放 X f i X R. 3 1

电压频率转换

A1的反馈电阻决定其直流增益。调整电位器RP1(10kΩ),使输入频率为30kHz 时,A1输出为3V,这样对于输入0~30kHz频率,可得0~3V输出电压,线性度为0.005%左右。 温漂取决于电容C2、A1的反馈电阻以及基准电压(13脚电压)。为此,C2采用温度系数为-120ppm/℃的聚苯乙烯电容,R2(75kΩ)采用温度系数为+120ppm/℃的电阻,基准电压电路的稳压二极管VD1采用LT1004。 本电路开关电容滤波器采用LTC1043,A1采用LF356,也可用其他讼司类似产品代替。 如图是NE555构成的电压/频率转换电路。电路中n,A1和A2构成同相积分器,VT1和A3构成恒流源,NE555构成单稳多谐振荡器。VT2是受NE555控制使其开关工作,对恒流源实行通/断控制。 A1和A2构成同相积分器,即同相输入电位较高,则输出上升;反之,同相输入电位较低,则输出下降。恒流源电流对C1进行充电,由于A2的同相输入为零,致使A2输出向负方向变化。由于A2为反相器,因此,A1的输出当然是向正方向上升。若恒流源切断,则积分电流仅是与恒流源反向的输入电流对C1反向充电,又使A2的输出电压向正方向变化,同理A1的输出向负方向变化。由此可知,积分电流受VT2的控制改变方向,从而实现了A1的积分输出改变方向。A1的输出送至NE555的2脚,只要7脚内部晶体管开路,C2就由R4充电使其电压上升,当6脚电平达到(2/3)Ucc时就会使片内触发器翻转,3脚变为低电平,同时C2通过7脚放电返回到零电位。由于3脚为低电平,VD1导通使VT2截止,这就切断了恒流源向积分器的充电通路。这时,A1输出下降,一直降到(1/3)Ucc时又使NE555的2脚为低电平并处于触发状态,于是又开始新的一轮循环,即3脚输出高电平,C2通过R4充电,VD1截止使恒流源为积分器提供电流直到3脚返回到低电平为止。重复上述过程就形成振荡,将输入0~-1OV电压转换为0~100 kHz的频率输出。

【DOC】频率变换电路.

单元六频率变换电路 课题: 单元六 6.1 频率变换的基本概念与信号的表示 6.2 模拟乘法器及其典型应用教学目的: 1. 理解频率变换的基本概念与信号的表示 2. 掌握模拟乘法器及其典型应用教学重点: 1.频率变换的基本概念与信号的表示(频谱) 2.模拟乘法器及其典型应用教学难点: 模拟乘法器应用电路的分析方法教学方法: 讲授 课时: 2 学时 教学进程

单元六频率变换电路 在通信和电子技术中,频率(或频谱)变换是很重要的概念。本章先简单介绍频率变换的基本概念,接着讨论实现频率变换的最重要的器件一一集成模拟乘法器及其简单的应用,最后分析频谱搬移实现原理。 6.1 频率变换的基本概念与信号的表示 一?信号的频谱 1 ?信号的频谱 是指组成信号的各个频率正弦分量按频率的分布情况,即用频率f (或角频率)作为横坐标、用组成这个信号的各个频率正弦分量的振幅Um作为纵坐标作图,就可以得到该信号的频谱图,简称频谱。 2?用频谱表示信号的优点: 可以更直观地了解信号的频率组成和特点,例如信号的频带宽度(带宽)等。 3.—个信号的表示方法:一是写出它的数学表达式;(时域) 二是画出它的波形;(时域) 三是画出它的频谱。(频域) 这三种表示方法在本质上是相同的,故可由其中一种表示方法得到其他两种表示方法。数学表达式表示信号既清楚又准确,波形和频谱表示信号比较直观。但对于某些复杂的信号或无规律的信号,要写出它的数学表达式或画出它的波形很困难,这时用频谱来表示这种信号既容易、又方便。因此用信号的频谱可以表示任何一种信号。 下面举几个例子来理解它们之间的相互转换关系。 [例6-1]某电压信号的数学表达式为u(t) 3sin °t(V),试画出它的波形和频谱。 解:这是一个单一频率的正弦信号,其频率f o 。/2,其波形如图6-1 (a)所示。由于振幅Um=3V故其频谱如图6-1 (b)所示。 E 5 1 (a)单频倍号的涙形 (3单频信号的频満

频率电压变换器实验报告

频率/电压变换器实验报告 一:已知条件与技术指标 (1) 本次设计函数发生器采用实验台的函数波形发生器。确定可调范围设在 200HZ----2000H z,在调试过程中,挑选中间的几个值进行测试。 (2) F/V变换采用集成块LM331构成的典型电路。通过参考书和报告上的指导书确定相关参数,测定输出的电压范围。 (3) 反相器采用比例为-1,通过集成芯片OP07实现。 (4) 反相加法器同样用芯片OP07实现,通过调节V R的大小。使输出的电压在1-5V。 (5) 采用+ -12V电源供电 二:电路原理 系统构成的主要流程图 参考电压V R 4、分析并计算主要元件参数值

+V C C (1) F/V转换部分:(i)LM331的内部原理图

+V C C ①脚是输出端(恒流源输出), ⑥脚为输入端(输入脉冲链),⑦脚接比较电平. 工作过程及工作波形如图所示: R

CC p-p s 2/3V t 图5-1- 2 当输入负脉冲到达时,由于⑥脚电平低于⑦脚电平,所以S=1(高电平),Q=0

(低电平)。此时放电管T截止,于是C t由V cc经R t充电,其上电压V et按指数规律增大。与此同时,电流开关S使恒流源I与①脚接通,使C L充电,V CL 按线性增大(因为是恒流源对C L充电)。 经过I.IR t C t的时间,V et增大到2/3V cc时,则R有效(R=1,S=0),Q =0, C t、C L再次充电。然后,又经过I.IR t C t的时间返回到C t、C L放电。 以后就重复上面的过程,于是在R L上就得到一个直流电压V。(这与电源的整流滤波原理类似),并且V。与输入脉冲的重复频率f i成正比。 C L的平均充电电流为i x (I.IR t C t)x f i C L的平均放电电流为V O/R L 当C L充放电平均电流平衡时,得: V o=| X Q.IR t C t)x f iX R L 式中I是恒流电流,l=1.90V/R S 式中1.90V是LM331内部的基准电压(即2脚上的电压)。 于是得: R V。=2.09—^R t C t f j R S 可见,当R s、R t、C t、R L一定时,V o正比于f i,显然,要使V。与f i之间的关系保持精确、稳定,则上述元件应选用高精度、高稳定性的。 对于一定的f i,要使V。为一定植,可调节R s的大小。恒流源电流I允许在10 J A~500 J A范围内调节,故R s可在190k 43.8 k Q范围内调节。一般R s在10k Q左右取用

电压频率与频率电压转换电路

电压频率与频率电压 转换电路 2011年8月24日

目录: 摘要: (2) Abstract: (2) 一、设计方案 (3) (一)、电压频率转换电路 (3) 1.基于555定时器的电压频率转换: (3) 2.基于LM331的电压频率转换: (4) (二)、频率电压转换电路 (5) 1.基于LM2907的频率电压转换: (5) 2.基于LM331的频率电压转换 (5) 二、主体电路设计 (8) 三、电路安装 (9) (一)、电压频率转换电路 (9) (二)、频率电压转换电路 (10) 四、系统调试: (10) (一)VFC: (10) (二)FVC: (11) 1

摘要: 本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。 关键字:LM331 频率电压转换滤波 Abstract: The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity. Key-word: LM331 frequency voltage transformation filter 2

固定频率PWM微功率DCDC变换器设计.

固定频率PWM微功率DC/DC变换器设计 在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器 在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。 在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器和反激变换器。MC33466器件具有非常低的静态偏置电流(典型值15μA),含有高精度电压基准、振荡器、脉宽调制(PWM)控制器、驱动晶体管、误差放大器、反馈电阻分压器等。 MC33466变换器工作如同一个固定频率电压模式稳压器。变换器工作在非连续模式,在晶体管开关导通期间,电感电流跃变到峰值大于或等于dc输入电流的两倍值。在晶体管开关的关闭期间,电感电流跃变到零,直到另一个转换周期开始为止。 因为输出电压端也同样作为电源电压来为内部电路供电,所以在降压变换器和反激变换器设计中,需要一个外部启动电路为集成电距开始转换提供起始功率。 图1、图2和图3分别为用MC33466设计的升压变换器、降压变换器和反激变换器。在图3和图3中的启动电路用三个分立元件组成。 在变换器设计中必须选择下列参数: Vin--额定工作的dc输入电压 Vo--所希望的dc输出电压 Io--所希望的dc输出电流 Vripple(pp)--所希望的峰-峰输出波纹电压。为使性能最佳,波纹电压应该保持一低数值一,因为它将直接影响电源电压调整率和负载调整率。

电压频率转换电路介绍及扩展.docx

电压频率转换电路介绍及扩展

测控课程论文 学 院 物理电子工程学院 专 业 电子信息工程 年 级 2*** 级 姓 名 *** 论文题目 电压频率转换电路介绍及扩 展 指导教师 *** 成绩 学 号

2015年12月25日 一、应用背景: 电压频率转换器VFC(Voltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。随电压—频率转换实际上是一种模拟量和数字量之间的转换技术。当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。 二、V/f 转换器详解 V/f (电压/频率)转换器能把输入信号电压转换成相应的频率信号,即它的输出信号频率与输入信号电压值成比例,故又称为电压控制(压控)振荡器(VCO)。由于频率在传送过程中稳定度很高,能够很好排除干扰,所以其广泛应用在调频,锁相和A/D变换等许多技术领域。电路主要指标有:额定工作频率和动态范围,灵敏度或变换系数,非线性误差,灵敏度误差和温度系数等。通用V/f 转换电路有积分复原式转换电路和电荷平衡式转换电路。 1、积分复原型

下图1、(a)(b)分别为积分复原电路图和波形图。电路主要组成 有:积分器、比较器和积分复原开关等 (a)转换电路 (b)波形图 图1积分复原式V/f 转换电路及波形图 电路分析: 电路包括积分器比较器和积分复原开关灯。其中由N 2、R5-R8组成的滞回比较器的正相输入端两个门限电频为 7 66Z 761R R 7-U +++=R R u R R u -U V ∞ - + + N 1 ∞ - + + N 2 R 2 -E u i R 1 R 3 C R 4 R 5 R 6 R 7 R 8 R 9 u C u P V S1 V S2 V S3 u o O U 1 U 2 u T u o T 1 T 2 t u C U 2 U 1 t t O O u P

模电课程教学设计(电压频率转换电路)

电压—频率转换电路设计课题:电压—频率转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

题目电压—频率转换电路 一、设计任务与要求 1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 (提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.) 二、方案设计与论证 用集成运放构成的电压—频率转换电路,将直流电压转换成频率与其数值成正比的输出电压,其输出为矩形波。 方案一、采用电荷平衡式电路 输入电压→积分器→滞回比较器→输入 原理图:

方案二、采用复位式电路 输入电压→积分器→单限比较器→ 输出 原理图: 通过对两种转换电路进行比较分析,我选择方案一来实现电压—频率的转换。方案一的电路图简单,操作起来更容易,器件少,价钱也更便宜,且方案一

的线性误差小,精度高,实验结果更准确,所以我选择方案一。 三、单元电路设计与参数计算 1、电源部分: 图1 电源原理图 单相交流电经过电源变压器、单相桥式整流电路、滤波电路和稳压电路转换成稳定的直流电压。 直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉冲电压。

为了减少电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。 取值为: 变压器:规格220V~15V 整流芯片:LM7812、LM7912 整流用的二极管:1N4007 电解电容:C1、C2:3300uf C4、C3:0.22uf C6、C5:0.47uf C7、C8:220uf 发光二极管上的R:1KΩ 2、电压—频率转换部分: ○1积分器: 图2—1 积分运算电路

模电课程设计 电压频率变换器(DOC)

模拟电子技术基础 题目名称:电压/频率变换器 班级: 姓名: 学号: 完成日期: 2011-6-10

摘要 本实验是对信号的产生、处理及变换功能电路的设计,在实际生产和操作中有这应用广泛。本设计是主要针对的是模拟电子技术课程的设计,具有可操作性和应用性,学生能够独立完成。电路信号的转换已经在电子领域中广泛应用,如:采样/保持(S/H)电路、电压比较电路、V/f(电压/频率)变换器、f/V(频率/电压)转换器、V/I(电压/电流)转换器、I/V(电流/电压)转换器、A/D(模/数)转换器、D/A(数/模)转换器等。可以从本实验中学习到更多的电路设计的方法,激发学生的设计兴趣和激情,为以后的学习和工作打下良好大的基础。而V/f(电压/频率)转换器便是本实验的主要内容。

目录 一. 设计任务 二. 简略设计方案 三. 电路构成和部分参数计算 1.积分电路 2.单稳态触发器电路 3. 电子开关电路图 4.恒流源电路的设计 四.总原理图和元器件清单 1.总原理图 2.元件清单 五.基本计算与仿真调试分析 1.基本计算 2.仿真结果 六.PCB仿真图 七. 设计总结 八.参考文献 一、设计任务

1.设计一种电压/频率变换电路,输入υI为直流电压(控制信 号),输出频率为?O的矩形脉冲,且 fυI。 O 2.υI变化范围:0~10V。 3.?O变化范围:0~10kHz 4.转换精度<1% 。 二、设计方案 可知电路主要是由积分器、单稳态触发器、电子开关和恒流源电 三、电路构成和部分参数计算 1.、积分电路: 积分电路采用集成运算放大器和RC元件构成反向输入积分器。电路图如下:

频率电压转换电路设计讲解

淮海工学院 课程设计报告书 课程名称:模拟电子技术课程设计 题目:频率/电压转换电路的设计系(院):电子工程学院 学期:12-13-1 专业班级:电子112 姓名:孙开峰 学号:2011120658

1、概述 本设计实验要求对比较器、F/V变换器LM331、反相器和反相加法器的主要性能和应用有所了解,要能掌握其使用方法。同时要了解它们的设计原理。 本设计实验要求我们要灵活运用所学知识,对设计电路的理论值进行计算得到理论数据,在与实验结果进行比较。 1.1 主要设计要求 当正弦波信号的频率fi在200Hz~2kHz范围内变化时,对应输出的直流电压Vi在1~5V范围内线形变化; 正弦波信号源采用函数波形发生器的输出; 采用±12V电源供电. 1.2 设计方法 设计总体框图如下,可供选择的方案有两种,它们是: ○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比. 2、设计过程 2.1 函数信号发生器ICL8038芯片介绍 2.1.1 ICL8038作用 ICL 8038 是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部元件就能产生从 0.001HZ~300kHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。 2.1.2 ICL8038管脚介绍

图2 ICL8038 表1 引脚功能介绍

2.2 比较器的设计 过零比较器 过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr ,一个是待测电压Vu 。一般Vr 从正相输入端接入,Vu 从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。 用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v 时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。 2.3 F/V 变换电路的设计 2.3.1 F/V 变换器的简单介绍 LM331是美国NS 公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/ D 转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331 采用了新的温度补偿能隙基准电路, 在整个工作温度范围内和低到 4.0V 电源电压下都有极高的精度。LM331 的动态范围宽, 可达 100dB ; 线性度好, 最大非线性失真小于 0.01% ,工作频率低到0.1Hz 时尚有较好的线性;变换精度高,数字分辨率可达12位; 外接电路简单,只需接入几个外部元件就可方便构成 V/F 或 F/V 等变换电路,并且容易保证转换精度。 2.3.2 LM331 器件管脚图及管脚功能 VI + — A +V CC —V EE Vo 图3 过零比较器

频率变换电路简介

频率变换电路简介 频率变换电路也称之为频率变频器(Converter),为高频率电路独特的电路方式。如大家所详知的超外差(Superheterodyne)方式,便为频率变换的一种方式。频率变换电路可以将HF~VHF~UHF 等的宽频带频率信号变换为任意的频率范围。 频率变换的目的频率变换电路为将输入信号变换为另外的频率的一种电路。其构成如图l 所示,假设输入信号频率为fs,局部振荡电路的振荡频率为fosc,则经过频率变换后,可以得到(fs+fosc)与(fs-fosc)的信号输出。 图1 频率变换电路的工作原理(将二种信号合成,可以得到和或差的信号) 图2 传送接收机的频率变换电路的作用(此为可以将频率变换成为此原来频率更高或更低的频率,以便可以简单处理所需的信号频率。) 图2 所示的为在传送接收机内所使用的频率变换电路。其中的(a)为在接收机所使用的频率变换电路,称为超外差方式。此为将天线所输入的高频率信号,经过频率变换电路变换成为中间频率(IF 信号)。 为何要如此处理呢?如果将同一频率的高频率信号维持原状,一直放大,则在电路中,由于杂散结合等因素,会很容易产生振荡。如果利用变频电路,将其改变成为频率较低的中间频率,则可以有效地使用滤波器,且可以改善选择度。在图(b)的传送机中,在做调变工作原理时,所使用的载波频率不要太高,便可以维持电路的稳定。另外,从滤波器的选择度观点来说,也希望所使用的调变为数MHz,也即是,载波频率较低些,然后经过率变换电路后,便可以达到所需要的频率。 会产生相互调变特性的影响在接收机或传送机,由于使用频率变换电路,可以使性能改善。但是,也有其缺点。特别是在接收机方面,会产生相互调变失

电压频率和频率电压转换电路的设计

电压频率和频率电压转换电路的设计 图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。1、1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。1、2 设计指标(1)输入为直流电压0- 10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。2 设计内容总体框图设计2.1 V/F转换电路的设计2、1、1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。 通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值。

矩形波的振荡频率2、1、2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。滞回比较器:用来输出矩形波,积分器得到的三角波可触发比较器自动翻转形成矩形波。稳压管:用来确定矩形波的幅值。 图2 总体框架图2、2 功能模块的设计2、2、1 积分电路工作原理积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。由于同相积分电路的共模输入分量大,积分误差大,应用场合少,所以不予论述,本课程设计用到的是反相积分电路。图3 积分器反相积分电路如图3 所示,电容器C 引入交流并联电压负反馈,运放工作在线性区。由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。由电路得因为“-”端是虚地,即U-=0,并且式中是积分前时刻电容C上的电压,称为电容端电压的初始值。所以把代入上式得当时若输入电压是图所示的阶跃电压,并假定,则t>=0时,由于,所以由此看出,当E为正值时,输出为反向积分,E对电容器恆流充电,其充电电流为E/R,故输出电压随线性变化。当向负值方向增大到集成运放反向饱和电压时,集成运放进入非线性工作状态,保持不变,图3所示。 如输入是方波,则输出将是三角波,波形关系如图4所示。当时间在0~期间时,电容放电当t=1时,当时间在~期间时,电容充电,其初始值所以当 t= 时,。

电压频率转换电路

2 电压/频率转换电路 电压/频率转换即V/F 转换,是将一定的输入电压信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。针对煤矿的特殊要求,我们只分析如何将电压转换成200~1000Hz的频率信号。 实现V/F 转换有很多的集成芯片可以利用,其中LM331是一款性能价格比较高的芯片,由美国NS公司生产,是一种目前十分常用的电压/频率转换器,还可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。由于LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01% ,工作频率低到1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V 等变换电路,并且容易保证转换精度。LM331可采用双电源或单电源供电,可工作在4.0~40V 之间,输出可高达40V,而且可以防止Vs短路。图2是由LM331组成的典型的电压/频率变换器。 其输出频率与电路参数的关系为: Fout= Vin·Rs/(2.09·R1·Rt·Ct) 可见,在参数Rs、R1、Rt、Ct确定后,输出脉冲频率Fout与输入电压Vin成正比,从而实现了电压-频率的线性变换。改变式中Rs的值,可调节电路的转换增益,即V和F之间的线性比例关系。将1~5V 的电压转换成200~1000Hz的频率信号,电路参数理论值为R =18kΩ,Ct=0.022uF,R1=100kΩ,Rs=16.5528kΩ,由于元器件与标称值存在误差,在

相关主题
文本预览
相关文档 最新文档