当前位置:文档之家› 概率论第10周讲解

概率论第10周讲解

概率论第10周讲解

P84练习3-1

3.参考《概率论与数理统计中的典型例题分析与习题》P128第2题 设X 1、X 2

由1}0{21==X X P ,可得3212232221p 所以033311311====p p p p ,而4

1

23213212=

===p p

p p ,022=p 。联合分布: 所以}{33221121+==p p X X P 4.(1)分母可直接写成38P ,即考虑8个球排列,第1次取第1个,第2次取第2、3个

(2)

145 (3)5621 (4)28

13 5.(1)由

??

??

+∞+∞

--+∞∞-+∞

-==

4311),(dxdy e k dxdy y x f y x ,得1k =12

概率论与数理统计公式大全

第1章 随机事件及其概率 例1.16 设某人从一副扑克中(52张)任取13张,设A 为“至少有一张红桃”,B 为“恰有2张红桃”,C 为“恰有5张方块”,求条件概率P (B |A ),P (B |C )解 13 52 1339 1352135213391)(1)(C C C C C A P A P -=-=-=13 52 11 39 213)(C C C AB P ?=13 39 135211392131352 13 39135213521139 213)() ()(C C C C C C C C C C A P AB P A B P -=-==1352 839 513)(C C C C P =13 52626213513)(C C C C BC P =8 39 6262131352 8395131352626 213513)() ()(C C C C C C C C C C C P BC P C B P === 某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率. 解设A 表示事件“活到20岁以上”,B 表示事件“活到25岁以上”,显然A B ?7.0)(=A P 56.0)(=B P 56 .0)()(==B P AB P 8.07 .056 .0)()()(=== A P A B P A B P

例1.21 某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不 超过4件,且具有如下的概率:一批产品中的次品数0 1 2 3 4 概率0.1 0.2 0.4 0.2 0.1 现进行抽样检验,从每批中随机抽取10件来检验,若发现其中有次品,则认 为该批产品不合格。求一批产品通过检验的概率。4 ()()() k k k P B P A P B A == ∑解设B 表示事件“一批产品通过检验”,A i (i =0,1,2,3,4)表示“一批产品含有i 件次品”,则A 0,A 1, A 2, A 3, A 4组成样本空间的一个划分, 00()0.1,()1 P A P B A ==1099 1110100 ()0.2,()0.900 C P A P B A C ===1098 2210100 ()0.4,()0.809 C P A P B A C ===1097 3310100 ()0.2,()0.727 C P A P B A C ===1096 4410100 ()0.1,()0.652 C P A P B A C ===814.0652 .01.0727.02.0809.04.0900.0.021.0≈?+?+?+?+=顾客买到的一批合格品中,含次品数为0的概率是 0004 ()(|) 0.11(|)0.123 0.814 ()(| ) i i i P A P B A P A B P A P B A =??= = ≈?∑类似可以计算顾客买到的一批合格品中,含次品数为1、2、3、4件的概率分别约 为0.221、0.398、0.179、0.080。 贝叶斯公式(Bayes) 1 ()() ()1,2,,()() k k k n i i i P A P B A P A B k n P A P B A =?= =∑L 第二章 随机变量及其分布 1离散型 随机变量 P(X=x k )=p k ,k=1,2,…, (1)0≥k p , (2)∑∞ ==1 1 k k p 2连续 型随机变量概 ? ∞-=x dx x f x F )()( (1)0)(≥x f ;(2) ? +∞ ∞ -=1 )(dx x f 。 ()=()F x f x '? =-=≤

概率论与数理统计的习地的题目集及答案详解

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型

1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一 个签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求 (1)该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02, B 被误收作A 的概率为0.01,信息A 与信息B 传递的频繁程度为3 : 2,若接收站收到的信息是A ,问原发信息是A 的概率是多少? §1 .8 随机事件的独立性 1. 电路如图,其中A,B,C,D 为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论第三版第2章答案详解

两人各投中两次的概率为: P(A ^ A 2B 1B 2^0.0784O 所以: 作业题解: 2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和 ,求X 的概率分布,并验 证其满足(222) 式. 解: Q Q Q Q 根据 v P(X = k) =1,得 k =0 故 a 二 e 「1 2.3 甲、乙两人投篮时,命中率分别为0.7和0.4 ,今甲、乙各投篮两次,求下列事件的 概率: (1)两人投中的次数相同;(2) 甲比乙投中的次数多. 解:分别用A ,B j (i =1,2)表示甲乙第一、二次投中,则 P(A) = P(A 2)=0.7,P(A) = P(A 2)=0.3,P(B 1)= P(B 2)=0.4,P(B 1)= P(D) =0.6, 两人两次都未投中的概率为: P(A A 2 B^! B 2) = 0.3 0.3 0.6 0.6二0.0324, 两人各投中一次的概率为: 并且,P(X P(X P(X P(X = 12) = 1 36 =10) 煤 =8) 嗥; =k)=( =2) =P(X =4) =P(X =6) =P(X 2.2 2 P(X =3) =P(X =11)= ; 36 4 P(X =5) =P(X =9)= p (X =7)」。 36 k =2,3,4,5,6,7,8,9,10,11,12) P{X =k}二ae°,k =1,2…,试确定常数 解: k ae ae = 1 ,即 1=1。 k -0 1 - e

P(AA2BB2)P(AA2B2B1)P(A2AB1B2)P(AA2B2B1)= 4 0.7 0.3 0.4 0.6 = 0.2016两人各投中两次的概率为:P(A^ A2B1B2^0.0784O所以:

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题 一、单项选择题 1、设事件 A 与 B 互不相容,且 P (A )> 0, P (B )> 0,则一定有( ) (A ) P(A) 1 P(B) ; (B )P(A|B) P(A) ; (C ) P(A| B) 1; (D ) P(A|B) 1。 2、设事件 A 与 B 相互独立,且 P (A )> 0, P (B )> 0,则( )一定成立 (A ) P(A|B) 1 P(A); ( B ) (C ) P( A) 1 P(B) ; ( D ) P(A|B) 0; P(A|B) P(B)。 3、设事件 A 与 B 满足 P (A )> 0, P ( B )> 0,下面条件( )成立时,事件 A 与 B 一定独立 ( A ) ( C ) P( AB) P( A)P(B) ; (B ) P( A B) P( A)P(B) ; P(A|B) P(B) ; (D ) P(A|B) P(A)。 4、设事件 A 和 B 有关系 B A ,则下列等式中正确的是( ) ( A ) ( C ) P( AB) P( A) ; (B ) P(B|A) P(B); (D ) P(A B) P(A); P(B A) P(B) P( A) 。 5、设 A 与 B 是两个概率不为 0 的互不相容的事件,则下列结论中肯定正确的是( ) (A ) A 与 B 互不相容; (B ) A 与 B 相容; (C ) P(AB) P(A)P(B); (D ) P(A B) P(A)。 6、设 A 、B 为两个对立事件,且 P (A ) ≠0, P (B ) ≠0,则下面关系成立的是( ) (A ) P( A B) P( A) P( B); (B ) P( A B) P(A) P(B); (C ) P( AB ) P( A) P( B) ; (D ) P(AB) P(A)P(B)。 7、对于任意两个事件 A 与 B , P( A B) 等于( ) (A ) P( A) P( B) (B ) P( A) P(B) P( AB) ; (C ) P( A) P( AB) ; (D ) P(A) P(B) P(AB) 。 二、填空题 1、若 A B , A C ,P (A )=0.9, P(B C) 0.8,则 P( A BC ) =__________。 2、设 P (A )=0.3,P ( B )=0.4,P (A|B )=0.5,则 P (B|A )=_______ , P( B | A B ) =_______。 、已知 P( A) 0.7 , P(A B) 0.3 ,则 P(AB) 。 3 4、已知事件 A 、 B 满足 P( AB) P( A B) ,且 P( A) p ,则 P( B) = 。 5、一批产品,其中 10 件正品, 2 件次品,任意抽取 2 次,每次抽 1 件,抽出后不再放回,则第 2 次抽出

概率统计-习地的题目及答案详解(1)

习题一 1.1 写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合: (1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数); 设事件A 表示:平均得分在80分以上。 (2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和; 设事件A 表示:第一颗掷得5点; 设事件B 表示:三颗骰子点数之和不超过8点。 (3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A 表示:取出的三个球中最小的号码为1。 (4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数; 设事件A 表示:至多只要投50次。 (5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。 1.2 在分别标有号码1~8的八张卡片中任抽一张。 (1)写出该随机试验的样本点和样本空间; (2)设事件A 为“抽得一张标号不大于4的卡片”,事件B 为“抽得一张标号为偶数的 卡片”,事件C 为“抽得一张标号能被3整除的卡片”。 试将下列事件表示为样本点的集合,并说明分别表示什么事件? (a )AB ; (b) B A +; (c) B ; (d) B A -; (e) BC ; (f) C B + 。 1.3 设A 、B 、C 是样本空间的事件,把下列事件用A 、B 、C 表示出来: (1)A 发生; (2)A 不发生,但B 、C 至少有一个发生; (3)三个事件恰有一个发生; (4)三个事件中至少有两个发生; (5)三个事件都不发生; (6)三个事件最多有一个发生; (7)三个事件不都发生。 1.4 设}10,,3,2,1{ =Ω,}5,3,2{=A ,}7,5,3{=B ,}7,4,3,1{=C ,求下列事件: (1)B A ; (2))(BC A 。 1.5 设A 、B 是随机事件,试证:B A AB A B B A +=-+-)()(。 1.6 在11张卡片上分别写上Probability 这11个字母,从中任意抽取7张,求其排列结果为ability 的概率。 1.7 电话号码由6位数字组成,每个数字可以是0,1,2,…,9中的任一个数字(但第一位不能为0),求电话号码是由完全不相同的数字组成的概率。 1.8 把10本不同的书任意在书架上放成一排,求其中指定的3本书恰好放在一起的概率。

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

概率统计公式大全汇总

第一章
n Pm ?
随机事件和概率
(1)排列 组合公式
n Cm ?
m! (m ? n)!
从 m 个人中挑出 n 个人进行排列的可能数。
m! 从 m 个人中挑出 n 个人进行组合的可能数。 n!(m ? n)!
(2)加法 和乘法原 理
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种 方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种 方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如 下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ? 来表示。 基本事件的全体,称为试验的样本空间,用 ? 表示。 一个事件就是由 ? 中的部分点(基本事件 ? )组成的集合。通常用大写字母 A, B,C,…表示事件,它们是 ? 的子集。 ? 为必然事件,? 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
A? B
如果同时有 A ? B , B ? A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A ? B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表 示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
1 / 33

《概率论与数理统计》习题一答案详解

《概率论与数理统计》习题及答案 习题一 1. 略.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1)A发生,B,C都不发生; (2)A与B发生,C不发生; (3)A,B,C都发生; (4)A,B,C至少有一个发生; (5)A,B,C都不发生; (6)A,B,C不都发生; (7)A,B,C至多有2个发生; (8)A,B,C至少有2个发生. 【解】(1)A BC(2)AB C(3)ABC (4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC (6) ABC (5) ABC=A B C (7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC 3. 略.见教材习题参考答案 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求: (1)在什么条件下P(AB)取到最大值? (2)在什么条件下P(AB)取到最小值? 【解】(1)当AB=A时,P(AB)取到最大值为0.6. (2)当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率.

【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 7. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率 是多少? 【解】 p =533213 1313131352C C C C /C 8. 对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17 )5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日} P (A 3)=1-P (A 1)=1-(17 )5 9. 略.见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

概率论答案

习题二答案 1.随机变量的分布函数、分布律、密度函数有何联系与区别? 答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。它们的联系在于当知道了X的分布律,可通过求概率(x取任意的值)求得X的分布函数;仅之亦然。当知道了连续型随机变量的密度函数,可通过 积分,求得分布函数, 可通过对求导,即(对一切 求得密度函数 2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X≤3}和P{X>13}. 解:由题意X的正概率点为2,3, (12) , k=2,3, (12)

3. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:, 4. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布 解:X 的可能取值为0,1,2,3 (i=1,2,3)表示事件“汽车在第i个路口首次遇到红灯”; 相互独立,且=,i=1,2,3对于m =0,1,2,3 ,有 5.设随机变量X的概率密度为:若k

使得, 求k的取值范围。 解: 当时, 当时, 当时, 故要使得,k的取值范围是 6.设某射手每次射击命中目标的概率为0.5,现连续射击10次,求命中目标的次数X的概率分布,又设至少命中3次才可以参加下一步的考核,求次射手不能参加考核的概率。 解:, k=0,1,2…,10

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

第一章概率论解析答案 习题解答

第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3,,12}Ω= ; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω= ; (3) {0,1,2,}Ω= ; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是4 13 452 ()C p A C =; (2) 设B 为“同花”,则B 有4 134C 种取法,于是 413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有 硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810 C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5436C C C C ?+?种取法,于是 1111 543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

相关主题
文本预览
相关文档 最新文档