当前位置:文档之家› 变形构造函数证明不等式

变形构造函数证明不等式

变形构造函数证明不等式
变形构造函数证明不等式

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

构造函数法证明导数不等式的八种方法(新)

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤- +x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

利用导数构造函数解不等式

构造函数解不等式 1.(2015全国2理科).设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D ) 2若定义在R 上的函数()f x 是奇函数, ()02=f ,当x >0时,()()2x x f x f x -'<0,恒成立,则不等式()x f x 2>0的解集 A ()2,-∞-?()+∞,2 B ()0,2- ? ()+∞,2 C ()2,-∞-?()2,0 D .()0,2-?()2,0 3定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,, 则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞ B . ()(),03,-∞+∞U C .()(),00,-∞+∞U D .()3,+∞ 4. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为 A .()0,+∞ B .()(),03,-∞+∞U C .()(),01,-∞+∞U D .()3,+∞ 5.定义在R 上的函数()f x 满足 则不等式(其中e 为自然对数的底数)的解集为

6.定义域为R 的可导函数()x f y =的导函数为'()f x ,满足()()x f x f '>,且(),10=f 则不等式()1

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧.技法一:“比较法”构造函数 [典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解](1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练] 已知函数f(x)=x e x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线, 求证:f(x)≤g(x).

常见构造函数解不等式归纳

常见构造函数解不等式归纳 1. 对于不等式()(0)f x k k '>≠,构造函数()()g x f x kx b =-+ 2. 对于不等式()()0xf x f x '+>,构造函数()()g x xf x = 3. 对于不等式()()0xf x f x '->,构造函数()()(0)f x g x x x = ≠ 4. 对于不等式()()0xf x nf x '+>,构造函数()()n g x x f x = 5. 对于不等式()()0xf x nf x '->,构造函数()()(0)n f x g x x x = ≠ 6. 对于不等式()()0f x f x '+>,构造函数()()x g x e f x = 7. 对于不等式()()0f x f x '->,构造函数()()x f x g x e = 8. 对于不等式()()0f x kf x '+>,构造函数()()kx g x e f x = 9. 对于不等式()2()0f x xf x '+>,构造函数2()()x g x e f x = 10. 对于不等式0)(ln )('>+x af x f a x ,构造函数()()x g x a f x = 11. 对于不等式()()tan 0f x f x x '+>,构造函数()()sin g x f x x = 12. 对于不等式()()tan 0f x f x x '->,构造函数()()cos g x f x x = 13. 对于不等式:0cos )(sin )(' >-x x f x x f ,构造 x x f x h sin )()(= 14.对于不等式:0sin )(cos )('>+x x f x x f ,构造 x x f x h cos )()(= 15. 对于不等式()0() f x f x '>,构造函数()ln () g x f x = 16.对于不等式()()ln 0f x f x x x '+ >,构造函数()()ln g x f x x = 17.对于不等式:0)()()()(''>+x g x f x g x f ,构造 )()()(x g x f x h = 18.对于不等式:0)()()()(''>-x g x f x g x f ,构造 )()()(x g x f x h =

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:

《基本不等式及其变形》导学案

第9课时基本不等式及其变形 1.熟悉基本不等式的变形;并会用基本不等式及其变形来解题. 2了解基本不等式的推广,并会应用. 上一课时我们共同学习了基本不等式的基本概念以及利用基本不等式求最值,并了解了一正二定三相等四最值这些过程.基本不等式是一种重要的数学工具,是集合、函数、不等式、三角函数、数列等知识的综合交汇点,地位重要,这一讲我们将共同探究基本不等式及其变形的应用. 问题1:常见的基本不等式的变形 (1)x+≥2(x>0),x+≤-2(x<0); (2)+≥2(a,b同号),+≤-2(a,b异号); (3)a+b≥2,()2ab; (4)ab≤,()2≤,当且仅当a=b时取等号. 问题2:基本不等式的推广 已知a,b是正数,则有 (调和平均数)≤(几何平均数)≤(算术平均数)≤(平方平均数),当且仅当a=b时取等号. 问题3:基本不等式的推广的推导 ∵a,b是正数,∴≤=, 而≤,又a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2,∴≤. 故≤≤≤.

问题4:若a,b,c∈R+,则≥,当且仅当a=b=c时等号成立,则关于n个正数a1,a2,a3,…,a n的基本不等式为:≥,当且仅当a1=a2=a3=…=a n时等号成立,其中叫作这n个数的,叫作这n个数的. 1.四个不相等的正数a,b,c,d成等差数列,则(). A.> B.< C.= D.≤ 2.已知a>1,b>1,且lg a+lg b=6,则lg a·lg b的最大值为(). A.6 B.9 C.12 D.18 3.已知a,b为正实数,如果ab=36,那么a+b的最小值为;如果a+b=18,那么ab的最大值为. 4.已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca. 利用基本不等式判断不等关系 若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(写出所有正确命题的编号). ①ab≤1;②+≤;③a2+b2≥2;④a3+b3≥3;⑤+≥2. 基本不等式在证明题中的应用 已知a,b,c都是正数,求证:++≥a+b+c.

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

四种构造函数法证明不等式

四种构造函数法证明不等式 利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键. 考点一“比较法”构造函数证明不等式 当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=ln x,进而证明在某个取值范围内不等式f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),进而证明h(x)min≥0或φ(x)max≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可 以类比作商法,构造函数h(x)=f(x) g(x)? ? ? ? ? φ(x)= g(x) f(x),进而证明h(x)min≥1(φ(x)max≤1). 【例题】已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)求证:当x>0时,x2<e x. 【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增.

高中数学解题方法与技巧---构造函数法证明导数不等式的六种方法

高中数学解题方法与技巧 构造函数法证明不等式的六种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的六种方法: 一、移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 2 2)1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 , 即)(x g 在)0,1(?∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞?上的最小值为0)0()(min ==g x g ,

构造函数解不等式小题

专题:构造函数解决问题 ——函数单调性与导数 1:设()()f x g x 、 是R 上的可导函数,'()'()f x g x 、分别为()()f x g x 、的导函数,且满足'()()()'()0f x g x f x g x +<,则当a x b <<时,有( ) .()()()()A f x g b f b g x > .()() ()(B f x g a f a g x > .()()()()C f x g x f b g b > .()()()(D f x g x f b g a > 变式1:设()()f x g x 、 是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,则不等式()()0f x g x <的解集. 变式2::设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()f x g x f x g x +>,(3)0g -=,则不等式()()0f x g x <的解集. 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()()x f x a g x =,且'()()()'()f x g x f x g x <,若若(1)(1)5(1)(1)2 f f g g -+=-,则关于x 的不等式log 1a x >的解集 . 3:已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x + >,若)2(ln 2 1ln ,)2(2,)21(21f c f b f a =--== ,则下列关于,,a b c 的大小关系正确的是( ) .A a b c >> .B a c b >> .C c b a >> a c b D >>. 4已知函数()f x 为定义在R 上的可导函数,且()'()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则( ) 2013.(1)(0)(2013)(0)A f e f f e f >??、 2013.(1)(0)(2013)(0)C f e f f e f >?>?、 2013.(1)(0)(2013)(0)D f e f f e f

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 1.移项法构造函数 2、作差法构造函数证明 3、换元法构造函数证明 4、从条件特征入手构造函数证明 5、主元法构造函数 6、构造二阶导数函数证明导数的单调性 7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数 1.移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 22) 1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 ,

相关主题
文本预览
相关文档 最新文档