当前位置:文档之家› 水闸设计计算

水闸设计计算

水闸设计计算
水闸设计计算

一、初步设计

兴化闸为无坝引水进水闸,该枢纽主要由引水渠、防沙设施和进水闸组成,本次设计主要任务是确定兴化闸的型式、尺寸及枢纽布置方案;并进行水力计算、防渗排水设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平面布置图及上下游立视图。

二、设计基本资料

1. 概述

兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。该闸的主要作用有:

防洪:当兴化河水位较高时,关闸挡水,以防止兴化河水入侵兴化渠下游两岸农田,保护下游的农田和村镇。

灌溉:灌溉期引兴化河水北调,以灌溉兴化渠两岸的农田。

引水冲淤:在枯水季节,引兴化河水北上至下游的大成港,以冲淤保港。

兴化镇

闸址位置示意图(单位:m)

2.规划数据

兴化渠为人工渠道,其剖面尺寸如图所示。渠底高程为,底宽,两岸边坡均为1:2。该闸的主要设计组合有以下几方面:

兴化渠剖面示意图(单位:m)

孔口设计水位、流量

根据规划要求,在灌溉期由兴化闸自流引兴化河水灌溉,引水流量为300m3/s,此时闸上游水位为,闸下游水位为;在冬季枯水季节由兴化闸自流引水送至下游大成港冲淤保港,引水流量为100m3/s,此时相应的闸上游水位为,下游为。

闸室稳定计算水位组合

(1)设计情况:上游水位,浪高,下游水位。

(2)校核情况:上游水位,浪高,下游水位。

消能防冲设计水位组合

(1)消能防冲的不利水位组合:引水流量为300m3/s,相应的上游水位,下游水位为。

(2)下游水位流量关系

下游水位流量关系见表

3.地质资料

闸基土质分布情况

根据钻探报告,闸基土质分布情况见表

根据土工试验资料,闸基持力层为坚硬粉质粘土,其内摩擦角?=190

,凝聚力C=;天然孔

隙比e=,天然容重γ=m 3

,比重G=,变形模量0E =4

104?KPa ;建闸所用回填土为砂壤土,其

内摩擦角?=260

,凝聚力C=0,天然容重γ=18KN/m 3

;混凝土的弹性模量E h =7

10.32?KPa 。

4. 闸的设计标准

根据《水闸设计规范》SL265-2001,兴化闸按Ⅲ级建筑物设计。

5. 其它有关资料

闸上交通

根据当地交通部门建议,闸上交通桥为单车道公路桥,按汽-10设计,履带-50校核。桥面 净宽为,总宽 ,采用板梁式结构,见图,每米桥长约重80KN 。

交通桥剖面图 (单位:cm )

该地区“三材”供应充足。闸门采用平面钢闸门,尺寸自定,由于厂设计加工制造。 该地区地震烈度设计为6度,故可不考虑地震影响。

该地区风速资料不全,在进行浪压力设计时,建议取l l h 10 L 计算。

三、枢纽布置

兴化闸为无坝引水进水闸。整个枢纽主要由引水渠、防沙设施和进水闸等组成。 1. 防沙设施

闸所在河流为少泥沙河道,故防沙要求不高,仅在引水口设拦沙坎一道即可。拦沙坎高,底部高程,顶高程,迎水面直立,背流坡为1:1的斜坡,其断面见图

枢纽布置图

2. 引水渠的布置

兴化河河岸比较坚稳,引水渠可以尽量短(大约65m ),使兴化闸靠近兴化河河岸。为了保证有较好的引水效果,引水角取35°,并将引水口布置在兴化河凹岸顶点偏下游水深较大的地方。为了减轻引水口处的回流,使水流平顺的进入引水口,引水口上、下游边角修成圆弧形。引水渠在平面上布置成不对称的向下游收缩的喇叭状,见图3-1。

3. 进水闸布置

进水闸(兴化闸)为带胸墙的开敞式水闸。共5孔,每孔净宽5m 。胸墙底部高程为,闸顶高程为,闸门顶高程为。 闸室段布置

闸底板为倒∏型钢筋混凝土平底板,缝设在底板中央。底板顶面高程为,厚,其顺水流方向长16m 。

闸墩为钢筋混凝土结构,顺水流方向长和底板相等,中墩厚,边墩与岸墙结合布置,为重力式边墙,既挡水,又挡土,墙后填土高程为。闸墩上设有工作门槽和检修门槽。检修门槽距

闸墩上游边缘,工作门槽距闸墩上游边缘,胸墙与检修门槽之间净距为。

闸门采用平面滚轮钢闸门,尺寸为×。启闭设备选用QPQ-63卷扬式启闭机。工作桥支承为实体排架,由闸墩缩窄而成。其顺水流长,厚,底面高程,顶面高程,排架上设有活动门槽。

公路桥设在下游侧,为板梁式结构,其总宽为。公路桥支承在排架上,排架底部高程。

上游连接段布置

铺盖为钢筋混凝土结构,其顺水流方向长20m,厚。铺盖上游为块石护底,一直护至引水口。

上游翼墙为浆砌石重力式反翼墙,迎水面直立,墙背为1:的斜坡,收缩角为15°,圆弧半径为。墙顶高程为,其上设高的混凝土挡浪板。墙后填土高程为。翼墙底板为厚的钢筋混凝土板,前趾长,后趾长。翼墙上游与铺盖头部齐平。

翼墙上游为干砌块石护坡,每隔12m设一道浆砌石格埂。块石底部设15cm的砂垫层。护坡一直延伸到兴化渠的入口处。

下游连接段布置

闸室下游采用挖深式消力池。其长为,深为。消力池的底板为钢筋混凝土结构,其厚度为。消力池与闸室连接处有1m宽的小平台,后以1:4的斜坡连接。消力池底板下按过滤的要求铺盖铺设厚的砂、碎石垫层,既起反滤、过渡作用,又起排水作用。

海漫长24m,水平设置。前8m为浆砌块石,后16m为干砌块石,并每隔8m设一道浆砌石格埂。海漫末端设一构造防冲槽。其深为,边坡为1:2。槽内填以块石。由于土质条件较好,防冲槽下游不再设护底。

下游翼墙亦为浆砌石重力式反翼墙。迎水面直立,墙背坡度为1:,其扩散角为10°,圆弧半径为。墙顶高程为,其上设高的挡浪板,墙后填土高程为。下游翼墙底板亦厚钢筋混凝土板,其前趾长,后趾长。翼墙下游端与消力池末端齐平。

下游亦采用干砌块石护坡,护坡至高程处。每隔8m设一道浆砌石格埂。护坡延伸至与防冲槽下游端部齐平。

四、水力计算

水力设计主要包括两方面的内容,即闸孔设计和消能设计。

1.闸孔设计

闸孔设计的主要任务:确定闸室结构形式、选择堰型、确定堰顶高程及孔口尺寸。

闸室结构形式

该闸建在人工渠道上,故宜采用开敞式闸室结构。

在运行中,该闸的挡水位达~,而泄水时上游水位为~,挡水位时上游最高水位比下游最高水位高出,故拟设设置胸腔代替闸门挡水,以减小闸门高度,减小作用在闸门上的水压力,减小启门力,并降低工作桥的高度,从而减少工程费用。

综上所述:该闸采用带胸墙的开敞式闸室结构。 堰型选择及堰顶高程的确定

该闸建在少泥沙的人工渠道上,宜采用结构简单,施工方便,自由出流范围较大的平底板宽顶堰。考虑到闸基持力层是坚硬粉质粘土,土质良好,承载能力大,并参考该地区已建在工程的经验,拟取闸底板顶面与兴化渠渠底齐平,高程为。 孔口尺寸的确定

(1)初拟闸孔尺寸。该闸的孔口必须满足引水灌溉和引水冲淤保港的要求。 1)引水灌溉:

上游水深 H= 下游水深 s h = 引水流量 Q=300m 3

/s 上游行近流速 V 0=Q/A

A=(b+mH)H=(50+2××=

V=300/=s m 3

H 0=H+αV 02

/2g=+(2×)=

h S /H 0==>,故属淹没出流。

查SL265-2001表A ·0·1-2,淹没系数σS =

由宽顶堰淹没出流公式 :2

/300g 2m H B Q S εσ=

对无坎宽顶堰,取m=,假设侧收缩系数ε=,则

)2/(2/3001H g m Q B S εσ=

=2/35.371.8926.9085.3036.0300

????? =

2)引水冲淤保港

上游水深 H= 下游水深 h= 引水流量 Q=100s m 3

上游行近流速 V 0=Q/A

A=(b+mH)H=(50+2××=s m

3

0v =Q/A=100/=s, 故属淹没出流。

查 SL265-2001表A ·0·1-2,得淹没系数σs=

同样取m=,并假定6.90=ε,则得

比较1)、2)的计算结果,B 02< B 01,可见引水灌溉情况是确定闸孔尺寸的控制情况,故闸孔净宽B 0宜采用较大值。

拟将闸孔分为5孔,取每孔净宽为5m,则闸孔实际总净宽为B 0=5×5=。

由于闸基土质条件较好,不仅承载能力较大,而且坚硬、紧密。为了减少闸孔总宽度,节省工作量,闸底板宜采用整体式平底板。拟将分缝设在各孔底板的中间位置,形成倒∏型底板。中墩采用钢筋混凝土结构,厚,墩头、墩尾均采用半圆形,半径为。 (2)复核过闸流量

对于中孔,b 0=5m b s =b 0+ε=5+= b 0/b s =5/= 查SL265-2001表,得971.0=z ε 对于边孔,b 0=5m

s b =

b 0/b s =

查SL265-2001表A ·0·1-1,得b

=。则:

-

ε=[εz (N-1)+

b

]/N =。

对于无坎平底宽底堰,m=,则

2/3002H g B m Q S εσ=

2

/335.781.9225957.0385..036.0??????=

s m /5.2943

=

Q

Q Q -实×100%=

?300

300

-.5298100% 1.83=% < 5%

实际过流能力满足引水灌溉的设计要求。同样,可以验证初拟的闸孔尺寸亦符合引水冲於保港的要求。

因此,该闸的孔口尺寸确定为:共分5孔,每孔净宽5m ,4个中墩各厚,闸孔总净宽为25m ,闸室总宽度为。

2. 消能防冲设计

消能防冲设计包括消力池、海漫及防冲槽等三部分。 消力池的设计

2

/30s 022H g m Q

B εσ=

m

..28.94.9681926.9085.30360100

2

/3=?????=

(1)上下游水位连接形态的判别。闸门从关闭状态到泄流量为300s m 3

往是分级开启的。

为了节省计算工作量,闸门的开度拟分三级,流量50s m 3

;待下游的水位稳定后,增大开度至

150s m

3

,待下游的水位稳定后,增大开度至300m 3。

当泄流量为50s m 3

时:

上游水深H= 下游水深可采用前一级开度(即Q=0)时的下游水深t= 上游行进流速

0V =

A

Q

=.171850=s(s m v /5.00<),可以忽略不计。 假设闸门的开度e=.H

e

= < ,为孔流。查《水力学》(河海大学出版社)表,得垂直收缩系数ε'=,则:

h c =ε'e=×=

"c h =???

?????-+1812

32

c c

gh q h

m h c

32.1128.081.9)4.29/50(81228.03

2

"=???

?????-??+= "

c h

由(t ﹣"c h )/(H-"

c h )=,查SL265-2001表A ·0·3-2(采用插值法),得孔流淹没系数/

 σ=,所以有

Q=σ'μ1eB 002gH μ1=-

H

e

= 式中 μ1—孔流流量系数。

因此 Q=×××25×2.108192??.

=m 3 该值与要求的流量50m 3

十分的接近,才所假定的闸门开度e=正确。此时,跃后水深

故发生淹没水跃。

以同样的步骤可求得泄水量为150s /m 3

、300s m /3

时的闸门开度、跃后水深,并可判别不同泄水量时水面的连接情况,见表4-1.

将结果列如下表:

(2)消力池的设计

1)消力池池深:由表4-1可见,在消能计算中,跃后水深均小于相应的下游水深,出闸水流已发生了淹没水跃,故从理论上讲可以不必建消力池。但是为了稳定水跃,通常需建一构造消力池。取池深d=。

2)消力池长度:根据前面的计算 ,以泄流量300m 3

作为确定消力池长度的计算依据。

略去行进流速0v ,则:

T 0= H+d=+= h c =

00T -

T -

T α

α

α

95.02.102/2

2===??

αq g q

α= h c =

"

c h =???

?????-+1812

3

2

c c

gh q h

= m 水跃长度 j L =("

c h -c h )=×()=

消力池与闸底板以1:4的斜坡段相连接,L S =dp=×4=,则消力池长度L SJ 为 sj L =j s L L β+=+×= β—长度校正系数(~ 取消力池长度为

3)消力池底板厚度计算: t=k 1

?H q

式中 K 1消力池底板厚度计算系数,可采用( ~) K 1取

)/(2.10)4.425/(3003

m s m q ?=+=

m H 92.278.77.10=-=? t=

由于消力池的池底板厚范围(~)所以取消力池的池底板厚为,前后等厚。在消力池底板的后半部设排水孔,孔径10 cm,间距2 m ,呈梅花行布置,孔内填以砂,碎石。消力池与闸底板连接处留有1米的平台,以便更好地促成出闸水流在池中产生水跃。消力池在平面上呈扩散状,扩散角度10°。 海漫的设计

1)海漫的长度为: L P =?H q K S

q=300/〔25++tan10°×+1)×2〕= )/(3

m s m ?

?H=-=

s k 为海漫长度计算系数,取s k 为

L P =03.2092.279.40

.7=

取海漫的长度为。

2)海漫的布置和结构。由于下游水深较大,为了节省开挖量,海漫布置成水平的.海漫使用厚度40cm 的块石材料,前7m 用浆砌块石,后14m 采用干砌块石。浆砌块石海漫上设排水孔,干砌块石上设浆砌块石格梗,格梗断面尺寸为40cm ×60cm 。海漫底部铺设15cm 厚的砂粒垫层。 防冲槽的设计

1)海漫末端河床冲刷深度为 []

"-''='s h v q d 01.1 海漫末端的平均宽度

B ''=1/2(50+50+2×2×=

"q =300/=)(3

m s m ?

对比较紧密的黏土地基,且水深大于3m , []0v 可取为s,"

s h =,则:

d '=04.71

.168

.41.1-?

= d '<0,表示海漫出口不形成冲刷坑,理论上可以不建防冲槽。但为了保护海漫头部,故

在海漫末端一防冲槽。

2)防冲槽的构造。防冲槽为倒梯形断面(见图2-1)。其底宽,深,边坡1:2,槽中抛以块石。

综上所列其布置图如下图4-2-1:

图2-1 消力池、海漫、防冲槽布置(单位:cm)

五、防渗排水设计

1.地下轮廓设计

对于黏土地基,通常不采用垂直板桩防渗。故地下轮廓主要包括底板,防渗铺盖。

底板

底板既是闸室的基础,又兼有防渗、防冲刷的作用。它既要满足上部结构布置的要求,又要满足稳定及本身的结构强度等要求。

1)底板顺水流方向的长度L。为了满足上部结构布置的要求,L必须大于交通桥宽、工作桥宽、工作便桥宽及其之间间隔的总和,即L约为。

从稳定和地基承载力的要求考虑,L可按经验公式估算

L=(H+2h+a)(1+ΔH)K

因为H=,2h=,a=,ΔH=,K=,则

L=15. 34m

综上所述,取底板顺水流方向长度L为16m

2)底板厚度d。根据经验,底板厚度为(1/5—1/7)单孔净跨,初拟d=。

150。上下游两端各设深的齿墙嵌入3)底板构造。底板采用钢筋混凝土构造,混凝土为#

地基。底版分缝中设以“V”型铜止水片。

铺盖

铺盖采用钢筋混凝土结构,其长度一般为2—4倍闸上水头或3—5倍上下游水位差,拟取20m,铺盖厚度为。铺盖上游端设深的小齿墙,其头部不再设防冲槽。为了防止上游河床的冲刷,铺盖上游设块石护底,厚,其下设厚的砂石垫层。

侧向防渗

侧向防渗主要靠上游翼墙和边墩。上游翼为曲面式反翼墙,收缩角取15 ,延伸至铺盖头部以半径为的圆弧插入岸坡。

排水、止水

为了减小作用于闸底板上的压力,在整个消力池底板下部设砂砾石排水,其首部紧抵闸底板下游齿墙。闸底板与铺盖、铺盖与上游翼墙、上游翼墙与边墙之间的永久性缝中,均设以铜片止水。闸底板与消力池、消力池与下游翼墙、下游翼墙与边墩之间的永久性分缝,虽然没有

防渗要求,但为了防止闸基土与墙后填土被水流带出,缝中铺贴沥青油毛毡。 防渗长度验算

(1)闸基防渗长度。必须的防渗长度为

H C L ?=

?H=。当反滤有效时,C=3;当反滤失效时,C=4。因此

L=—

实际闸基防渗长度

L '=+++19++++13+++= L L >',满足要求。

(2)绕流防渗长度。必须的防渗长度为

L=C ?H

?H=,C=7(回填土为砂壤土,且无反滤),因此L= 实际防渗长度 L '=

?

15cos 20

+16=

L '>L,满足防渗要求

其地下轮廓布置见下图5-1-1:

图5-1-1 地下轮廓布置 (单位: m )

2. 渗流计算

采用改进阻力系数法进行渗流计算。 地下轮廓线的简化

为了便于计算,将复杂的地下轮廓进行简化。由于铺盖头部及底板上下游两端的齿墙均浅,简化后的形式如下图5-2-1:

图5-2-1 地下轮廓简化图(单位: m)

确定地基的有效深度

根据钻探资料,闸基透水层深度很大。故在渗流计算中必须取一有效深度,代替实际深度。

由地下轮廓线简化图知:地下轮廓的水平投影长度

L=16+20=36m;地下轮廓的垂直投影长度S0=。L0/ S0=36/=>5,故地基的有效深度T e= L0=18 m(图5-2-1)。

渗流区域的分段和阻力系数的计算

过地下轮廓的角点、尖点,将渗流区域分成十个典型段。1、8段为进出口段,3、6、二段为内部水平段,2、4、5、7则为内部垂直段。

表5-2-1 各流段阻力系数为ξ

则ξ=∑

1

i=ξ

i

=

渗透压力计算:

(1)设计洪水位时:△H=。根据水流的连续条件,经过各流段的单宽渗流流量均应相等。

1)任一流段的水头损失h

i =

ξ

H

?

ξ

i

,则

h1 = h2 = h3 = h4 =

h 5 = h 6 = h 7 = h 8 =

2)进出口段进行必要的修正:进出口修正系数1β为 1β=

)

059.0(2)(121

2+'????????+'T

S

T T

T ′=18m T= S=

则1β=< 应予修正。进口段的水头损失修正为

h 1′=1β h 1

=

进口段水头损失的修正量为

Δh=-=

修正量应转移给相邻各段

h 2′=+= h 3′=+(-)=

同样对出口段修正如下

β2=

)059.0(2)(121

2+'

????????+'T S

T T

T ′= T= S= 则β

2

=<,故亦需修正。

出口段的水头损失修正为

h 8′=β

2

h 8=

修正量Δh=-=

h 7′=+= h 6=+-=

3)计算各角隅点的渗压水头:由上游出口段开始,逐次向下游从作用水头值Δh 中相继减去各分段的水头损失值,即可求得各角隅点的渗压水头值

H 1 = H 2 = ′=

H 3 = H 2- h 2′m =

H 4 = H 3- h 3′m = = H 4- h 4′m = = H 5- h 5′m = = H 6- h 6′m = = H 7- h 7′m = = H 8- h 8′m =)作出渗透压力分布图:根据以上算得渗压水头值,并认为沿水平段水头损失呈线形变化,则其渗透压力分布图,如图5-2-2:

图5-2-2 设计洪水位是渗透压力分布图(单位: m)单位宽度底板所受渗透压力:

P 1=

2

1

( H6+ H7)×16×1==

单位宽铺盖所受的渗透压力:

P 2=

2

1

( H

3

+ H

4

)×20×1==

2)同样的步骤可计算出校核情况下的渗透压力分布,即

ΔH= =

H2 =

H3 =

H4 =

H5 =

H6 =

H7 =

H8 =

H9 =

根据以上计算作出渗透压力分布图,如图5-2-3:

图5-2-3 校核洪水位是渗透压力分布图(单位: m)单位宽度底板所受渗透压力:

P' 1=

2

1

( H6+ H7)×16×1=

2

1

×+×16×1==KN

单位宽铺盖所受的渗透压力:

P ‘2=

21( H 3+ H 4)×20×1=2

1

×+×20×1==KN 抗渗稳定验算

闸底板水平段的平均渗透坡降和出口处的平均逸出坡降闸底板水平段的平均渗透坡降为

J X =X L h ’

6=16

37.1=<[J X ]=~

渗流出口处的平均逸出坡降J 0为

J 0=''

7

S h =6

.026.0=<[J 0]=~

闸基的防渗满足抗渗稳定的要求。

六、闸室布置与稳定计算

1. 闸室结构布置

闸室结构布置主要包括底板、闸墩、闸门、工作桥和交通桥等部分结构的布置和尺寸的拟定。 底板

底板的结构、布置、构造与上面的相同。 闸墩

顺水方向的长度取与底板相同,取16m 。闸墩为钢筋混凝土结构,中墩厚均为。边缘与岸墙合二为一,采用重力式结构。

闸墩上游部分的顶部高程在泄洪时应高于设计或校核洪水位加安全超高;关门时应高于设计或校核洪水位加波浪计算高度加安全超高。

设计洪水位的超高计算:?1=++= 校核洪水位的超高计算:?2=++= 取上述二者中的较大者,取为。

闸墩下游部分的高度只要比下游最高水位适当高些,不影响泄流即可。可大大低于上游部分的高度,而其上设有排架搁置公路桥。初拟定闸墩下游部分顶部高程为,其上设3根×,高的柱子,柱顶设×,长的小横梁,梁顶高程即为++=。下游闸墩上搁置公路桥,桥面高程为,与两岸大堤齐平。

闸墩上设检修门槽和工作门槽,检修门槽在上游,槽深为,宽,工作槽槽深为,宽。具体位置见图。闸墩上下游均为半圆形,其半径为。 胸墙

为了保证启吊闸门的钢丝绳不浸在水中,胸墙设在工作闸门的上游侧。

?=堰顶高程+胸墙顶与闸墩上游部分顶部同高取。胸墙底部高程应以不影响引水为准。

ZB

堰顶下游水深+δ=++= m,取胸墙底部高程为。则胸墙高度为。

胸墙采用钢筋混凝土板梁式结构,简支于闸墩上。上梁尺寸为×,下梁尺寸为×,板厚20cm。下梁下端的上游面做成圆弧形,以利过水。

工作桥

(1)启闭机选型。闸门采用平面滚轮钢闸门,为滑

动式,门顶高程应高出胸墙,即其高程为,门高,门宽

5+?=。根据经验公式:G=初估闸门自重。A=;H S=;对于

工作闸门,K1=,H/B==, H/B<1,K2=;H S=<60m,K3=。则

门重G==,取门自重G=150KN。初拟启门力F Q=(—)P+,

闭门力F W(—)。其中G为闸门自重,P为作用在门上的

总水压力,不计浪压力的影响,作用在每米宽门上游面

的水压力,作用在每米宽门下游面的水压力和门上总的

水压力为:

P上=1/2××+ ×=;

P下=1/2×××=,

P=(P上-P下)×5=

F Q=×+×150=

F W=×,表示闸门能靠自重关闭,不需加压重块帮助关闭。根据计算所需的启门力F Q=,初选单吊点手摇电动两用卷扬式启闭机(上海重型机械厂产品)QPQ-63。其机架外轮廓宽J=1962mm。

(2)工作桥的尺寸及构造。(见图6-1-2)工作桥的宽度不仅要满足启闭机布置的要求,且两侧应留有足够的操作宽度。B=启闭机宽度+2×栏杆柱宽+2×栏杆外富裕宽度=+2×+2×+2×=。故取工作桥净宽。工作桥为板梁式结构。预制装配。两根主梁高,宽,中间活动铺板厚

6cm。为了保证启闭机的机脚

螺栓安置在主梁上,主梁间的

净距为。在启闭机机脚处螺栓

处设两根横梁。其宽30cm,

高50cm。

工作桥设在实体排架上,

排架的厚度即闸墩门槽处的颈厚为50cm,排架顺水方向的宽度为。排架的高程为:胸墙壁底缘高程+门高+富裕高度=++=。

检修便桥

为了便于检修、观测、在检修门槽处设置有检修便桥。桥宽。桥身结构仅为两根嵌置于闸墩内的钢筋混凝土简支辆。梁高40cm,宽25cm。梁中间铺设厚6cm的钢筋混凝土板。

交通桥

在工作桥的下游侧布置公路桥,桥身结构为钢筋混凝土板梁结构,桥面总宽。其结构构造及尺寸见本章第一节。

2.闸室稳定计算

取中间的一个独立的闸室单元分析,闸室结构布置见图6-2-1:

图6-2-1 闸室结构布置图(单位: m)

荷载计算

(1)完建期的荷载.完建期的荷载主要包括闸地板重力G

1、闸墩重力G

2

、闸门重力G

3

胸墙壁重力G

4、工作桥及启闭机设备重力G

5

、公路桥重力G

6

和检修便桥重力G

7

、取混凝土、

钢筋混凝土的容重为25KN/3

m。

底板重力为:

G

1

=16×××25+×(1+)×××25×2=闸墩重力:每个中墩重

G‘2=(××25

.5

0××25)+(××25

.5

0××25)+(×××××2××25)+(×××25-2××××25)+(×××25)+(××8×25)+(3××××25)+(×××25))=

每个闸室单元有两个中墩,则:G2=2 G‘

2

=

闸门重力为:G3=150×2=300N

胸墙重力为:G4=××10×25+× ×25+× 25= 工作桥及启闭机设备重力如下:

工作桥重力:G'5=2××××25+×+×××2×25+×××2×25+×××25=

考虑到栏杆及横梁重力等,取: G'5=330KN

QPQ-63启闭机机身重,考虑到机架混凝土及电机重,每台启闭机重48KN,启闭机重力

G''5=2×=

G5= G'5+ G''5=330+=426KN

公路桥重力:公路桥每米重约80KN,考虑到栏杆重,则公路桥重为:

G6=80×+50=

检修便桥重力:G7=×××25×2+××10×25=

考虑到栏杆及横梁重力等,取: G7=

完建情况下作用荷载和力矩计算见下表6-2-1:

(2)设计洪水情况下的荷载。在设计洪水情况下,闸室的荷载除此之外,还有闸室内水的重力、水压力、扬压力等。

闸室内水重:

W 1=××10×+××10×+×10×× =++

=

设计洪水情况下的荷载图见(图5-2-2), 设计洪水情况下的荷载计算表见 (表5-2-2,设计洪水情况下荷载和力矩计算对B 点取矩)

水平水压力:

首先计算波浪要素。有设计资料知:h l

=,L

l

/h

l

=10,上游H =,则上游波浪线壅高

为:

l

l l L H

cth

L h h ππ220= 8

85

.9288.020???=ππcth h = 波浪破碎的临界水深: l

l l

l l lj h L h L L H πππ22ln

4-+= m H lj 94.08

.020.88.020.8ln 48=?-?+?=

πππ 可见,上游平均水深大于L l /2,且大于H lj ,故为深水波。因此: P 1=×4××(4++ ×+×6××(4+10) × =1208+=(→)

P 2=××+ ××=1621KN (→) P 3=×××=(←)

P 4=××+ ××=667KN (←)

浮托力:F=××16×+×+ ×××=14879KN(↑) 渗透压力:U=××16×+××16××

水工建筑物课程设计水闸设计计算说明书

《水工建筑物》课程设计 水闸设计计算说明书 姓名: 专业:水利水电工程 指导老师: 云南农业大学水利学院 2016.12 目录 一、基本资料........................................ 错误!未定义书签。 1.1设计依据.................................... 错误!未定义书签。 1.2设计要求.................................... 错误!未定义书签。 二、设计计算........................................ 错误!未定义书签。 2.1水闸形式及孔口尺寸的拟定.................... 错误!未定义书签。 ............................................ 错误!未定义书签。 ............................................ 错误!未定义书签。 2.2消能防冲设计................................ 错误!未定义书签。 ............................................ 错误!未定义书签。 ............................................ 错误!未定义书签。 三、防渗设计........................................ 错误!未定义书签。 3.1地下轮廓的设计.............................. 错误!未定义书签。 ............................................ 错误!未定义书签。 ............................................ 错误!未定义书签。

水闸、冲沙闸坝段水力及结构计算书

计算书名称:进水闸、冲沙闸坝段水力及结构计算书 目录 1工程概况 (1) 2水力计算 (1) 2.1进水闸坝段过水能力计算 (1) 2.2消能防冲设计 (3) 2.3冲砂闸过水能力复核 (4) 2.4消能防冲设计 (5) 3稳定及应力计算 (6) 3.1基本资料与数据 (6) 3.2结构简化 (6) 3.3计算公式 (6) 3.4荷载计算及组合 (8) 3.5计算成果 (9) 3.6冲沙闸荷载计算 (12) 3.7计算成果 (13) 3.8计算简图 (17)

1工程概况 某调水工程由关山低坝引水枢纽和穿越秦岭山区的输水隧洞两大部分组成,按其供水对象及性质,根据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),工程等别为三等中型工程,主要建筑物按3级建筑物设计。 低坝无调节引水枢纽由拦河坝、冲砂闸、进水闸和输水暗渠四部分组成,前三部分在平面上呈一条直线南北方向并列布置,输水暗渠紧接进水闸并连接进水闸和输水隧洞。两个闸均设在坝的左侧。坝轴线位于两河口下游95m ,关山村上游约1km 处,此处河谷宽度74m ,河床宽度约60m ,高程为1467.2m ,河床漂卵石覆盖层厚5~12m ,最大15m ,其下的基岩为黑云片麻岩和斜长片麻岩,岩石强风化层厚约2~3m ,岩体分类为Ⅱ~Ⅲ类,岩层倾向上游,对防渗有利。 进水闸位于冲砂闸左侧,设计流量13.5m 3/s ,单孔布置,孔口尺寸3.0m ×2.5m ,设潜孔式弧形工作闸门和平面检修闸门。闸室后接4m 长的1:4陡坡,陡坡后接消力池,消力池池长14m ,池深1.0m ,底板厚度1.0m ,为C20钢筋混凝土结构;消力池后与输水暗渠相接。 2水力计算 2.1进水闸坝段过水能力计算 2.1.1引水渠内水深的确定 Q= 3 /22/11R Ai n 式中Q -引水渠流量,13.5m 3/s ; n -引水渠糙率,0.015; A 、χ、R 、b 、h 、m 分别为过水断面面积、湿周、水力半径、渠道底宽、水深及边坡系数,其表达式如下: A=(b+mh)h χ=b+2h 21m +; R= χ A = 2 12)(m h b h mh b +++ 故 13.5=1/0.015×(3+0 h )h ×(1/1000)1/2×3 /2)23).03(( h h h ++

水闸设计报告

湖北水利水电职业技术学院 综合练习报告 系别:水利工程系 专业:水利水电建筑工程 题目:水闸施工技术课程设计 班级:水工(3)班 姓名:陈浩 指导老师:陈道英 成绩: 日期:

目录 1 施工条件分析 1.1对外交通 1.2施工场地条件 1.3水文气象 1.4水电供应 1.5主要建筑物 2料场的选择与开采 2.1粘性土料场 2.2石料料场 2.3砂料料场 2.4水泥、钢筋、汽油及柴油 3施工导流设计 3.1施工标准及导流时段 3.3导流建筑物设计 3.3. 1施工洪水 3.3. 2施工围堰设计 4主体工程施工 4.1主要施工程序和主要工程量 4.2清淤工程 4.3开挖工程 4.4土方回填 4.5砌体拆除工程 4.6砼工程 4.7砌石、抛石工程 4.8碳纤维补强加固工程 4.9金属结构工程

4.10堤顶道路工程 5施工交通运输 5.1对外交通 5.2场内交通 6施工工厂设施 7施工总布置 7.1布置原则 7.2施工房屋建筑 7.3弃料场规划 7.4施工占地 8施工总进度 8.1编制原则 8.2施工进度安排 9主要技术供应 9.1主要材料供应 9.2主要施工机械设备10设计总结

1.施工条件分析 1.1对外交通 YJC排涝闸位于宜城市城区汉江干堤右岸,桩号为6+500处,距宜城市市城区中心5.0km。本工程可利用现有堤顶路面作为对外施工陆路交通,汉江航道亦可作为水路交通运送主要施工材料。 1.2施工场地条件 闸址两岸外滩及堤内坡脚均有部分空闲场地。由于水闸的规模不大,对场地要求相对不高,因此现有的场地条件基本能满足施工布置的需要。 1.3水文气象 水闸所在地流域位于湖北省水文气象分区第Ⅵ区,属北亚热带季风气候区,兼有南北过渡气候特征。据统计,流域多年平均降水量831mm,历年最大年降雨量1353.6mm(1967年),最小年降雨量为647.3mm(1972年),雨季多集中在夏秋两季,尤其以7、8月为最多,一般占全年降雨量的45%。多年平均气温15.6℃,历年最高气温为40℃,最低气温为-16℃。多年平均蒸发量1100mm,多年平均径流深约220mm,多年平均最大风速15.5m/s。年日照时数在2000h 以上,无霜期为230d,多年平均相对湿度为77%。全年、冬季、夏季主导风向分别为E、WNW、E。 1.4水电供应 工程的施工用水、用电较为方便,施工用水可直接从汉江中提取,用水水质和水量均能满足生产需要,施工用电可由施工单位自备变压器,从当地电网取电后向各施工点供电。 1.5主要建筑材料 工程所需主要建筑材料包括水泥、钢材、油料、块石、碎石、砂、土料。 钢材、油料等可从建材市场择优购买; 水泥从宜城市葛洲坝水泥有限责任公司购买,汽车运往工地;

水闸设计文字说明

5.5.1 ****闸拆建工程 (1)设计流量及水位组合 ****闸位于唐松河尾部、伏堆河汇流口上游,自排松林荡圩区35.71km2涝水入唐响河。当唐响河高水无法下泄时,关闭****闸,由松林荡排涝站反向抽排入黄河故道。 ****闸控制排涝面积35.71km2,10年一遇自排模数1.29m3/s/km2,推算得设计自排流量46.1m3/s;排涝水位考虑远期唐响河按10年一遇排涝标准疏浚,唐响河闸上10年一遇预排预降水位为1.5m,推算得****闸下设计水位为2.9m。****闸特征水位组合见表5.5.1。 表5.5.1 ****闸特征水位组合成果表 (2)工程总体布置 ****闸室为平底板宽顶堰型式,上下游第一节翼墙均采用圆弧扶壁式结构;闸孔为三孔,单孔净宽3.5m;闸室底板顺水流向长11.0m,垂直水流向总宽13.70m;闸室底板顶高程-1.00m,闸顶高程 5.50m,消力池顶高程-1.50m,河道底高程-1.00m;上游护坦长8.0m,浆砌块石护底长10.0m;下游消力池长10.0m,海漫长16.0m,防冲槽深1.5m;工作桥及排架采用钢筋混凝土固支结构,工作桥为“π”型,上设启闭机房,工作闸门采用三扇3.5m×3.5m平面钢闸门,配LQ-12T手电两用螺杆式启闭机3台套;交通桥采用现浇混凝土固支结构,桥面总宽5.5m。

(3)闸顶高程计算 根据《水闸设计规范》(SL265-2001)4.2.4条,水闸闸顶高程应根据挡水和泄水两种运用情况确定。挡水时,闸顶高程不应低于水闸正常蓄水位(或最高挡水位)加波浪计算高度与相应安全超高之和;泄水时,闸顶高程不应低于设计洪水位(或校核洪水位)与相应安全超高值之和。 本工程挡水为控制工况:闸顶高程不应低于水闸设计最高挡水位加波浪计算高度与相应安全超高值之和。经计算,设计防洪水位 4.55m 时闸顶高程为:H=4.55+△h =4.55+0.28+0.20=5.03(m ),故闸顶高程取5.50m 。 (4)孔径计算 根据《水闸设计规范》(SL265-2001)宽顶堰计算方法,堰流处于高淹没状态,采用下式进行计算,计算结果见表5.5.2。 式中:B 0-闸孔总净宽(m ); Q -过闸流量(m 3/s ); H 0-计入行进流速水头的上游水深(m ); H s -下游水深(m ); g -重力加速度,g=9.8m/s 2; μ0-淹没堰流的综合流量系数。 表5.5.2 孔径计算成果表 () s s h H g h Q B -= 0002μ2 0065.0877.0? ?? ? ??-+=H h s μ

某水闸设计计算书

一、基本资料 1.水位 水闸计洪水位2.96m (P=1%) 堤防设计洪水位2.88m (P=2%) 历史最高洪水位2.60m 内河最高控制水位1.30m 内河设计运行水位-0.30m 2 工程等级及标准 联围为2级堤围,其主要建筑物为2级建筑物,次要建筑物为3级,临时性建筑物为4级。 3风浪计算要素 计算风速根据《河道堤防、水闸及泵站水文水利计算》中“相应年最高潮位日的最大风速计算成果表”查得为V=36m/s(P=2%)。 吹程在1:500实测地形图上求得D=300m 闸前平均水深H m=6.0m 4地质资料 根据××××××××××××院提供的《**水闸工程勘察报告》。

5地震设防烈度 根据《×××省地震烈度区划图》,*属7度地震基本烈度地区,故×××水闸重建工程地震烈度为7度。 6规定的安全系数 对于2级水闸,规范规定的安全系数见下表1.6-1。

二、基本尺寸的拟定及复核 2.1抗渗计算 2.1.1渗径复核如下图拟定的水闸底板尺寸: 如下图拟定的水闸底板尺寸: L=0.5+0.7*2+6+0.5+0.5+1.3+0.5+0.76*2+16.4+0.5 +1.3+0.7*2+0.5+0.7*2+6+0.5+0.5=40.72m 根据《水闸设计规范》SL265-2001第4.3.2条表4.3.2,×××水闸闸基为换砂基础,渗径系数取C=7则:设计洪水位下要求渗径长度: L=C△H=7×[2.96-(-0.30)]=22.82m ∴L实〉L

∴满足渗透稳定要求。 2.2闸室引堤顶高程计算 闸侧堤顶高程按《堤防工程设计规范》(GB50286—98)中的有关规定进行计算。其公式为: A e R Y ++= }] )(7.0[13.0)( 0018.0{])(7.0[0137.0245 .027.022 V gd th V gF th V gd th V H g = 5.02)V (9.13H g V T g = L d th T g L ππ222 = βcos 22gd F KV e = H R K K K R O P V p △= 式中:Y —堤顶超高(m )。 R —设计波浪爬高(m )。 e —设计风壅增水高度(m )。 A —安全超高(m )。 H —平均波高(m )。 T —平均波周期(s ) 。

水闸计算案例

xxxx防洪挡潮闸重建工程 水工结构设计计算书 审核: 校核: 计算:

目录 一、基本设计资料 (1) 1.1 堤防设计标准 (1) 1.2 水闸设计标准 (1) 1.3 特征水位 (1) 1.4 结构数据 (2) 1.5 水闸功能 (2) 1.6 地基特性 (2) 1.7 地震设防烈度 (3) 二、闸顶高程计算 (4) 2.1 按《水闸设计规范》中的有关规定计算闸顶高程 (4) 2.2 按《堤防工程设计规范》中的有关规定计算堤顶高程 (5) 2.3 闸顶高程计算结果 (7) 2.4 启闭机房楼面高程复核计算 (8) 三、水闸水力计算 (9) 3.1 水闸过流能力复核计算 (9) 3.2 消能防冲计算 (11) 四、渗流稳定计算 (21) 4.1 渗流稳定计算公式 (21) 4.2 闸侧渗流稳定计算 (22) 4.3 闸基渗流稳定计算 (24) 五、闸室应力稳定计算 (28) 5.1 计算工况及荷载组合 (28) 5.2 计算公式 (29) 5.3 计算过程 (31) 5.4 计算成果及分析 (31) 六、闸室结构配筋计算 (32) 6.1 基本资料 (32) 6.2 边孔计算 (33) 6.3 中孔计算 (50) 6.4 胸墙计算 (50) 6.5工作桥配筋及裂缝计算 (52) 6.6 闸门锁定座配筋及裂缝计算 (53) 6.7 水闸交通桥面板计算 (56) 七、翼墙计算 (57) 7.1 计算方法 (57)

7.4 计算成果 (59) 7.5 配筋计算 (59) 八、其他连接挡墙计算 (60) 8.1 埋石砼挡墙计算(具体计算详见堤防设计计算书案例) (60) 8.2 埋石砼挡墙基础处理 (61) 8.3 中控楼浆砌石墙计算(具体计算详见堤防设计计算书案例) (62) 九、上下游护岸稳定计算 (63) 9.1 计算断面的选取与假定 (63) 9.2 计算工况 (63) 9.3 计算参数 (63) 9.4 计算理论和公式 (64) 9.5 计算过程(具体计算详见堤防设计计算书案例) (65) 9.6 计算结果 (65) 十、施工围堰计算 (66) 10.1导流级别及标准 (66) 10.2围堰顶高程确定 (66) 10.3围堰稳定计算(具体计算详见堤防设计计算书案例) (67) 十一、基础处理设计计算 (69) 11.1 闸室基础处理设计计算 (69) 11.2 翼墙基础处理设计计算 (73) 十二、闸室和翼墙桩基础配筋计算 (75) 12.1 计算方法 (75) 12.2 计算条件 (75) 12.3 第一弹性零点到地面的距离t的计算 (75) 12.4 桩的弯距计算 (76) 12.5 桩顶水平位移Δ计算 (76) 12.6 配筋计算 (76) 12.7 灌注桩最大裂缝宽度验算 (78)

水闸毕业设计任务书

水闸毕业设计任务书 慈溪市三八江水闸初步设计 浙江水利水电专科学校 水利工程系 二00四年三月

一、毕业设计目的和作用 毕业设计是学生在大学期间最后一个全面性、总结性、实践性的教育环节,是学生运用所学的知识和技能,解决某一工程具体问题的一项尝试,是走向工作岗位前的一次实战演习,主要目的作用如下: 1、将学生在专业课程及基础课程内说学到的知识加以系统化、巩固 和加深,扩大学生所学的基本理论知识和专业知识。 2、培养学生独立解决本专业技术问题和综合运用所学知识解决实际 问题的能力和创新精神,鼓励大胆提出新的设计方案和技术措施。 3、培养学生掌握设计工作的流程和方法,在设计、计算、绘图、编 写设计文件等方面的锻炼和提高。 4、培养学生形成正确的设计思想,树立严肃认真,实事求是和刻苦 钻研的精神。 二、设计题目 慈溪市三八江水闸初步设计 三、设计内容 (一)围垦工程枢纽总体布置 (二)水闸设计(详见指导书) 1.闸址选择(定性分析) 2.枢纽布置 3.闸室布置 4.两岸连接建筑物设计 5.消能防冲设计 6.防渗排水设计 7.闸室稳定计算 8.地基处理设计 9.水闸主要结构设计 10.施工组织设计和概预算(本次不作要求) 四、设计成果与要求 (一)设计成果 (1)毕业设计计算书说明书各一份 (2)图纸: i.围垦工程枢纽布置图

ii.闸室平面布置图 iii.水闸上下游立视图 iv.水闸纵向剖视图 v.水闸闸底板配筋图及细部构造图 (二)设计要求 (1)认真阅读设计任务书及指导书,根据设计任务书查找参考 书及有关资料、设计规范,复习教材相关内容。 (2)根据设计任务书要求,理清全部工作程序及基本共作思 路,以便更好更快地搞好设计。 (3)设计计算说明书便写有逻辑,思路清楚,计算公式清楚,架设条件及参数选取有说明,参考资料能及时注明。说明 文字简练,语句通顺,计算必须附以示意简图。 (4)毕业设计期间应严格遵守设计纪律,独立完成各阶段设计 任务。 五、进度安排及各阶段要求 毕业设计时间短,除去答辩、制图、整理计算说明书及五一放假,实际设计约6周,时间安排大致如下表,希同学们能尽量在规定时间完成相应设计任务。 1、毕业设计进度计划: 周数时间各设计阶段主要内容工作量(%)第9周0405--0409 熟悉资料,工程总体布置10 第10周0412--0416 闸孔布置、水力计算10 第11周0419--0423 防渗排水布置计算、消能防冲设计20 第12周 0426--0507 闸身渗流稳定、抗滑稳定计算及校核20 第13周 第14周0510--0516 闸底板、闸墩、翼墙结构计算20 第15周 0517--0530 制图、整理说明书20 第16周 第17周0530--0604 答辩准备及毕业答辩2、各阶段要求详见毕业设计任务书。

水闸设计说明书_毕业设计

水闸设计说明书专业方向:水利水电建筑工程

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

水闸设计及闸室稳定计算

[附录一:泄洪冲砂闸及溢流堰的水力计算 1.1设计资料: 根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m。 根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m,过闸水流 流态为堰流。汛期通过闸室的设计洪水流量Q 设=1088m3/s,校核洪水流Q 校 =1368 m3/s。 因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式: δ- 为淹没系数,取为1.0; m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385; ε--为侧收缩系数,先假定为1.0; H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b—闸门净宽; 来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。 初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m)=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m 采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流 接近计算工作情况下的洪水流量时,该水位就为所求。因为泄洪冲砂闸为宽顶堰 所以尺寸拟定用堰流公式:

δ- 为淹没系数,取为1.0 m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3. ε--为侧收缩系数,先假定为1.0; H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。 b—闸门净宽 计算结果如附表1-1,1-2 (a)设计洪水情况下:洪水流量Q=1018 m3/s。 (b)校核洪水情况下:洪水流量Q=1368 m3/s 经过计算泄洪冲砂闸净宽96m,溢流堰长度95m,设计洪水位1855.8m校核洪水位1856.30m。 泄洪冲砂闸净宽为96m,每孔取净宽8m,边墩宽0.8m ,中墩宽1.0m缝墩1m。

水闸过流能力及稳定计算

水闸过流能力及结构计算计算说明书 审查 校核 计算 ***市水利电力勘测设计院 2011 年 08 月 29日

1、水闸过流能力复核计算 水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式: 23 02H g b m Q s εσ= 22 '02?g bh Q h H c c ? ?? ? ??+= 40 01171.01s s b b b b ???? ? ? - -=ε 式中:B 0—— 闸孔总净宽,(m ); Q ——过闸流量,(m 3/s ); H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m ); b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; h c 进口断面处的水深,m ; s σ——淹没系数,按自由出流考虑,采用1.0; ?——流速系数,采用0.95; 已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得: 综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。

2、结构计算 **堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。 (1)抗滑稳定计 1)计算工况及荷载组合 工况一:施工完建期,荷载组合为自重+土压力 工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力 2)荷载计算 计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。 闸门重 2.352×9.81=23.07 KN; 闸底板重25×4.0×0.7×4.1=287 KN; 闸墩重25×0.8×4×2*2=320 KN; 平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN; 柱25×2.82×0.4×0.4×4=45.12 KN; 启闭力-100 KN; 启闭机重0.56×9.81=5.49 KN; 启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN; 工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN; 25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN; 启闭房砖墙22×0.864×4.1×4=311.73 KN; ∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340 =1016.98KN; 水重10×2.0×2.0×2.5=100 KN;

水闸工程设计万能模板

水闸工程设计万能模板 压力扬压力渗流压力合计- 1956 浮托力 - 闸室基底应力计算 根据《水闸设计规范》SL265—20XX[2] 条规定:当结构布置及受力情况对称时,闸室基底应力可按以下公式计算。 PPminmaxmaxminGMAWG16e AB式中:——闸室基底应力的最大值或最小值; G——作用在闸室上的全部竖向荷载; M——作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向 的形心轴的力矩; A——闸室基底面的面积; W——闸室基底面对于该底面垂直水流方向的形心轴的截面矩;e——竖向力对底板底面中心的偏心距;e B——底板顺水流方向长度。 各种情况下,闸室基底应力具体计算结果见表9—6。 表9—6 闸室基底应力计算表 计算情况完建情况设计情况 B23 2MG;

M A 2B e PmaxPmin 36 校核情况 1956 - 地基承载能力验算 已知地基允许承载力[P]为100(kPa)。基底压力不均匀系数Pmaxpmin的允许 值《水闸设计规范》SL265—20XX[2]表可知:基本组合=~;特殊组合=。验算P 表9—7 验算P计算表 完建情况设计情况校核情况 Pmax Pmin PmaxPmin2P [P] P 100 100 100 经验算,符合设计要求。验算PmaxR 具体计算见表 表9—8 验算Pmax计算表 完建情况设计情况校核情况 Pmax [P] 120 120 120 经验算,符合设计要求。验算PmaxPmin 37 表9—9 验算计算表 完建情况设计情况校核情况 Pmax Pmin ~ ~ 经验算,符合设计要求。 闸室抗滑稳定计算 闸底板上、下游端设置的齿墙深度为,按浅齿墙考虑,闸基下没有软弱夹层。根据《水闸设计规范》SL265—

水闸设计计算书

分水闸典型设计(哈拉苏9+088桩号处分水闸) (1)工程建设内容及建筑物现状 此次可行性研究设计防渗改建的2条干渠和1条支渠,需要拆除重建的水闸主要有节制闸和分水闸。 库尔勒市博斯腾灌区是一老灌区,田、林、路、渠和居民点等已形成了一套完整的体系,灌排体系也已经较为合理,各干支渠上的节制闸、分水闸布置位置、形式及闸底板高程基本合理。为保证各分水口分水流量、与下游渠道连接顺畅、减小占地等因素,所需改造的分水闸和节制闸仍保持原节制分水闸桩号、分水方向及分水角度不变。 (2)水闸设计 根据节制、分水闸过流、分水流量大小,按宽顶堰流计算孔口尺寸。节制分水闸均采用整体开敞式结构,节制闸与分水闸间采用圆弧形直挡墙连接。节制闸上下游连接段均采用扭面与渠道连接,根据消能计算结果和闸后渠道的实际情况,小流量的节制闸后不设消能设施,但为了确保工程运行安全,在流量较大的闸后按常规在设置0.5m 深消力池。分水闸后采用扭面与渠道连接,扭面及挡土墙为素混凝土结构和浆砌石结构,扭面扩散角小于12°。各节制分水闸闸室均采用C25钢筋混凝土结构,闸室后侧设0.6m宽工作桥,闸门槽及启闭机排架均采用整体式金属结构。经计算,其抗倾覆、抗滑动稳定以及基底应力等,经计算均能满足要求。 闸室基础为砂砾石,但是根据地质评价为冻胀土,因此在闸及上下游渐变段底部均换填30cm厚砂砾石,以减小地基沉降及防止段冬季建筑物基础冻胀变形,侧面亦采用砂砾石回填,减小冬季的侧向冻土压力。 (3)闸孔过流能力计算 根据闸前水深和布置形式,采用宽顶堰流公式进行计算。 Q=σs·m·n·B·(2g)1/2·H03/2 式中Q——渠道的过水流量;

水闸课程设计报告

水闸课程设计计算说明书 一、基本资料 本工程是西通河灌区第一级抽水站的拦河闸,其主要任务是拦蓄西通河的河水,抬高水位满足抽水灌溉的需要; 洪水期能够宣泄洪水,保证两岸农田不被洪水淹没。 1.闸的设计标准 根据《水闸设计规范.》SD133-84(以下简称SD133-84),该闸按IV级建筑物设计。 2.水位流量资料 下游水位流量关系见表 3.地形资料 闸址附近,河道顺直,河道横部面接近梯形,底宽18米,边坡1:1.5,河底高程195.00米,两岸地面高程199.20米。 4.闸基土质资料

闸基河床地质资料柱状图如图所示 闸址附近缺乏粘性土料,但有足够数量的混凝土骨料和砂料。闸基细砂及墙后回填砂料土工试验资料如下表; 细砂允许承载力为150KN/m2,其与混凝土底板之间的摩擦系数f=0.35

5.其他资料 1.闸上交通为单车道,按汽-10设计,带-50校核。桥面净宽4.5m。 2.闸门采用平面钢闸门,有3米,4米,5米三种规格闸门。 3.该地区地震设计烈度为4度。 4.闸址附近河道有干砌石护坡。 5.多年平均最大风速12米/秒,吹程0.15公里。 6.闸上交通 根据当地交通部门建议,闸上交通桥为单车道公路桥,按汽-10 设计,履带-50校核。桥面净宽为4.5m,总宽 5.5m,采用板梁式结构,见图2-3,每米桥长约重80KN。 10.0 15.0 450.0 15.0 110.0 ﹪ 55.0 45.0 70.0 550.0 图 1-3 交通桥剖面图(单位:cm) 一、水闸设计

1、剖面立定 1.1闸顶高程的确定 由于正常洪水位低于设计洪水位,所以取设计洪水位和校核洪水位作为控制情况。闸底高程取挡水坝最低点▽440.00m ,设计蓄水位为▽198.36m ,校核洪水位为▽198.90m 。确定静水位垒坝顶的高差▽h. 1.1.1 正常蓄水位情况下: c z h h h h ++=?%1 3/125 .10 0166.0D V h c = 8 .0(4.10) l h L = L H cth L h h l z ππ22 = 式中:l h --波浪高度,m z h --波浪中心线到静水位的高度,m D --库面的波浪吹程,KM,此处取 0.15KM 0V --计算风速,m/s,正常及设计情况取1.5-2.0倍多年平均最大风速, 校核情况直接用多年平均风速,此处用1.7*12=20.4。 根据以上公式算得 l h =0.098m,L=1.622m,z h =0.019m; %1h =1.24*l h =1.24*0.098=0.122m; h ?=0.122+0.019+0.7=0.84m; 放浪墙顶高程=设计蓄水位+h ?=198.36+0.84=199.2m; 1.1.2校核洪水位情况下 同正常蓄水位同样计算得

渠首进水闸设计说明书

取水枢纽进水闸设计计算说明书 一工程概况: 某灌区总灌溉面积97.6万亩,灌区分布在河道两岸,两岸灌溉面积大致相等。根据河流的水沙情况及取水要求,经过综合比较,修建由拦河坝,冲沙闸,进水闸组成的冲沙槽式Ⅱ等取水枢纽。 拦河闸横跨河道修建,于主河道正交,闸地质河宽270m,拦河闸底板高程与河床平均高程相同,为31.5m,两岸堤坝高程39.8m,闸上游限制最高洪水位38.8m,冲沙闸布置在拦河闸两侧,地板高程31.5m,进水闸为了满足两岸灌溉要求,采用两岸布置方案。枢纽平面布置如图1所示: 二工程资料: 1.气象:多年平均气温7.5°C 。月平均最搞气温20.3°C ,月平均最低气温-18°C,冻层深度1.0—1.5m,多年平均风速4.1m/s ,汛期最大风速8.4m/s 。 2.水文: 3 3

进水闸以5%的洪水作为停水标准,灌溉临界期相应的河道流量Q=400s m/3,闸址处平均含沙量1.8kg/m3,实测最大含沙量4.74kg/m3。 3.地质情况:渠道附近属于第四 纪沉积岩,厚度较大,两岸滩地 为粉质壤土及粉沙,其下为砾质 中沙,次下为砾质粗沙:沿河一 带地下水埋藏深度随地形变化, 一般在2.5m左右,因土质透水 性强,地下水位变化受河道水位 影响大,丰水期河水补给地下水 位较高,枯水季节,地下水补给 河水。 4.地基土设计指标: 地基允许承载能力 [σ]=250KN/m2; 地基应力分布允许不均匀系数 η=2~3; 砼与中砂摩擦系数 f=0.4; 砼容重γ=24KN/ m3; 回填土:尽量以透水性良好的砂 质中砂或粗砂回填,回填土壤容 重γ 干=16KN/ m3;γ 湿 =10KN/ m3; γ饱=20KN/ m3;C=0; 填土与墙后摩擦角δ=0 5.地震:本地区不考虑地震影响 6.工程材料:石料场距闸址不远,石料抗压指数2500KN/cm左右,容重:γ=24KN/ m3;采石场用粗细骨料及砂料,距渠首2.5—3.0km。 7.交通:进水闸有交通要求,要求桥面总宽5m 。 三设计资料: 1.渠道设计资料: 渠首底板高程32.10m; 每年最大引水流量Q=78m3/s; 灌溉期正常挡水位35.00m; 相应下游水位34.80m; 渠道纵坡I=1:3500; 渠道边坡m=1.75; 渠道底宽B=26m; 渠道顶部高程37.5m; 渠道顶部宽度6m; 2. 确定设计流量与水位: 以水闸最大引水流量78m3/s作为设计流量。因所设计进水闸为有坝式引水,根据有坝引水上游水位的确定办法,进水闸的上游水位是有拦河坝(闸)控制的。闸的上游设计水位,即拦河坝(闸)应该壅高的水位。其他时期的水位决定于相应时期内拦河坝(闸)泄流时的坝顶(闸前)溢流水位。所以上游水位是正常挡水位35.00m,相应下游水位34.80m。 3.泄流计算资料:

水闸重建工程毕业设计报告

某水闸重建工程初步设计 专业与班级: 学生姓名: 指导老师姓名: 论文提交时间:

摘要 本次毕业设计的课题基本是以一座水电站枢纽工程中的水闸作水闸工程重建初步设计报告。 重建的水电站工程,正常蓄水位相应的库容为3873m3,总装机容量为10MW,工程等别为4等级。 原有电站工程,运行多年,库前泥沙淤积严重,弃水偏多,而且电站设备陈旧,装机偏小,水资源得不到充分地利用,因而提出重建电站方案。 重建电站工程主要包括:水闸段、厂房段、左右岸挡水连接段。 本次毕业设计因时间关系,仅对水闸段开展设计。水闸段为一宽顶堰,共5孔,每个孔净宽12 m,溢流前沿总宽78 m,最大闸高21.3 m。 水闸的重建设计基本分以下五个部份: 一、孔口尺寸拟定,闸孔水力学计算。、 二、闸顶高程计算。 三、消能计算。 四、水闸基础稳定应力计算。 五、基础处理,主要是基础开挖及基础帷幕灌浆。 设计成果主要是水闸初涉报告和图纸。 关键词:水闸;重建;初步设计。

目录 第一章综合说明........................ .. (3) 第一节绪言............................. (3) 第二节水文资料.............................. .. (4) 第三节地质资料............................ . (4) 第四节工程任务............................. . .. (5) 第五节工程布置及主要建筑物................. . .. (6) 第二章工程布置及建筑物.................. . .. (6) 第一节设计依据.............................. (6) 第二节坝址轴线的选择........................ .. (9) 第三节堰型 (10) 第四节泄水建筑物 (10)

水闸设计规范 SL265-2001

中华人民共和国行业标准 SL 265-2001 水闸设计规范 Desidn specification for sluice 2001-02-28发布 2001-04-01实施 中华人民共和国水利部发布 中华人民共和国行业标准 水闸设计规范 Desidn specification for sluice SL 265-2001 主编单位:江苏省水利勘测设计研究院 批准部门:中华人民共和国水利部 施行日期:2001年4月1日 中华人民共和国水利部关于批准发布《水闸设计规范》SL 265-2001的通知 水国科[2001]62号 部直属各单位,各省,自治区,直辖市,计划单列市水利(水务)厅(局),新疆生产建设兵团水利局: 根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以江苏省水利勘测设计研究院为主编单位修订的《水闸设计规范》,经审查批准为水利行业标准,并予以发布.标准的名称和编号为: 《水闸设计规范》SL 265-2001(代替SD133-84). 本标准自2001年4月1日起实施.在实施过程中,请各单位注意总结经验,如有问题请函告主持部门,并由其负责解释. 标准文本由中国水利水电出版社出版发行.二○○一年二月二十八日 前言 根据水利部水利水电规划设计总院水规设字(1995)0037号"关于开展《水闸设计规范》(SD133-84)修订工作的意见",水利部水利水电规划设计管理局水规局技[1997]7号"关于印发水利水电勘测设计技术标准修订工作会议有关文件的通知",对SD133-84,(以下简称原规范)进行修订. 修订后的SL 265-2001《水闸设计规范》,(以下简称本规范) 主要包括下列技术内容: ---水闸的等级划分及洪水标准; ---水闸的闸址选择和总体布置; ---水闸的水力设计和防渗排水设计; ---水闸的结构设计; ---水闸的地基计算及处理设计; ---水闸的观测设计等. 对原规范进行修订的主要技术内容如下: ---拓宽了原规范的适用范围,在各章节中增加了有关山区,丘陵区水闸及建于岩石地基上水闸设计的若干规定; ---增加了有关水闸等级划分及洪水标准的规定; ---对有关水闸闸址选择方面的规定内容进行了修改和增订; ---增加了有关水闸枢纽布置的规定,并对有关水闸闸室结构,防渗排水设施,消能防冲设施

水闸设计计算

一、初步设计 兴化闸为无坝引水进水闸,该枢纽主要由引水渠、防沙设施和进水闸组成,本次设计主要任务是确定兴化闸的型式、尺寸及枢纽布置方案;并进行水力计算、防渗排水设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平面布置图及上下游立视图。 二、设计基本资料 1. 概述 兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。该闸的主要作用有: 防洪:当兴化河水位较高时,关闸挡水,以防止兴化河水入侵兴化渠下游两岸农田,保护下游的农田和村镇。 灌溉:灌溉期引兴化河水北调,以灌溉兴化渠两岸的农田。 引水冲淤:在枯水季节,引兴化河水北上至下游的大成港,以冲淤保港。 7.0 北 至大成港 9.0 渠 化 11.0 兴 闸管所 兴化闸 兴化 河 兴化镇 闸址位置示意图(单位:m) 2.规划数据 兴化渠为人工渠道,其剖面尺寸如图所示。渠底高程为0.5m,底宽50.0m,两岸边坡均为1:2。该闸的主要设计组合有以下几方面:

11.8 0.5 50.0 兴化渠剖面示意图(单位:m) 2.1孔口设计水位、流量 根据规划要求,在灌溉期由兴化闸自流引兴化河水灌溉,引水流量为300m3/s,此时闸上游 水位为7.83m,闸下游水位为7.78m;在冬季枯水季节由兴化闸自流引水送至下游大成港冲淤保 港,引水流量为100m3/s,此时相应的闸上游水位为7.44m,下游为7.38m。 2.2闸室稳定计算水位组合 (1)设计情况:上游水位10.3m,浪高0.8m,下游水位7.0m。 (2)校核情况:上游水位10.7m,浪高0.5m,下游水位7.0m。 2.3消能防冲设计水位组合 (1)消能防冲的不利水位组合:引水流量为300m3/s,相应的上游水位10.7m,下游水位为 7.78m。 (2)下游水位流量关系 下游水位流量关系见表 3.地质资料 3.1闸基土质分布情况 根据钻探报告,闸基土质分布情况见表 层序高程(m)土质情况标准贯入击数(击) Ⅰ11.75~2.40 重粉质壤土9~13 Ⅱ 2.40~0.7 散粉质壤土8 Ⅲ0.7~-16.7 坚硬粉质粘土 (局部含铁锰结核) 15~21 Q(m3/s)0.0 50.0 100.0 150.0 200.0 250.0 300.0 H下(m)7.0 7.20 7.38 7.54 7.66 7.74 7.78

闸门水力计算说明

水闸水力计算说明 一、过流能力计算 1.1外海进水 外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。 表2 内海排水时计算参数特性表 外海水位/m 湖内水位/m 5.11 1.0 1.1.1中间三孔放空闸段 a.判定堰流类型 27.511 .948 == H δ 式中δ为堰壁厚度,H 为堰上水头。 2.5<5.27<10,为宽顶堰流。 b.堰流及闸孔出流判定 11 .95 = H e =0.549≤0.65,为闸孔出流。 式中,e 为闸门开启高度,H 为堰、闸前水头。 c.自由出流及淹没出流判定 闸孔出流收缩断面水深h c=ε1e=5.0×0.650=3.25m 。 式中,e 为闸门开启高度,为5.0m ; ε 1为垂向收缩系数, 查《水利计算手册》(2006年第二版)中表3-4-1 得0.650。 收缩断面处水流速为 υc=)(20c h H g -?=)(25.311.981.9295.0-???=10.19m/s 。 式中,ψ为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95; H 0为闸前总水头,为9.11m ; hc 为收缩断面水深。

收缩断面水深hc 的共轭水深 hc”=)181(22 -+ c c c gh h ν=)125 .381.919.1081(225.32 -??+=6.83m ; 下游水深ht=5.0m <hc”=6.83m ,故为自由出流。 d.过流量计算 根据闸孔自由出流流量计算公式 Q 1=002gH be μ=11.981.92530503.0?????=1008.71m3/s 。 式中,μ0为流量系数,平板闸门流量系数可按经验公式 μ0=0.60-0.176 H e =0.60-0.176×0.549=0.503; b 为闸孔宽度,为3×10=30m 。 1.1.2两侧八孔防潮闸段 a.判定堰流类型 43.1511 .348 == H δ >10,过渡为明渠流。 式中δ为堰壁厚度,H 为堰上水头。 b .过流量计算 因泄洪闸下游与陡坡相连,水利计算可按堰流计算方法进行。 H h t =11 .31-=-0.32<0.8,为自由泄流; 式中,h t 为堰顶下游水深,H 为堰顶上游水深。 因堰顶设有闸墩,应考虑侧收缩影响,采用宽顶堰流量公式计算泄流量: Q 2=2 3 02H g mnb c σ=2 311.381.92108377.0985.0??????=721.70m3/s 。 式中,m 为流量系数,因进口为斜坡式进口,P/H=7/3.11=2.25,cot θ=30/7=4.286,查《水利计算手册》(2006年第二版)中表3-2-1取m=0.377; b 为每孔闸净宽,为10m ; n 为孔数,为8孔; H 0为堰上水头,为3.11m ; ζc 为侧收缩系数,为有底坎宽顶堰的侧收缩系数,可由别津斯基公式计算

相关主题
文本预览
相关文档 最新文档