当前位置:文档之家› 示波器实验内容与步骤

示波器实验内容与步骤

示波器实验内容与步骤
示波器实验内容与步骤

示波器原理与使用实验内容

一、基本调节

以下实验步骤对应上图编号进行操作,须注意屏幕变化,反复操作,认真领会每个按键和旋钮的作用。

准备工作

1、 打开电源

2、 调节亮度旋钮至中间位置

3、 调节聚焦旋钮使显示清晰

扫描方式选择

4、 交替按下A 键和X-Y 键,感受屏幕的变化,最后按A 键使水平轴作为时间轴

5、 交替按下AUTO 、NORM 、SGL/RST 三个键,感受屏幕的变化,最后按AUTO 键使扫描自动进行

6、 转动时间分度旋钮,感受水平扫描速度的变化,注意屏幕左上角的时间分度值变化,最后使扫描成一直线

7、 打开函数信号发生器,输出任意一正弦波信号,并把信号接入到示波器的通道1信号输入端

输入并显示信号

8、 按CH1键打开通道1,使屏幕显示通道1的信号波形,留意屏幕左下角有标记1:表示通道1已打开

9、 转动电压分度旋钮,感受波形高度的变化,注意屏幕左下角标记1:后面的电压值即为纵轴上一格代表的电压,

此旋钮同时也是一个按钮,按下后该旋钮即变为微调状态,在标记1:后面会多了一个>表示,再按一下即取消微调功能,测量数据时必须退出微调状态(上述第6项时间分度旋钮具有相同功能)

1电源

2 亮度 2 亮度

3 聚焦

4 水平

轴表示

4 李萨

5 单次

5 非自

5 自动

6 时间轴分度,调节扫描

7 信号

8 打开

9 纵轴分度,表示纵

10 波形上

11 输入信

号接地,波12 触发信

13 触发信

14 视频触

15 触

10、来回转动垂直位置旋钮,把波形定位在中间高度

11、按下GND键若干次,观察并体会输入信号接地前后的变化

稳定信号显示

12、按SOURCE键若干次,注意屏幕顶部中间位置的信息变化,最后选择CH1作为触发信号来源,触发源的作

用是用来产生与信号本身周期相等或成整数倍关系的锯齿波,以便使波形不会产生左右移动

13、按COUPL键若干次,注意屏幕顶部中间位置的信息变化,最后选择AC作为触发信号的输入方式(交流)

14、按TV键若干次,注意屏幕顶部中间位置的信息变化,最后使该处显示信息为一电压值,表示以电平触发

15、转动触发电平旋钮,使上述第14项的电压值往0V方向变化,直到波形稳定显示为止

函数信号发生器调节

16、调节函数信号发生器,改变波形的高度(电压)和宽度(周期/频率)

二、波形观测

信号输入与波形显示

1、调节函数信号发生器,输出一电压峰峰值为2Vpp,频率为1kHz的正弦波

2、按实验内容一的方法使波形稳定地显示于屏幕中间

信号的电压峰峰值测量

3、参照实验内容一中第9项操作使波形的高度约占屏幕高度的2/3左右,记录屏幕左下角标记1:后面的电压值即为Ku,它表示波形每1cm高度代表的电压的大小

4、目测波形从波谷到波峰的高度,即为App,单位为cm

5、把第3、4项所得的数据记录到表中,两者相乘即为测得信号电压峰峰值Upp,检验是否与第1项中设定值相近信号的周期和频率测量

6、参照实验内容一第6项操作使屏幕在水平方向上显示出波形的2个周期左右,记录屏幕左上角标记A后面的时间值即为Kt,它表示波形每1cm宽度代表的时间大小

7、目测波形一个周期内的宽度,即为波长 ,单位为cm

8、把第6、7项所得的数据记录到表中,两者相乘即为测得信号的周期T,从而可算得其频率f,与设定值比较

数据记录与处理

9、把上述数据记录到下表中,并计算测量的电压峰峰值、频率与设定值之间的相对误差

表1 用示波器观察信号数据记录表

三、李萨如图调节与观察

1、用信号线把函数信号发生器的两路输出与示波器的两输入端CH1、CH2相连

2、按下示波器X-Y键,使CH1信号作为X轴,CH2信号作为Y轴,此时波形没有时间轴,两坐标轴均为电压

3、按下示波器CH2键,打开通道2,注意屏幕左下角应包含标记1:和2:两项同时显示

4、调节信号发生器的两路输出正弦波的频率之比Fx:Fy = 1,观察波形,在表中相应位置描绘波形并记录频率

5、调节信号发生器的两路输出正弦波的频率之比Fx:Fy = 2,观察波形,在表中相应位置描绘波形并记录频率

6、目测所绘波形的切点数并填写到表中,并验证Fx:Fy = Ny:Nx

表2 李萨如图观察记录表

注:Nx为波形图在X轴上切点个数,Ny为波形图在Y轴上切点的个数

示波器的使用实验报告

实验一通用模拟与数字双踪示波器的使用及测量 一、实验目的和要求 1.根据已学的示波器理论知识学习正确使用通用双踪示波器,并利用示波器进行各种电信号的测量,熟练掌握模拟示波器的使用。 2.学习数字式通用示波器的使用,了解其在测量上的强大功能,并与模拟示波器进行比较,体会各自在测量上的特点。 3.认真按实验内容的要求进行实验,记录有关的数据和波形,回答实验内容中提出的有关问题,并按时提交实验报告。 二、实验原理 在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。 电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的X偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。 若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。因此,只有当X偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。 一般说来,Y偏转板上所加的待观测信号的周期与X偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。 在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。 由于双踪显示时两个通道都有信号输入,因此还可以工作于叠加方式,这时是将两个信号逐点相加起来后送到Y偏转板的。这种工作方式可模拟谐波叠加,波形失真等问题。同时,如果改变其中一个的极性,也可以实现相减的显示功能。这相当于两个函数的相加减。 示波器除了用于观测信号的时间波形外,还可将两个相同或不同的信号分别加于垂直和水平系统,以观测两信号在X-Y平面上正交叠加所组成的图形,如李沙育图形。它可用于观测两个信号之间的幅度、相位和频率关系。 三、实验仪器设备 1.模拟双踪示波器CS-4135A 一台 2.数字双踪示波器TDS-1002B 一台 3.DDS函数信号发生器DG1022 一台

示波器的使用实验报告

示波器的使用实验报告 示波器的使用实验报告1 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1 示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高

速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做余辉时间。余辉时间短于10s为极短余辉,10s1ms为短余辉,1ms0.1s 为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位

数字示波器使用实验操作指导

DS1000E-EDU 数字示波器实验操作指导 一、显示和测量正弦信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1、欲迅速显示该信号,请按如下步骤操作: (1) 信号发生器输出一正弦信号,将通道1连接到信号发生器。 (2) 按下 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作 (1) 测量峰峰值 按下 Measure 按键以显示自动测量菜单。 按下1号菜单操作键以选择信源 CH1 。 按下2号菜单操作键选择测量类型: 电压测量 。 在电压测量弹出菜单中选择测量参数: 峰峰值 。 此时,您可以在屏幕左下角发现峰峰值的显示。 (2) 测量频率 按下3号菜单操作键选择测量类型: 时间测量 。 在时间测量弹出菜单中选择测量参数: 频率 。 此时,您可以在屏幕下方发现频率的显示。 3、用Cursor 光标测量功能进行手动测量 (1) 信号发生器输出一任意频率的正弦信号,将信号发生器输出端连接示波器通道1。 (2) 按下Cursor 光标测量键,选择手动测量,测量出信号的周期、频率,电压峰峰值,画出信号波形,标出周期、频率,电压峰峰值。 二、X -Y 功能的应用,观察李沙如图形 1. 将信号A 连接通道1,将信号B 连接通道2。 2. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。 3. 按下 AUTO (自动设置)按钮。 4. 调整垂直旋钮使两路信号显示的幅值大约相等。 5. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。 6. 按下时基菜单框按钮以选择 X -Y 。示波器将以李沙如(Lissajous )图形模式显示。 7. 调整垂直、垂直和水平旋钮使波形达到最佳效果。 8.调节信号发生器A 路信号频率为f X =50Hz ,根据频率比值关系和f X =50Hz ,算出相应的f Y 值。缓慢调节信号发生器B 路信号频率频率f Y ,分别调出 ==Y X X Y N N f f ::3:1;2:1;3:2;1:1的稳定李萨如图形,将所见稳定图形描绘在记录表格(参考下表)中并同时记录信号发生器相应的频率读数f Y 。并计算f Y 信和f Y 的相对偏差

示波器的使用实验报告 (3)

物理实验报告 一、【实验名称】 示波器的使用 二、【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法 2.掌握用示波器观察电信号波形的方法 3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路 三、【实验原理】 双踪示波器包括两部分,由示波管和控制示波管的控制电路构成 1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。 双踪示波器原理 2.双踪示波器的原理 双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等; 其中,电子开关使两个待测电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示Y CH1信号波形,忽而显示Y CH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的

起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步) 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 3.示波器显示波形原理 如果在示波器的Y CH1或Y CH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。 4.李萨如图形的基本原理 如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。 四、【仪器用具】: 信号发生器、双踪示波头、探头 五、【实验内容】 几种李萨如图形 n x n y分别代表图形在水平或垂直方向的切点数量 nx/n y=1/2 n x/n y=1/3 n x/n y=2/3 n x/n y=3/4 1.观察正弦波形 a.打开示波器 b.开通CH1及相应信号发生器fx=100Hz c.得到大小合适稳定的正弦波 2.测正弦波电压,测正弦波的周期 a.调节波形上下移动键,使得fx=100Hz,改变一次v/div,再记录dy b.调整波形左右移动键,使得改变一次t/div,再记录dx dv(V)垂直格数Vpp(V) dx(us) 水平格数fy(Hz) 1 3. 2 3.2 100 3.8 2631 实际示数12.2 2686

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用 篇一:大物实验示波器的使用实验报告 实验二十三示波器的使用 班级自动化153班 姓名廖俊智 学号 6215073 日期 2021 3.21 指导老师代国红 【实验目的】 1、了解示波器的基本结构和工作原理,学会正确使用示波器。 2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。 3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。 【实验仪器】 固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。 【实验原理】

示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。在各行各业与各个研究领域都有着广泛的应用。其基本结构与工作原理如下 1、示波器的基本结构与显示波形的基本原理 本次实验使用的是台湾固纬公司生产的通用双踪示波器。基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。“示波管(CRT)”是示波器的核心部件如图1所示的。可细分为电子枪,偏转系统和荧光屏三部分。 1)电子枪 电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。阴极被灯丝加热后,可沿轴向发射电子。并在荧光屏上显现一个清晰的小圆点。 2)偏转系统 偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。 从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。若受到横向电场的作用,电子束的运动方向就会偏离轴线, F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板 图1示波管结构简图 屏上光点的位置就会移动。x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位

示波器_使用方法_步骤

示波器 摘要:以数据采集卡为硬件基础,采用虚拟仪器技术,完成虚拟数字示波器的设计。能够具有运行停止功能,图形显示设置功能,显示模式设置功能并具有数据存储和查看存储数据等功能。实验结果表明, 该仪器能实现数字示波器的的基本功能,解决了传统测试仪器的成本高、开发周期长、数据人工记录等问题。 1.实验目的 1.理解示波器的工作原理,掌握虚拟示波器的设计方法。 2.理解示波器数据采集的原理,掌握数据采集卡的连接、测试和编程。 3.掌握较复杂的虚拟仪器的设计思想和方法,用LabVIEW实现虚拟示波器。 2. 实验要求 1.数据采集 用ELVIS实验平台,用DAQmx编程,通过数据采集卡对信号进行采集,并进行参数的设置。 2.示波器界面设计 (1)设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。 (2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。 (3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

万联芯城https://www.doczj.com/doc/b512368687.html,作为国内优秀的电子元器件采购网,一直秉承着以良心做好良芯的服务理念,万联芯城为全国终端生产研发企业提供原装现货电子元器件产品,拥有3000平方米现代化管理仓库,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天发货,物料供应全国,欢迎广大客户咨询合作,点击进入万联芯城

大学物理实验示波器实验报告

示波器的使用 【实验简介】 示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。正确使用示波器是进行电子测量的前提。 第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。 Karl Ferdinand Braun 生平简介 1909年的诺贝尔物理奖得主Karl Ferdinand Braun 于1897年发明世界上 第一台阴极射线管示波器,至今许多德国人仍称CRT 为布朗管(Braun Tube)。 【实验目的】 1、 了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。 2、 学习用示波器观察电信号的波形和测量电压、周期及频率值。 3、 通过观察李沙如图形,学会一种测量正弦波信号频率的方法。 【实验仪器】 VD4322B 型双踪示波器、EM1643型信号发生器、连接线及小喇叭等 图8-1 Karl Ferdinand Braun 5 6 9 10

数字示波器的实验内容和主要步骤

一、实验仪器图片参照 1、函数信号发生器图片 2、数字示波器图片 TDS2002数字示波器

TDS1001B数字示波器 二、实验内容介绍 实验内容一: 熟悉数字示波器面板各功能键 实验内容二: 1.简单测量正弦信号的频率、周期及峰—峰值 1)选择输出信号为正弦信号,按下“DEFAULT SETUP”按钮,再按下“AUTO SET”按钮,综合使用仪器按钮,使得数字示波器的屏幕正好显示3个周期的正弦波。 2)按下数字示波器的“CH1 MENU”按钮,此时屏幕出现的菜单对应“探棒”选择“1 X ”档; 3)使用数字示波器的“MEASURE”按钮,选择测量类型,测量出此3个周期的频率、周期及峰—峰值。 4)如此完成了一次测量,重复步骤3),共完成此3个周期信号频率、周期及峰—峰值的8次测量,并写出各物理量仪器的示值误差。 2.使用软件打印此3个周期的正弦信号。 使用软件打印出前一步骤所对应的3个周期正弦信号。 注意:TDS2002型数字示波器使用的是“WaveStar”软件;TDS1001型数字示波器使用的是“NI Signal Express Tektronix Edition”软件 记录下“使用软件打印正弦波信号图形”的详细操作步骤。

附一:采用计算机中的“WaveStar”软件打印图形 1)打开“WaveStar”软件,点击左边界面“Local”选项的“+”,弹出“Tek TDS 1000 Series”选项; 2) 点击“Tek TDS 1000 Series”选项的“+”,然后点击“Data”选项的“+”; 3)将“Waveforms”选项打开; 4)这时点击“File”→“New Datesheet”→“YTsheet”,点击“OK”; 5)击中界面左边“Waveforms”的“CH1”,并拖动到“YTsheet”工作表里; 6)这时点击“Edit”→“New Annotation”,出现一个注释框,在注释框里输入注释信息(比如图形名称、姓名、学号、班级等); 7)在图上右击,选择“Print Datasheet…”→“OK”(或者:选择打印图标“Print Datasheet”),这个时候就会在打印机上打印出图形。 附二:采用计算机“NI Signal Express Tektronix Edition”软件打印图形 1) 打开“NI Signal Express Tektronix Edition”软件,出现一个跳动界面,在界面的右下角选择“Cancel”; 2)单击“Add Step”→“Tektronix”→“Acquire Signals”; 3)由于我们今天用的数字示波器型号是“Tektronix TDS 1001B”(也就是标在数字示 波器面板左上角上),于是我们选择“Tek TDS1000B”; 4)这时“Step Setup”框里显示图形,选择“Data View”对话框,在界面上右击,选择“Add Signal”→“TDS1001B(CH1)”,出现波形; 5)右击界面,选择“Properties…”,选择“Scale”窗口,在“Name”框里输入注释信息(比如图形名称、姓名、学号、班级等); 6)在图上右击,选择“Export”→“Print Display”,这个时候就会在打印机上打印出图形。 实验内容三:光标测量(手动测量)方波信号的周期、电压最大值和电压最小值 1)选择输出信号为矩形信号(方波信号),自行调整,使得数字示波器屏幕上显示的只有2个周期左右。 2)按下数字示波器的“CH1 MENU”按钮,此时屏幕出现的菜单对应“探棒”选择“1 X”档; 3)按下“CURSOR”按钮,查看光标菜单。“类型”由“关闭”选择“电压”或“时间”,“信源”选择“CH 1”(若你的信号接入“CH 2”接口,此时“信源”

示波器使用大学物理实验报告示范及数据处理

《示波器的使用》实验报告 物理实验报告示范文本: 包含数据处理李萨如图 【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率; 3.观察李萨如图形。 【实验仪器】 1、双踪示波器 GOS-6021型 1台 2、函数信号发生器 YB1602型 1台 3、连接线示波器专用 2根 示波器和信号发生器的使用说明请熟读常用仪器部分。 [实验原理] 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 示波管结构简图示波管内的偏转板 2、扫描与同步的作用

如果在X 轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图 图扫描的作用及其显示 如果在Y 轴偏转板上加正弦电压,而X 轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图 如果在Y 轴偏转板上加正弦电压,又在X 轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到Y 轴偏转板电压的图形,必须加上X 轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。 (2)要使显示的波形稳定,Y 轴偏转板电压频率与X 轴偏转板电压频率的比值必须是整数,即: n f f x y = n=1,2,3, 示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。 (1)如果Y 轴加正弦电压,X 轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。李萨如图形可以用来测量未知频率。令f y 、f x 分别代表Y 轴和X 轴电压的频率,n x 代表X 方向的切线和图形相切的切点数,n y 代表Y 方向的切线和图形相切的切点数,则有 y x x y n n f f = 李萨如图形举例表

示波器的使用实验报告

示波器的使用实验报告 一、实验目的 二、1. 了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法; 三、2. 学会利用双踪示波器观测电信号波形; 四、3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。 五、二、实验仪器 六、EE1642B型函数信号发生器、GDS-2062型双踪示波器、导线。 七、三、实验原理 双踪示波器包括两部分:示波管和控制示波管工作的电路。 1. 示波管 如下图所示,示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。X偏转板是垂直放置的两块电极。在Y 偏转板和X偏转板上分别加电压,可以在荧光屏上得到相应的图形。 2. 双踪示波器的原理

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 电子开关将两个待测的电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板上。由于视觉滞留效应,能在荧光屏上看到两个波形。 由示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。 此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)

实验13模拟示波器的使用

实验13 模拟示波器的使用 一.引言 示波器是一种常用的电子学仪器。可以观察电压随时间变化的波形,并能测量电压、周 期等电学量的数值。因此示波器在科研、教学及应用技术等很多领域用途极为广泛。 本实验的目的在于使同学们对示波器的工作原理有初步了解,并能正确使用它,以给今 后经常应用打下基础。 示波器的工作原理比较复杂,这里不予介绍,请同学们查阅相关书籍资料。 四.仪器用具 双通道模拟示波器一台;信号发生器;电阻箱(0.1级);电容(0.1μF ,0.2级) 五.实验内容 1.观察电压波形 将信号发生器的正弦波和方波电压(调为4.00V ,1KHz)先后输入示波器的Y 通道(Y 1或 Y 2)。连接时注意把示波器和信号发生器的“地”(均为黑色鱼夹)相联,它们的非地端(红色鱼夹)联起来,不得交错联接。要求在屏上调出2~3个周期的波形,并注意“输入选择”、“触发选择”键的选取及观察“电平调节”钮的作用。 2.测电压、频率 用示波器验证1KHz 、4.00V (有效值)交流电压的峰—峰值和频率f 。 3.观察市电小电压信号波形 市电即指50Hz 、220V 的日常用电,通过变压器降压后仅有几伏。将此电压接入示波器Y 通道,观察其波形。 4.用李萨如图法测量频率 若示波管内X 、Y 偏转板均加上正弦波电压,当两电压信号频率成简单整数比时,屏上则 显示出一系列不同的李萨如图形。令f X 、f Y 分别为X 、Y 偏转板所加电压的频率,n X 、n Y 分别表示李萨如图形与任一水平线和任一竖直线的交点数,不难证明有: X Y Y X n n f f = (4.1) 若已知f Y ,由李萨如图及上式可求出f X 。 本实验将测量市电频率。将市电小电压信号u X 接入1通道,信号发生器中的正弦波电压 信号u Y 接入2通道,且其频率范围选定为20Hz ~200Hz 。 调节信号发生器的频率f Y ,使屏上的波形相对简单而稳定,由此可式求出f X 。要求调出 四个以上不同形状的李萨如图形,分别求出f X ,最后取其平均值X f 。 5.测相位差 (1)椭圆法。将两频率相同、不同相位的正弦信号分别输入1(改为X 通道)和2通道,一般屏上将呈现一椭圆。根据椭圆的形状可确定两信号间的相位差。设屏上光点在水平方向的振动方程为:X =Asin ωt (5.1) 在垂直方向的振动方程为: Y =Bsin(ωt +?) (5.2)

示波器,大学物理实验,预习报告(完整打印版)

一.实验目的: a.了解示波器的示波原理 b.学习用示波器观察电信号的波形,并了解信号发生器的作用方法 c.学习用示波器测定电信号的频率,同感对李萨如图形观察,进一步加深对于互相垂直谐振 合成的理论的理解。 二.实验仪器: V-212 双踪示波器,函数信号发生器,正弦信号发生器 三.实验原理: 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 示波管结构简图示波管内的偏转板 2、扫描与同步的作用 如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图 图扫描的作用及其显示 如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线, 如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波

的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到Y 轴偏转板电压的图形,必须加上X 轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。 (2)要使显示的波形稳定,Y 轴偏转板电压频率与X 轴偏转板电压频率的比值必须是整数,即: n f f x y = n=1,2,3, 示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。 (1)如果Y 轴加正弦电压,X 轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。李萨如图形可以用来测量未知频率。令f y 、f x 分别代表Y 轴和X 轴电压的频率,n x 代表X 方向的切线和图形相切的切点数,n y 代表Y 方向的切线和图形相切的切点数,则有 y x x y n n f f = 李萨如图形举例表 如果已知f x ,则由李萨如图形可求出f y 。 四.实验内容与步骤 1.用示波器V-212观察函数信号发生器输出频率为1KHz 的正弦,方波,三角波波形。 (1)先将函数信号发生器电源打开,将其输出信号通过信号线连接到示波器种的CH1orX 或ChorY 的接口,对应选择通道选择开关中的CH1或CH2,以及内部触发选择开关中的CH1或CH2,以上选择必须满足CH1→CH1→CH1或CH2→CH2→CH2,否则图形不会显示或者不能稳定。 (2) 分别调节函数信号发生器种频率调节,电平移动,幅度旋钮,以及示波器中扫描信号周期粗调,微调以及通道灵敏度粗调,细调旋钮,直至在示波器上显示出沾满屏幕上80%范围的一个完整图形.通过函数信号发生器中的波形选择开关分别调节出正弦,方波,三角波信号波形, 要求将波

示波器的使用实验要求

实验示波器的使用(4#206) 一、实验目的 1、了解示波器的原理与基本结构,能理解信号的走向; 2、掌握开机的调节步骤。 3、用示波器测量交流信号的电压、频率及位相差。 二、实验仪器:YB4325二踪示波器(见附录)、信号发生器、移相器 图移相器的电路及矢量图 三、实验内容及操作提示 1.了解示波器的原理与基本结构,掌握示波器主要旋钮的功能及开机步骤。掌握信号源的调节方法(正弦波U=5.00V、f =3000Hz)。 2.测量交流信号的电压Vpp并计算其电压有效值; 3.测量交流信号的频率,为减少测量误差每次可选择6-8个波长进行测量 4.用利萨如图形法和双踪法测量两相同频率信号的位相差。 操作提示: 1.示波器的调整 对照附录熟悉示波器面板上各旋钮的功能,按以下步骤开机: 1)按下示波器电源开关,预热20秒左右; 2)开大辉度; 3)面板水平部分“X-Y”按钮弹出,调扫描旋钮“TIME/DIV”至毫秒(μs)档; 4)面板垂直部分方式开关打到“CH1”或“CH2”,调节对应的“位移”旋钮,直至扫描时基线出现。 5)聚焦并适当调整位移使得在显示屏中央得到清晰、明亮的扫迹。 2、电压测量 被测量波形的峰-峰值电压可按下述方法进行: ①将波形移至示波管屏幕中心位置,并按座标刻度片的分度读取整个波形所占Y轴方向的格数(波峰到波谷)。 ②读取被测波形所占的度数时,“V/div”开关应将被测波形控制在屏幕有效工作面积的范围内,并将“微调”旋钮按顺时针转至满度的“校准”位置上(这样可以按“V/div”的指示值直接计算被测信号的电压数值)。 ③如果使用探头衰减(×10)测量时,那么,应把探头的衰减量计算在内。 例:如图4-14-5,示波器的Y轴灵敏度开关“V/div”位于“0.2”档级,其“微调”位于“校

实验示波器的调节与使用

实验二、示波器的调整与使用 【实验目的】 (1)了解示波器的结构和工作原理。 (2)熟悉示波器各旋钮功能。 (3)掌握示波器的基本调整方法。 (4)掌握用示波器观测信号的波形,学会用示波器测量电压、周期和频率。 【示波器的原理】(注意:有下划线的) 示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。 1. 示波器的结构 示波器由示波管、衰减放大输入系统、扫描信号发生器、触发同步系统和电源供给系统五个基本部分组成。 (1)示波管。示波管主要由电子枪、偏转系统和荧光屏三个部分组成。示波管是一个全密封度真空的玻璃壳管,其结构如图3.9.1所示。(要作图) ① 电子枪。电子枪由灯丝F 、阴极K 、栅极G 、 第一阳极A 1和第二阳极A 2组成。 阴极K 是一个表面涂有氧化物的金属圆筒,被点 燃灯丝F 加热后向外发射电子,产生电子流。 栅极G 是一个顶端有一小孔的金属圆筒,套在阴 极外面,它的电位比阴极低,对阴极射来的电子起控 制作用,只有速度较大的电子才能穿过栅极小孔。因 此,通过调节栅极电位,可以改变通过栅极的电子数目,即控制电子到达荧光屏上的数目,而打在荧光屏的电子数目越多,则荧光屏上的光迹越亮。示波器面板上的“辉度”调节旋钮就是起这—作用的。 阳极A 1与A 2由开有小孔的圆筒组成。阳极电位比阴极电位高得多,电子流通过该区域可获得很高的速度,同时阳极区的不均匀电场还能将由栅极过来散开的电子流聚焦成一窄细的电子束,因此改变阳极电压可以调节电子束的聚焦程度。示波器面板上的“聚焦”旋钮起这一作用。 ② 偏转系统。偏转系统由两对相互垂直的可加电压的金属平板组成,即X 偏转板和Y 偏转板。 在两对偏转板上加上电压,当电子束通过偏转板时,在电场力的作用下发生偏转,即改变光点在荧光屏上的位置。 设计时保证了荧光屏上X 方向和Y 方向光点的位移正比于两对偏转板上所加的电压。 垂直偏转板电路有两条支路:一条用于输入机外电压信号,加在Y 偏转板上;另一条用于校准仪器或观察机内方波信号,机内方波信号直接输入“Y 放大器”,经放大后加到Y 偏转板上。 水平偏转板的电路同样有两条支路:一条用于输入外界电压信号或同步信号,加在X 偏转板上;另一条用来将机内扫描信号经放大后加在X 偏转板上。 ③ 荧光屏。荧光屏位于阴极射线管前端的玻璃屏内表面,涂有发光物质。当高速运动的电子打在上面,其动能被发光物质吸收而发光,在电子轰击停止后, 发光仍维持一段时间,称为余 示波管的结构 图3.9.1 F —灯丝;K —阴极;G —控制栅极;A 1—第一阳极; A 2—第二阳极;Y —竖直偏转板;X —水平偏转板

模拟电子实验 示波器的使用

专业班次组别 题目示波器的使用练习姓名(学号)日期 一、实验目的 1.学习电子电路实验中常用的电子仪器—示波器、函数信号发生器、交流数字毫伏表等主要技术指标、性能及正确使用方法。 2.初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、实验设备 三、注意事项 1.使用前对电源、各旋钮位置进行检查。 2.使用时要避免碰撞,接入探头的电压不应超过说明书中所规定的最大的输入电压值(注意的是:一般说明书中给出的这一电压值往往是指峰峰值),以免损坏示波器。 3.若测试点的电压较高,应在断电的情况下,将探头的探针和鳄鱼夹事先与被测试的两个点连接好,再通过电测试,选择可避免在测试中万一因不慎而发生意外事故的可能。 4.开启示波器后,应注意使辉度和聚集适中(不宜过亮),且波形也不应长时间地停留在一个区域中,以免灼伤荧光屏。 5.在使用中出现在下列情况之一,即应停机,侍修复后再使用:①开机后保险线即烧断; ②电子官式示波器内的电风扇不转;③示波器内冒烟;④无光点显示或无扫描线;⑤波形跳动不止,或图形失真。 6.示波器关闭后再用,应至少待了3-5分钟后再开启--以免损害示波管。 7.使用后应即时关闭其电源和被测电路的电源;然后拔下示波器的电源插头,拆除测试用临时线,全地搬走开妥善地放置好示波器--以免偶然事故的发生.

专业班次组别 题目示波器的使用练习姓名(学号)日期 四、实验原理及计算 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手观察与读 数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如下图所示。接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 1.双踪示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点: 1)寻找扫描光迹 将示波器Y轴显示方式(MODE)置“CHI”或“CH2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线: ①适当调节亮度旋钮(INTENSITY)。②触发方式开关(TRIGGER MODE)置“自动”。③适当调节垂直、水平“位移”旋钮,使扫描光迹位于屏幕中央。 2)双踪示波器一般有5种显示方式,即:“CH1”、“CH2”、“CH1 +CH2”三种单踪显示方式和“交替ALT”、“切换CHOP”两种双踪显示方式。“交替ALT”显示一般适宜于输入信号频率较高时使用。“切换CHOP”显示一般适宜于输入信号频率较低时使用。

示波器的使用实验报告.docx

示波器的使用实验报告 篇一:大学物理实验(示波器) 00a9示波器的使用 【实验简介】 示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。正确使用示波器是进行电子测量的前提。 第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。 karl ferdinand braun生平简介 1909年的诺贝尔物理奖得主karl ferdinand braun于1897年发明世界上第一 台阴极射线管示波器,至今许多德国人仍称crt为布朗管(braun tube)。 【实验目的】 2、学习用示波器观察电信号的波形和测量电压、周期及频率值。 3、通过观察李沙如图形,学会一种测量正弦波信号频率的方法。 图8-1 karl ferdinand braun 1、了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。 【实验仪器】 vd4322b型双踪示波器、em1643型信号发生器、连接线及小喇叭等

示波器的使用 实验报告

×××××实验报告 实验名称:示波器的使用 姓名___________学号_______班级_________实验日期____________ 温度___________压力___________ 同组者___________ 一、实验预习部分 (一)实验目的要求: 1.了解示波器的工作原理 2.学习掌握示波器和低频信号发生器的使用方法 3.观察正弦波波形和李萨如图形 (二)实验理论原理: 一.示波器原理 在垂直偏转板上加一交变的正弦电压,中子束将垂直方向来回摆。当所加频率很高时,看到一条垂直的亮线,同时在水平方向加一锯齿波扫描电压,电子束即被水平展开,显示出正弦图形。 二.波形同步调节 当正弦波与锯齿波电压的周期稍有不同时,出现移动的不稳定图形,通过调节“扫描时间”和“扫描微调”使锯齿波电压周期Tx与正弦波周期Ty成合适的关系,出现同步稳定正弦波。 三.李萨如原理 当X轴Y轴均为正弦波时,频率之间存在一定比例关系,可观察到的李萨如图形。 (三)实验操作及测定内容 Ⅰ。正弦波的调节 ⑴调节观察正弦波形,绘出所调单个波形的草图,定量测量这一正弦信号的峰峰值Vp-p 和频率Fx,求出该电信号电压的有效值V=Vp-p / 2√2 ①打开电源,随即将“Y轴位移”“X轴位移”“辉度”“聚焦”旋钮调至中央;“自动/常规”开关置于AUTO;触发源开关置于“内触发”。 ②按下示波器面板上的电源开关,将会看到一条亮线或一个亮点,可通过调节时间旋钮得到一条亮线。 ③调节“Y轴位移”和“X轴位移”旋钮,使扫迹移至屏中央。 ④调节“辉度”和“聚焦”旋钮使扫迹亮度和粗细适中。 ⑤从SP1631A型功率函数信号发生器输出一正弦电压,电压值与频率值不要太大,并输出到一个通道上。 ⑥调节“幅度”和“时间”旋钮适中,不要太小,将屏幕上得到的完整的正弦波形。 ⑦调节“触发电平”调节旋钮,使波形稳定。 ⑵正弦波的测量 ①测正弦波形的幅度及周期。

相关主题
文本预览
相关文档 最新文档