当前位置:文档之家› 混合溶剂法制备DL-丙交酯的研究

混合溶剂法制备DL-丙交酯的研究

混合溶剂法制备DL-丙交酯的研究
混合溶剂法制备DL-丙交酯的研究

水热法和溶剂热法的区别

溶剂热法是在水热法的基础上发展起来的,指密闭体系如高压釜内,以有机物或非水溶媒为溶剂,在一定的温度和溶液的自生压力下,原始混合物进行反应的一种合成方法。它与水热反应的不同之处在于所使用的溶剂为有机物而不是水。水热法往往只适用于氧化物功能材料或少数一些对水不敏感的硫属化合物的制备与处理,涉及到一些对水敏感(与水反应、水解、分解或不稳定)的化合物如Ⅲ一V族半导体、碳化物、氟化物、新型磷(砷)酸盐分子筛三维骨架结构材料的制备与处理就不适用,这也就促进了溶剂热法的产生和发展。 为有机溶剂而不是水。在溶剂热反应中,通过把一种或几种前驱体溶 的比较活泼,反应发生,产物缓慢生成。该过程相对简单而且易于控

制,并且在密闭体系中可以有效的防止有毒物质的挥发和制备对空气敏感的前驱体。 另外,物相的形成、粒径的大小、形态也能够控制,而且,产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、粘度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大,相应的,反应物(通常是固体)的溶解、分散过及化学反应活性大大的提高或增强。这就使得反应能够在较低的温度下发生。 水热法(Hydrothermal)是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。1900 年后科学家们建立了水热合成理水热法论,以后又开始转向功能材料的研究。目前用水热法已制备出百余种晶体。水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。在这里简单介绍一下它的原理: 水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。溶剂热法(Solvothermal)是将反应物按一定比例加入溶剂,然后放到高压釜中以相对较低的温度反应。在这种方法中,溶剂处在高于其临界点的温度和压力下,可以溶解绝大多数物质,从而使常规条件下不能发生的反应可以进行,或加速进行。溶剂的作用还在于它可以在

综合化学实验报告浸渍法

综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名张宇周超朱军洁 专业化学 学号70 71 72 年级2013 指导教师王永钊

浸渍法制备Pd/γ-Al2O3催化剂 张宇周超朱军洁 (山西大学化学化工学院,山西太原030006) 摘要:浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。本实验采用等体积浸渍法制备负载型Pd/γ-Al2O3催化剂。实验中首先测出γ-Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ-Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 关键字:等体积浸渍法催化剂Pd/γ-Al2O3 0 引言: 固体催化剂的制备方法很多,工业上使用的固体催化剂的制备方法有:沉淀法,浸渍法,机械混合法,离子交换法,熔融等[1]。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。

浸渍法是将载体浸泡在含有在活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂[2]。由于浸渍法比较经济,且催化剂形状、表面积、孔隙率等主要取决于载体,容易选取。等体积浸渍法是预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量,这种方法称为等体积浸渍法。应用这种方法可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。因此,本实验采用等体积浸渍法[3][4]制备负载型Pd/γ- Al2O3催化剂。实验中首先测出γ- Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ- Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 1.载体的选择和浸渍液的配制[5] (1)载体的选择浸渍催化剂的物理性能很大程度上取决于载体的物理性质,载体甚至还影响到催化剂的化学活性。因此正确的选择载体和对载体进行必要的预处理,是采用浸渍法制备催化剂时首先要考虑的问题。载体种类繁多,作用各异,有关载体的选择要从物理因素和化学因素两方面考虑。物理因素指的是颗粒大小,表面积和孔结构。通常采用已成型好的具有一定尺寸和外形的载体进行浸渍,省去催化剂的成型。化学因素指的是载体可分为三种情况:(ⅰ)惰性载体,载体的作用是使活性组份得到适当的分布;(ⅱ)载体与活性组分有相互作用,它使活性组分有良好的分散并趋于稳定,从而改变催化剂的性能(ⅲ)载体具有催化作用,载体除有负载活性组分的功能外,还与所负载的活性组分一起发挥自身的催化作用。 (2)浸渍液的配制进行浸渍时,通常并不是用活性组分本身制成溶液,而是用活性组分金属的易容盐配成溶液,本实验采用PbCl2溶液。所用的活性组分化合物应该是易溶于水的,而且在焙烧时能分解成所需活性组分,或在还原后变成金属活性组分;同时还必须使无用组分,特别是对催化剂有毒的物质在热分解或还原过程中挥发出去。因此常用的是硝酸盐,铵盐,有机盐。一般以去离子水为溶剂,但当载体易溶于水或活性组分不溶于水时,则可用醇或烃作为溶剂。 2.活性组分在载体上的分布与控制[6] 浸渍时溶解在溶剂中含活性组分的盐类(溶质)在载体表面的分布,与载体对溶质和溶剂的吸附性能有很大的关系。

关于重结晶问题的探讨与总结

有机合成:关于重结晶问题的探讨与总结 2016-08-03有机合成有机合成 Org-Syn介绍有机化学知识,有机合成的招聘信息,有关书籍推荐,合成领域涉及的医药、化工、材 料等专业信息,欢迎订阅!在化合物的合成中,反应往往可以发生,但最后拿不到纯品,特别是药物的合成工艺,需要以工业化为目标,重结晶就成为了一种重要 的提纯手段,不同的人有不同的见解,比如以下几位 TA这样说虫友:nk.alex 以前详细比较过,个人经验: 100g以下的,不搅拌比搅拌合适,体系小,传热问题很难控制,体系其实处于 相对不稳定的状况,而且体系能形成晶核的物质相对多一些,稳定性相对较差,经常要面临的问题是析出速度过快,这时候需要控制的是晶核附近溶质的扩散 速度,形成尽可能长的浓度梯度,避免多晶核的形成,这时候不搅拌比搅拌有利。 1kg级别的,必须搅拌。这时候体系较大,热量散失导致的温度梯度问题比小 体系好很多,晶体有足够的时间来析出,经常要解决的问题是晶体沿着壁生长 形成厚厚的一层,包夹问题强于吸附问题,必须研磨后再充分洗涤才能达到好 的结果。这时候包夹母液问题多多。但是搅拌也不是蛮搅,在不同的阶段需要 根据析出状况调搅拌速度的,并且容易析出来的跟难析出来的需要搅拌速度也 有区别,容易的一般低速避免多晶核,难的高速增加晶核。 当然这都是针对一般情况而言,特殊的也有很多例子。以前有个项目重结晶, 是乙醇和水替换,2kg的处理量,每次不搅拌滴加24h以上,能看到晶体点点的沿着晶核生长成为有规则晶面的单晶,能得到单晶级别的产品,搅拌则是粉末,纯度下降两个点。析晶的浓度及不良溶剂对溶质的溶解度大小都会有影响。还 有些特殊情况下不搅拌的,利用两种互溶的溶剂的密度差异来在溶剂界面扩散 重结晶的,碰到过两次,都是特殊操作,用于有机盐的形成,但是都因为无法 控制参数而无法放大。 重结晶最需要的是观察和悟性,切忌教条。

沉淀法

沉淀法、浸渍法制备催化剂 沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入 到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、洗涤、干燥和焙烧成型或还原等。 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。 2.2、均匀沉淀法 它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。 例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90℃~100℃,溶液中由于尿素的分解而放出OH—离子,于是氢氧化铝就均匀地沉淀出来。 沉淀条件对催化剂性能的影响 1.沉淀剂的影响 2.溶液浓度的影响 3.沉淀温度的影响 4.沉淀PH值的影响 5.加料方式的影响 6.搅拌温度的影响 7.沉淀的陈化影响 8.沉淀洗涤的影响 9.干燥、焙烧、活化的影响

反溶剂沉淀法制备阿托伐他汀钙微粉_张海霞

第59卷第12期化工学报V o l159No112 2008年12月Journal of Chemica l Industry and Engineering(China)December2008研究论文反溶剂沉淀法制备阿托伐他汀钙微粉 张海霞,王洁欣,王立新,赵宏,邵磊,陈建峰 (北京化工大学纳米材料先进制备技术与应用科学教育部重点实验室,北京100029) 摘要:采用反溶剂沉淀法制备阿托伐他汀钙微粉,考察了表面活性剂类型、药物溶液浓度、体系温度和干燥方法对颗粒形貌和大小的影响,得到了适宜的微粉化条件。实验分别利用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱分析(FT-IR)和比表面积(BET)等分析方法对原料及产品的性质进行了表征。研究结果表明:表面活性剂甲基纤维素(M C20)可以有效地控制颗粒形貌;改变溶液浓度及体系温度可以调整颗粒大小;混悬液经喷雾干燥得到的干粉是粒度分布均匀的团粒状类球形颗粒,粒径约为1L m。微粉化产品为无定形,比表面积高于原料药。此外,还探讨了团粒状类球形颗粒的形成机理。 关键词:阿托伐他汀钙;微粉化;反溶剂沉淀法 中图分类号:T Q46016文献标识码:A文章编号:0438-1157(2008)12-3132-06 Preparation of microsized atorvastatin calciu m by an tisolvent precipitation ZH AN G H aixia,WANG Jiexin,WAN G Lixin,ZH AO H on g,SHAO Lei,CHEN Jianfeng (K ey Labor ator y f or N anomater ials,M inistr y of Ed ucation,B eij ing Univ er sity of Chemical T echnology,Beij ing100029,China) Abstract:The m icrosized atorv astatin calcium w as prepared v ia the antiso lvent precipitation pro cess1The effects o f the ty pe o f surfactants,drug co ncentration,precipitatio n tem perature and drying metho d on particle m orpho logy and par ticle size w ere inv estig ated,and the optim um conditions w er e obtained1The as-prepared micr osized ato rvastatin calcium and the raw ator vastatin calcium were well characterized by scanning electron microscopy(SEM),pow der X-r ay diffraction(XRD),Fourier transform infrar ed spectrometry(FT-IR)and sur face area analyzer1T he results indicated that m ethyl cellulose(M C20)w as a suitable surfactant to contr ol the particle m orpho logy of atorvastatin calcium1A djusting drug concentration and sy stem temperature can easily co ntro l the particle size and distributio n1T he spray dried pow der w ith a m ean diameter of about1L m had a narro w par ticle size distribution and show ed the morpholog y of gr anular ag greg ates composed of smaller spheres1T he microsized ato rvastatin calcium pow der w as am orpho us,and the specific surface area of the microsized pro duct w as higher than the raw ator vastatin calcium1In addition,the possible fo rmation mechanism of g ranular ag greg ates co mpo sed of smaller spheres w as presented. Key words:atorv astatin calcium;micronization;antisolv ent precipitation 2008-06-02收到初稿,2008-08-06收到修改稿。 联系人:陈建峰。第一作者:张海霞(1981)),女,博士。基金项目:国家高技术研究发展计划项目(2007AA030207)。 Received date:2008-06-02. Correspon ding author:Prof.CHE N Jianfen g.E-mail:chenjf @mail1buct1edu1cn Foun dation item:supp orted by the H igh-tech Research an d Development Program of China(2007AA030207).

浸渍法制备PdAl2O3催化剂

山西大学 综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名 ddd 专业化学 学号 4444 年级 2009 指导教师王永钊 二Ο一二年 5月11日

浸渍法制备Pd/γ-Al2O3催化剂 姓名:tttt 学号:jikij 专业:化学 (山西大学化学化工学院,山西太原030006) 摘要:用等体积浸渍法,预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的Pd溶液与蒸馏水的量,经干燥,焙烧,还原制备Pd/γ-Al2O3催化剂,此催化剂为银灰色蛋壳型。 关键词:浸渍法 Pd/γ-Al2O3 催化剂 引言: 固体催化剂的制备方法很多。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。本次实验使用等体积浸渍法制备Pd/γ-Al2O3催化剂,使学生了解并掌握催化剂制备的基本原理与简单操作。 浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。而等体积浸渍法,能较便捷的得出所需净渍液的大概体积,由此可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。此方法预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量。 用浸渍法制备催化剂时,毛细管中浸渍液所含的溶质在干燥过程中会发生迁移,造成活性组分的不均匀分布。这时由于在缓慢干燥过程中,热量从颗粒外部传递到其内部,颗粒外部总是先达到液体的蒸发温度,因而孔口部分先蒸发使一部分溶质析出,由于毛细管上升现象,含有活性组分的溶液不断地从毛细管内部上升到孔口,并随溶剂的蒸发溶质不断地析出,活性组分就会向表层集中,留在孔内的活性组分减少。因此,为了减少干燥过程中溶质的迁移,常采用快速干燥法,使溶质迅速析出。有时也可采用稀溶液多次浸渍法来改善。 浸渍完全后再经干燥,焙烧处理得到催化剂产物。 实验部分 1、实验步骤 1.1实验试剂与仪器 1.1.1 试剂:γ-Al2O3小球,蒸馏水,Pd[9.6 mg/mL]溶液 1.1.2 仪器:坩埚,玻璃棒,移液管(1ml),洗耳球,小量筒(10ml),烘箱,马弗炉 1.2具体操作方法 1.2.1 载体吸入溶液能力试验称取三份1.0 g的40-60 目γ-Al2O3小球,逐步滴加蒸馏水,

有机合成:关于重结晶问题的探讨与总结

有机合成:关于重结晶问题的探讨与总结 在化合物的合成中,反应往往可以发生,但最后拿不到纯品,特别是药物的合成工艺,需要以工业化为目标,重结晶就成为了一种重要的提纯手段,不同的人有不同的见解,比如以下几位 TA这样说 以前详细比较过,个人经验: 100g以下的,不搅拌比搅拌合适,体系小,传热问题很难控制,体系其实处于相对不稳定的状况,而且体系能形成晶核的物质相对多一些,稳定性相对较差,经常要面临的问题是析出速度过快,这时候需要控制的是晶核附近溶质的扩散速度,形成尽可能长的浓度梯度,避免多晶核的形成,这时候不搅拌比搅拌有利。1kg级别的,必须搅拌。这时候体系较大,热量散失导致的温度梯度问题比小体系好很多,晶体有足够的时间来析出,经常要解决的问题是晶体沿着壁生长形成厚厚的一层,包夹问题强于吸附问题,必须研磨后再充分洗涤才能达到好的结果。这时候包夹母液问题多多。但是搅拌也不是蛮搅,在不同的阶段需要根据析出状况调搅拌速度的,并且容易析出来的跟难析出来的需要搅拌速度也有区别,容易的一般低速避免多晶核,难的高速增加晶核。 当然这都是针对一般情况而言,特殊的也有很多例子。以前有个项目重结晶,是乙醇和水替换,2kg的处理量,每次不搅拌滴加24h以上,能看到晶体点点的

沿着晶核生长成为有规则晶面的单晶,能得到单晶级别的产品,搅拌则是粉末,纯度下降两个点。析晶的浓度及不良溶剂对溶质的溶解度大小都会有影响。还有些特殊情况下不搅拌的,利用两种互溶的溶剂的密度差异来在溶剂界面扩散重结晶的,碰到过两次,都是特殊操作,用于有机盐的形成,但是都因为无法控制参数而无法放大。 重结晶最需要的是观察和悟性,切忌教条。 TA这样说 首先要快速找到合适的重结晶溶剂。本人最常使用的仪器是试管,每根试管里面称取0.5~1.0g左右的样品,然后加入一定量的溶剂后,试试比较每个溶剂在常温和回流状态下的溶解性差异,差异大的就是我要的溶剂,这就是为什么DCM、DMF等不太作为重结晶溶剂的原因,特殊情况下也是可以使用的,比如样品的溶解性方面 其次是溶剂的选择要考虑潜在的因素,比如乙酸乙酯和丙酮最好不用用来重结晶胺类物质。比如之前本人做的项目,产品是伯胺,用丙酮重结晶收率只有60%,母液检测也没有问题,其中可能是伯胺与丙酮发生了反应,后来将母液用酸处理,回收了大部分的产品 第三:重结晶解决颗粒度大小的方面。这个最后测定一下或者大概了解一下物质在什么温度下开始析晶,降温速度快,生成的晶核多,产物的颗粒较细,抽滤困

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

浸渍法原理

概述以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分含助催化剂以盐溶液形态浸渍到多孔载体上并渗透到内表面而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体当浸渍平衡后去掉剩余液体再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥将水分蒸发逸出可使活性组分的盐类遗留在载体的内表面上这些金属和金属氧化物的盐类均匀分布在载体的细孔中经加热分解及活化后即得高度分散的载体催化剂。活性溶液必须浸在载体上常用的多孔性载体有氧化铝、氧化硅、活性炭、硅酸铝、硅藻土、浮石、石棉、陶土、氧化镁、活性白土等可以用粉状的也可以用成型后的颗粒状的。氧化铝和氧化硅这些氧化物载体就像表面具有吸附性能的大多数活性炭一样很容易被水溶液浸湿。另外毛细管作用力可确保液体被吸人到整个多孔结构中甚至一端封闭的毛细管也将被填满而气体在液体中的溶解则有助于过程的进行但也有些载体难于浸湿例如高度石墨化或没有化学吸附氧的碳就是这样可用有机溶剂或将载体在抽空下浸渍。浸渍法有以下优点第一附载组分多数情况下仅仅分布在载体表面上利用率高、用量少、成本低这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义可节省大量贵金属第二可以用市售的、已成形的、规格化的载体材料省去催化剂成型步骤。第三可通过选择适当的载体为催化剂提供所需物理结构特性如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。浸渍法工艺浸渍法可分为粉状载体浸渍法和粒状载体浸渍法两种工艺其特点可由流程图看出。粒状载体浸渍法工艺如图6—2所示。粒状载体浸渍前通常先做成一定形状抽空载体后用溶液接触载体并加入适量的竞争吸附剂。也可将活性组分溶液喷射到转动的容器中翻滚到载体上然后可用过滤、倾析及离心等方法除去过剩溶液。粉状载体浸渍法与粒状载体浸渍法类似但需增加压片、挤条或成球等成形步骤其流程见图6—3。浸渍的方法对

催化剂浸渍法原理

zhangwengui330(金币+2,VIP+0):谢谢分享!8-25 15:10 概述 以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法,也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分(含助催化剂)以盐溶液形态浸渍到多孔载体上并渗透到内表面,而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体,当浸渍平衡后,去掉剩余液体,再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥,将水分蒸发逸出,可使活性组分的盐类遗留在载体的内表面上,这些金属和金属氧化物的盐类均匀分布在载体的细孔中,经加热分解及活化后,即得高度分散的载体催化剂。 活性溶液必须浸在载体上,常用的多孔性载体有氧化铝、氧化硅、活性炭、硅酸铝、硅藻土、浮石、石棉、陶土、氧化镁、活性白土等,可以用粉状的,也可以用成型后的颗粒状的。氧化铝和氧化硅这些氧化物载体,就像表面具有吸附性能的大多数活性炭一样,很容易被水溶液浸湿。另外,毛细管作用力可确保液体被吸人到整个多孔结构中,甚至一端封闭的毛细管也将被填满,而气体在液体中的溶解则有助于过程的进行,但也有些载体难于浸湿,例如高度石墨化或没有化学吸附氧的碳就是这样,可用有机溶剂或将载体在抽空下浸渍。 浸渍法有以下优点:第一,附载组分多数情况下仅仅分布在载体表面上,利用率高、用量少、成本低,这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义,可节省大量贵金属;第二,可以用市售的、已成形的、规格化的载体材料,省去催化剂成型步骤。第三,可通过选择适当的载体,为催化剂提供所需物理结构特性,如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂,尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。 浸渍法工艺 浸渍法可分为粉状载体浸渍法和粒状载体浸渍法两种工艺,其特点可由流程图看出。粒状载体浸渍法工艺如图6—2所示。粒状载体浸渍前通常先做成一定形状,抽空载体后用溶液接触载体,并加入适量的竞争吸附剂。也可将活性组分溶液喷射到转动的容器中翻滚到载体上,然后可用过滤、倾析及离心等方法除去过剩溶液。粉状载体浸渍法与粒状载体浸渍法类似,但需增加压片、挤条或成球等成形步骤,其流程见图6—3。浸渍的方法对催化剂的性能影响较大,粒状载体浸渍时,催化剂表面结构取决于载体颗粒的表面结构,如比表面、孔隙率、孔径大小等,催化反应速率不同,对催化剂表面结构的要求也不同。 沉积在催化剂载体的金属的最终分散度取决于许多因素的相互作用,这些因素包括浸渍方法、吸附的强度,以吸留溶质形式存在的金属化合物相比于吸附在孔壁上的物种的程度,以及加热与干燥时发生的化学变化等。 虽然浸渍过程中,大多数金属试剂都可以不同程度地吸附在载体上,但是吸附过程相当复杂,不同类型的吸附都可能发生,可以是金属离子与含有羟基的表面吸附;也可以是含有碱金属及碱土金属离子的表面进行阳离子交换。载体的表面结构还可能因浸渍步骤不同加以改变,从而更改表面的吸附特性。这些在工艺实施过程中必须加以考虑。若载体遭受浸蚀,情况会更复杂,在高pH值下硅胶要受浸蚀,而高表面积的氧化铝则无论在过高或过低pH 值下都要受浸蚀,在用酸性液体浸渍氧化铝载体的过程中,部分氧化铝会首先发生溶解,并随着pH值的增高接着要发生沉淀,最好用缓冲剂来控制这个效应。 载体原料载体原料粉状载体浸渍溶液 ↓↓↓↓ 水→混合水→浸渍←沉淀剂 ↓↓

浸渍法制备催化剂简介

浸渍法制备催化剂简介 2016-04-16 12:21来源:内江洛伯尔材料科技有限公司作者:研发部 浸渍法制备催化剂流程 以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法,也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分(含助催化剂)以盐溶液形态浸渍到多孔载体上并渗透到内表面,而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体,当浸渍平衡后,去掉剩余液体,再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥,将水分蒸发逸出,可使活性组分的盐类遗留在载体的内表面上,这些金属和金属氧化物的盐类均匀分布在载体的细孔中,经加热分解及活化后,即得高度分散的载体催化剂。 浸渍法有以下优点:第一,附载组分多数情况下仅仅分布在载体表面上,利用率高、用量少、成本低,这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义,可节省大量贵金属;第二,可以用市售的、已成形的、规格化的载体材料,省去催化剂成型步骤。第三,可通过选择适当的载体,为催化剂提供所需物理结构特性,如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂,尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。 浸渍法分类:

(1)过量浸渍法本法系将载体泡人过量的浸渍溶液中,即浸渍溶液体积超过载体可吸收体积,待吸附平衡后,滤去过剩溶液,干燥、活化后便得催化剂成品。通常借调节浸渍溶液的浓度和体积控制附载量。 (2)等体积浸渍法将载体浸入到过量溶液中,整釜溶液的成分将随着载体的浸渍而被改变,释放到溶液中的碎物可形成淤泥,使浸渍难于完全使用操作溶液。因而工业上使用等体积浸渍法(吸干浸渍法),即将载体浸到初湿程度,计算好溶液的体积,做到更准确地控制浸渍工艺。工业上,可以用喷雾使载体与适当浓度的溶液接触,溶液的量相当于已知的总孔体积,这样做可以准确控制即将掺入催化剂中的活性组织的量。各个颗粒都可达到良好的重复性,但在一次浸渍中所能达到最大负载量,要受溶剂溶解度的限制。在任何情况下,制成的催化剂通常都要经过干燥与焙烧。在少数情况下,为使得有效组分更均匀地分散,可将浸渍过的催化剂浸入到一种试剂中,以使发生沉淀,从而可使活性组分固定在催化剂内部。本法将载体与它可吸收体积的浸渍溶液相混合,由于浸渍溶液的体积与载体的微孔体积相当,只要充分混合,浸渍溶液恰好浸透载体颗粒而无过剩,可省略废液的过滤与回收。但是必须注意,浸渍溶液体积是浸渍化合物性质和浸渍溶液黏度的函数。确定浸渍溶液体积,应预先进行试验测定。等体积浸渍可以连续或间断进行,设备投资少,生产能力大,能精确调节附载量,所以工业上广泛采用。 (3)多次浸渍法本法即浸渍、干燥、焙烧反复进行数次。采用这种方法的原因有两点。第一,浸渍化合物的溶解度小,一次浸渍不能得到足够大的附载量,需要重复浸渍多次;第二,为避免多组分浸渍化合物各组分间的竞争吸附,应将各别组分按秩序先后浸渍。每次浸渍后,必须进行干燥和焙烧,使之转化为不溶性的物质,这样可以防止上次浸载在载体的化合物在下一次浸渍时又溶解到溶液中,也可以提高下一次浸渍时载体的吸收量。例如,加氢脱硫Co2O3-MoO3/A12O3催化剂的制备,可将氧化铝先用钴盐溶液浸渍,干燥、焙烧后再用钼盐溶液按上述步骤处理。必须注意每次浸渍时附载量的提高情况。随着浸渍次数的增加,每次附载增量将减少。多次浸渍法工艺过程复杂,劳动效率低,生产成本高,除非上述特殊情况,应尽量少采用。 (4)浸渍沉淀法本法是在浸渍法的基础上辅以均匀沉淀法发展起来的一种新方法,即在浸渍液中预先配人沉淀剂母体,待浸渍单元操作完成之后,加热升温使待沉淀组分沉积在载体表面上。此法可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (5)硫化床喷洒浸渍法浸渍溶液直接喷洒到流化床中处于流化状态的载体中,完成浸渍以后,升温干燥和焙烧。在流化床内可一次完成浸渍、干燥、分解和活化过程。流化床内放置一定量的多孔载体颗粒,通人气体使载体硫化,再通过喷嘴将浸渍液向下或用烟道气对浸渍后的载体进行硫化干燥,然后升高床温使负载的盐类分解,逸出不起催化作用的挥发组分,最后用高温烟道气活化催化剂,活化后鼓人冷空气进行冷却,然后卸出催化剂。鼓风机送来的空气分两路,一路经加热器进人流化床,使载体颗粒硫化,废气在床顶接管3放空;另一路进入喷嘴的套管内,用以雾化浸渍液。载体由床顶加料口加人,催化剂由分布板上卸料口6卸出。该法适用于多孔载体的浸渍,制得的催化剂与浸渍法没有区别,但具有流程简单、操作方便、周期短、劳动条件好等优点。不足的是成品率低(在80%~90%以下)、催化剂易结块、性质不均匀等。 (6)蒸气相浸渍法除了溶液浸渍之外,亦可借助浸渍化合物的挥发性,以蒸气相的形式将它附载到载体上。这种方法首先应用正丁烷异构化过程中的催化剂,催

溶剂萃取分离法

溶剂萃取分离法 萃取分离法包括液相-液相、固相-液相和气相-液相等几种方法,但应用最广泛的为液-液萃取分离法(亦称溶剂萃取分离法)。该法常用一种与水不相溶的有机溶剂与试液一起混合振荡,然后搁置分层,这时便有一种或几种组分转入有机相中,而另一些组分则仍留在试液中,从而达到分离的目的。 溶剂萃取分离法既可用于常量元素的分离又适用于痕量元素的分离与富集,而且方法简单、快速。如果萃取的组分是有色化合物,便可直接进行比色测定,称为萃取比色法。这种方法具有较高的灵敏度和选择性。 一、萃取分离的基本原理 (一)萃取过程的本质 根据相似相溶规则,将物质由亲水性转化为疏水性。 极性化合物易溶于极性的溶剂中,而非极性化合物易溶于非极性的溶剂中,这一规律称为“相似相溶原则”。例如I2是一种非极性化合物、CCl4是非极性溶剂,水是极性溶剂,所以I2易溶于CCl4而难溶于水。当用等体积的CCl4从I2的水溶液中提取I2时,萃取百分率可达98.8%。又如用水可以从丙醇和溴丙烷的混合液,萃取极性的丙醇。常用的非极性溶剂有:酮类、醚类、苯、CCl4和CHCl3等。 无机化合物在水溶液中受水分子极性的作用,电离成为带电荷的亲水性离子,并进一步结合成为水合离子,而易溶于水中。如果要从水溶液中萃取水合离子,显然是比较困难的。为了从水溶液中萃取某种金属离子,就必须设法脱去水合离子周围的水分子,并中和所带的电荷,使之变成极性很弱的可溶于有机溶剂的化合物,就是说将亲水性的离子变成疏水性的化合物。为此,常加入某种试剂使之与被萃取的金属离子作用,生成一种不带电荷的易溶于有机溶剂的分子,然后用有机溶剂萃取。例如Ni2+在水溶液中是亲水性的,以水合离子Ni(H2O)62+的状态存在。如果在氨性溶液中,加人丁二酮肟试剂,生成疏水性的丁二酮肟镍螯合物分子,它不带电荷并由硫水基团取许代了水合离子中的水分子,成为亲有机溶剂的硫水性化合物,即可用CHCl3萃取。 (二)分配系数 设物质A在萃取过程中分配在不互溶的水相和有机相中: A有= A水

催化剂的制备方法与成型技术简汇

\催化剂的制备方法与成型技术1314100125 13化工本一万立之 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 目录 摘要 (1) 1 固体催化剂的组成: (1) 2 催化剂的一般制备方法 (1) 2.1 浸渍法 (1) 2.2 沉淀法 (2) 2.3 混合法 (2) 2.4 滚涂法 (3) 2.5 离子交换法 (3) 2.6 热熔融法 (3) 2.7锚定法 (4) 3 催化剂成型技术 (4) 3.1喷雾成型 3.2油柱成型 3.3转动成型 3.4挤条成型 3.5压片成型 4 小结 (5) 参考文献 (6)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

水热法和溶剂热法的区别

-- 溶剂热法是在水热法的基础上发展起来的,指密闭体系如高压釜内,以有机物或非水溶媒为溶剂,在一定的温度和溶液的自生压力下,原始混合物进行反应的一种合成方法。它与水热反应的不同之处在于所使用的溶剂为有机物而不是水。水热法往往只适用于氧化物功能材料或少数一些对水不敏感的硫属化合物的制备与处理,涉及到一些对水敏感(与水反应、水解、分解或不稳定)的化合物如Ⅲ一V族半导体、碳化物、氟化物、新型磷(砷)酸盐分子筛三维骨架结构材料的制备与处理就不适用,这也就促进了溶剂热法的产生和发展。 另外,物相的形成、粒径的大小、形态也能够控制,而且,产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、粘度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大,相应的,反应物(通常是固体)的溶解、分散过及化学反应活性大大的提高或增强。这就使得反应能够在较低的温度下发生。 水热法(Hydrothermal)是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。1900 年后科学家们建立了水热合成理水热法论,以后又开始转向功能材料的研究。目前用水热法已制备出百余种晶体。水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。在这里简单介绍一下它的原理: 水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生)将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区)形成过饱和溶液,继而结晶。?溶剂热法(Solvothermal)是将反应物按一定比例加入溶剂,然后放到高压釜中以相对较低的温度反应。在这种方法中,溶剂处在高于其临界点的温度和压力下,可以溶解绝大多数物质,从而使常规条件下不能发生的反应可以进行,或加速进行。溶剂的作用还在于它可以在反应过程中控制晶体的生长,实验证明使用不同的溶剂可以得到不同形貌的产品。另外此方法还具有能耗低、团聚少、颗粒形状可控等优点。该方法的不足之处是产率较低、产品的纯度不够,并且在产品尺寸和形貌的均一程度上不尽如人意。 水热一般对材料的性能不会造成负面的影响,但溶剂热由于溶剂的不同,对材料性能的影响一般来说比较大。不过溶剂热做出的材料得到更好的形貌的可能性要比水热大一些! 水热是的溶剂是水,而溶剂热的溶剂是甲醇,乙醇等非水类的 --

相关主题
文本预览
相关文档 最新文档