当前位置:文档之家› 大功率低压大电流高频开关电源的研制

大功率低压大电流高频开关电源的研制

大功率低压大电流高频开关电源的研制
大功率低压大电流高频开关电源的研制

电脑开关电源电路大全详解修订稿

电脑开关电源电路大全 详解 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电脑开关电源详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是和ATX12V这两个标准,其中ATX12V又可分为、、等多个版本。ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+的电压输出端,与主板的连接接口上也有了明显的改进。

ATX12V与标准比较: 1、是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V 加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: :2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; :2000年8月颁布, 在前一版本的基础上,加强了+电流输出能力,以适应AGP 显卡功率增长的需求 :2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定;

高低压开关整定

高、低压开关整定计算方法 1、1140V供电分开关整定值=功率×0.67, 馈电总开关整定值为分开关整定值累加之和。 2、660V供电分开关整定值=功率×1.15,、馈电总开关整定值为分开关整定值累加之和。 3、380V供电分开关整定值=功率×2.00,、馈电总开关整定值为分开关整定值累加之和。 低压开关整定及短路电流计算公式 1、馈电开关保护计算 (1)、过载值计算:Iz=Ie=1.15×∑P (2)、短路值整定计算:Id≥IQe+KX∑Ie (3)、效验:K=I(2)d /I d≥1.5 式中:I Z----过载电流整定值 ∑P---所有电动机额定功率之和 Id---短路保护的电流整定值 IQe---容量最大的电动机额定启动电流(取额定电流的6倍) Kx---需用系数,取1.15 ∑Ie---其余电动机的额定电流之和 Pmax ---------容量最大的电动机 I(2)d---被保护电缆干线或支线距变压器最远点的两相短路电流值 例一、馈电开关整定: (1)型号:KBZ16-400,Ie=400A,Ue=660V,

电源开关;负荷统计Pmax =55KW,启动电流IQe=55×1.15×6=379.5A, ∑Ie =74KW。∑P=129KW (2)过载整定: 根据公式:IZ=Ie=1.15×∑P =129×1.15=148.35A 取148A。(3)短路整定: 根据公式 Id≥IQe+KX∑Ie=379.5+1.15x74=464.6A 取464A。 例二、开关整定: (1)、型号:QBZ-200,Ie=200A,Ue=660V,所带负荷:P=55KW。(2)、过载整定: 根据公式:IZ=Ie=1.15×P =1.15×55=63.25A 取65A。 井下高压开关整定: 式中: K Jx -------结线系数,取1 K k -------可靠系数,通常取(1.15-1.25)取1.2 Ki-------电流互感器变比 Kf-------返回系数,取0.8 Igdz-------所有负荷电流 Idz---------负荷整定电流 cos¢-----计算系数0.8----1 P-----------所有负荷容量 U----------电网电压 √3--------1.732

高频开关电源技术规范书

通讯系统电源 (高频开关电源、免维护电池)技术规范书

1、概述 1.1本技术规范书仅适用于2011主网技改工程。 1.2本规范未对一切技术细节做出规定,也未充分引述有关标准和规范,卖方应提供符 合本规范书和遵照国际电工委员会标准(IEC)、国际公制(SI)及国家标准的符合国家电力行业标准的优质产品。技术指标应符合YD/T731《通讯用高频开关整流器》的规定。 1.3本规范未尽事宜,双方协商解决。 2、主要技术要求 2.1 供货数量: 序号名称规格及型号单位数量备注 1 高频开关电源屏-48V/120A(4*30A)面 4 2 蓄电池屏48V/300AH,每组24只,-2V 面8 3 电池巡检仪每套可接48只电池套 4 高频开关电源:-48V/120A (4*30A) 4套 蓄电池: -48V/300AH 4组(包括电池柜) 每套两组每组24只,2V/只 2.2设备电气性能 3.单套高频开关电源配置: 1)具备交流输入配电单元、整流单元、直流输出配电单元、监控单元,并为一体化机 柜,应能至少接入2组蓄电池。 2)具备完善的故障告警、保护功能(交流输入故障、直流输出故障、整流单元故障、 监控单元故障等自动保护功能),且部分状态具有自动恢复功能(交流过压、欠压、直流过流、过温)。 3)交流配电单元: 输入2路,输入电压:三相五线制:380V±20%,50±10%HZ,2路交流输入电源能自动切换,且互为主备用。 输出:三相输出分路(2路):2路32A,2路25A 单相输出分路(14路):2路20A,8路10A,4路6A。 4)直流配电单元: 输入:整流4路:48V/4*30A,可调整为(10A-20A-30A-60A,最大能达到120A。

高频开关电源的特点及在电力系统的应用

高频开关电源的特点及在电力系统的应用 摘要:高频开关电源具有体积小重量轻、安全可靠、自动化程度及综合效率高、噪音低等特点,目前,电力系统已逐步采用这种电源系统。高频开关整流器与原始直流设备的性能比较。 关键词:高频开关电源;特点;性能比较;应用 一、前言 在电力系统中,直流电源作为继电保护、自动装置、控制操作回路、灯光音响信号及事故照明等电源之用,是发电厂和变电站比较重要的设备。因直流电源故障而引发的事故时有发生,所以,对直流电源的可靠性、稳定性具有很高要求。传统的直流电源多数采用可控硅整流型。近几年来,许多直流电源厂家推出智能化的高频开关电源,这种电源系统具有许多优点:安全、可靠、自动化程度高、具有更小的体积和重量、综合效率高以及噪音低等,适应电网发展的需要,值得推广使用。 目前,我国电力系统采用的直流电源也正由传统的相控电源逐步向模块化的高频开关电源转变。高频开关电源整流器的工作原理:交流电源接入整流模块,经滤波及三相全波整流器后变成直流,再接入高频逆变回路,将直流转换为高频交流,最后经高频变压器、整流桥、滤波器后输出平稳直流。这种高频开关电源主要由高频开关充电模块、集中监控器和蓄电池组等组成,其中充电模块和集中监控器具有内置微处理器,智能化程度高。高频开关电源系统正常

运行时,充电机的输出与蓄电池组并联运行,给经常性负荷供电。 二、高频开关电源的原理和特性 (一)高频电源系统方框图 高频开关整流器一般是先将交流电直接经二极管整流、滤波成直流电,再经过开关电源变换成高频交流电,通过高频变压器变压隔离后,由快速恢复二极管高频整流、电感电容滤波后输出。 (二)采用高频化有较高技术经济指标 理论分析和实践经验表明,电器产品的体积重量与其供电频率的平方根成反比。所以当我们把频率从工频50hz提高到20khz时,用电设备的体积重量大体上降至工频设计的(5~10)%。这正是开关电源实现变频带来明显效益的基本原因。逆变或整流焊机、通讯电源用浮充电源的开关式整流器,都是基于这一原理。 那么,以同样的原理对传统的电镀、电解、电加工、浮充、电力合闸等各种直流电源加以类似的改造,使之更新换代为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,既可带来显著节能、节材的经济效益,更可体现技术含量的价值。 (三)设计模块化——自由组合扩容互为备用提高安全系数 模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。实际上,由于频率的不断提高,致使引线寄生

开关电源试题(有答案)

开关整流器的基本原理 一、填空 1、功率变换器的作用是()。 将高压直流电压转换为频率大于20KHZ的高频脉冲电压 2、整流滤波器电路的作用是()。 将高频的脉冲电压转换为稳定的直流输出电压 3、开关电源控制器的作用是将输出()取样,来控制功率开关器件的驱动脉冲的(),从而调整()以使输出电压可调且稳定。 直流电压、宽度、开通时间。 4、开关整流器的特点有()、()、()、()、()、()及()。 重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构。 5、采用高频技术,去掉了(),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(),重量已接近()。 工频变压器、1/10、1/10。 6、相控整流器的功率随可控硅()的变化而变化,一般在全导通时,可接近()以上,而小负载时,仅为左右,经过校正的开关电源功率因数一般在(),以上,并且基本不受()变化的影响。 导通角、、。 7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(),而开关电源在无风扇的情况下,可闻噪声仅为()左右。 60db、45db。

8、开关电源采用的功率器件一般(比较)较小,带功率因数补偿的开关电源其整流器效率可达()以上,较好的可做到()以上。 88%、91%。 9、目前开关整流器的分类主要有两种,一类是采用()设计的整流器,一般称之为(),二是采用()设计的整流器,主要指()开关整流器。 硬开关技术、SMR、软开关技术、谐振型 10、谐振型技术主要是使各开关器件实现()或()导通或截止,从而减少开关损耗,提高开关频率。 零电压、零电流。 11、按有源开关的过零开关方式分类,将谐振型开关技术分为()—ZCS、()—ZVS两大类。 12、单端正激变换电路广泛应用于()变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。 13、单端反激变换电路一般用在()输出的场合。 14、全桥式功率变换电路主要应用于()变换电路中。 15、半桥式功率变换电路得到了较广泛的应用,特别是在()和()的场合,其应用越来越普遍。 16、开关电源模块的寿命是由模块内部工作()所决定,温升高低主要是由模块的()高低所决定,现在市场上大量使用的开关电源技术,主要采用的是()技术。 17、功率密度就是功率的(),比值越大说明单位体积的功率越大。 18、计算功率有两种方法,一种是(),另一种是模块允许的,在交流和直流变化的全电压范围内所能提供的()。

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

电气低压元器件选择及整定

.断路器的选择 1.一般低压断路器的选择 (1) 低压断路器的额定电压不小于线路的额定电压. (2) 低压断路器的额定电流不小于线路的计算负载电流. (3) 低压断路器的极限通断能力不小于线路中最大的短路电流. ⑷线路末端单相对地短路电流十低压断路器瞬时(或短延时)脱扣整定电流》1.25 (5) 脱扣器的额定电流不小于线路的计算电流. (6) 欠压脱扣器的额定电压等于线路的额定电压. 2.配电用低压断路器的选择 (1) 长延时动作电流整定值等于0. 8~1 倍导线允许载流量. (2) 3 倍长延时动作电流整定值的可返回时间不小于线路中最大启动电流的电动机启动时 间. ⑶短延时动作电流整定值不小于1.1(ljx+1.35Kldem).其中,ljx为线路计算负载电流;K 为电动机的启动电流倍数;Idem 为最大一台电动机额定电流. (4) 短延时的延时时间按被保护对象的热稳定校核. ⑸无短延时时,瞬时电流整定值不小于1.1(Ijx+K1KIdem).其中,K1为电动机启动电流的冲击系数, 可取 1.7~2. (6) 有短延时时, 瞬时电流整定值不小于1.1 倍下级开关进线端计算短路电流值. 3.电动机保护用低压断路器的选择 (1) 长延时电流整定值等于电动机的额定电流. (2) 6 倍长延时电流整定值的可返回时间不小于电动机的实际启动时间. 按启动时负载的轻重,可选用可返回时间为1、3、5、8 15s中的某一挡. (3) 瞬时整定电流:笼型电动机时为(8~15)倍脱扣器额定电流;绕线转子电动机时为(3~6) 倍脱扣器额定电流. 4.照明用低压断路器的选择 (1) 长延时整定值不大于线路计算负载电流. (2) 瞬时动作整定值等于(6~20) 倍线路计算负载电流. 二.漏电保护装置的选择 1 .形式的选择 一般情况下, 应优先选择电流型电磁式漏电保护器, 以求有较高的可靠性. 2.额定电流的选择漏电保护器的额定电流应大于实际负荷电流. 3.极数的选择 家庭的单相电源,应选用二极的漏电保护器;若负载为三相三线,则选用三极的漏电保护器; 若负载为三相四线, 则应选用四极漏电保护器. 4.额定漏电动作电流的选择(即灵敏度选择) 为了使漏电保护器真正起到保安作用, 其动作必须正确可靠, 即应该具有合适的灵敏度和动作的快速性. 灵敏度, 即漏电保护器的额定漏电动作电流, 是指人体触电后流过人体的电流多大时漏电保护器才动作. 灵敏度低,流过人体的电流太大,起不到保护作用;灵敏度过高,又会造成漏电保护器因线路或电气设备在正常微小的漏电下而误动作(家庭一般为5mA左右).家庭装于配电板上的 漏电保护器,其额定漏电动作电流宜为15~30mA左右;针对某一设备用的漏电保护器(如落地电扇等), 其额定漏电动作电流宜为5~10mA. 快速性是指通过漏电保护器的电流达到动作电流时, 能否迅速地动作. 合格的漏电保护器的动

高频开关电源的设计与实现资料

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 0 1.主电路的选型(方案设计) 0 2.控制电路设计 (3) 3.总体实现框架 (3) 二、主要参数及电路设计 (4) 1.主电路参数设计 (4) 2.控制电路参数设计 (6) 3.保护电路的设计以及参数整定 (7) 4.过压和欠压保护 (7) 三、仿真验证(设计测试方案、存在的问题及解决方法) (8) 1、主电路测试 (8) 2、驱动电路测试 (9) 3、保护电路测试 (9) 四、小结 (10) 参考文献 (10)

开关电源维修步骤及常见故障分析-电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

开关电源基础学习知识原理及各功能电路详解

开关电源原理及各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下: 开关电源电路方框图 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理:

输入滤波、整流回路原理图 ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的

电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

煤矿井下低压开关整定计算公式

Ф) Pe:额定功率(W) Ue:额定电压(690V) cosФ:功率因数(一般取0.8)注:BKD1-400 型低防开关过流整定范围(40-400A) BKD16-400 型低防开关过流整定范围(0-400A)二、短路保护(一)、BKD16-400 型 1、整定原则:分开关短路保护整定值选取时应小于被保护线路末端两相短路电流值,略大于或等于被保护设备所带负荷中最大负荷的起动电流加其它设备额定电流之和,取值时应为过流值的整数倍,可调范围为3-10Ie。总开关短路保护整定值应小于依据变压器二次侧阻抗值算出的两相短路电流值,大于任意一台分开关的短路定值。选取时依据情况取依据变压器二次侧阻抗值算出的两相短路电流值0.2-0.4 倍,可调范围为3-10Ie。 2、计算原则:被保护线路末端两相短路电流计算时,阻抗值从变压器低压侧算起,加上被保护线路全长的阻抗(总开关计算被保护线路的阻抗时,电缆阻抗忽略不计,只考虑变压器二次侧阻抗值)。被保护设备所带负荷中的最大负荷的启动电流按该设备额定电流的5-7 倍计算。 3、计算公式:(1)变压器阻抗:Z b (6000) =U d %×Ue 2 /Se U d %:变压器阻抗电压 Ue :变压器额定电压(6000V) Se:变压器容量(VA)(2)换算低压侧(690V)后的阻抗 Z b (690) =(690/6000)2 ×Z b (6000)(3)被保护线路的阻抗电抗:X L =X O L(X O 千伏以下的电缆单位长度的电抗值:0.06 欧姆/千米;L:线路长度km)电阻:R L =L/DS +R h L:线路长度(米) S:导线截面积(毫米 2 ) D:电导率(米/欧*毫米 2 ,铜芯软电缆按65 o C 时考虑取42.5,铜芯铠装电缆按65 o C 时考虑取48.6) R h :短路点电弧电阻,取0.01 欧电缆的阻抗Z L = 2 2 RL XL ?8?0 所以总阻抗Z 总=Zb (690)+Z L (4)两相短路电流计算 I 短=Ue (690)

高频开关电源的基本原理

高频开关电源的基本原理

————————————————————————————————作者:————————————————————————————————日期:

第一节高频开关电源的基本原理 一、高频开关电源的组成 高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。 图1-3-1高频开关整流器组成方框图 图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。 开关整流器的特点: ①重量轻,体积小 采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。 ②功率因数高 相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。 ③可闻噪音低 在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。而开关电源在无风扇的情况下可闻噪声仅为45dB左右。 ④效率高 开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。 ⑤冲击电流小 开机冲击电流可限制的额定输入电流的水平。 ⑥模块式结构 由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。 二、高频开关电源的分类 (二)开关整流器分类 1、按激励方式 可分为自激式和他激式。自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。 自激式电路出现最早。它的特点是电路简单、响应速度较快,但开关频率变化大、输出纹波值较大,不易作精确的分析、设计,通常只有在小功率的情况下使用,如家电、仪器电源。他激式开关电源需要外接的激励信号控制才能使变换电路工作,完成功率变换任务。 他源激式开关电源的特点是开关频率恒定、输出纹波小,但电路较复杂、造价较高、响应速度较慢。 2、按开关电源所用的开关器件 可分为双极型晶体管开关电源、功率MOS管开关电源、IGBT开关电源、晶闸管开关电源等。

高频开关电源的设计

目录 1绪论 (1) 1.1高频开关电源概述 (1) 1.2意义及其发展趋势 (2) 2高频开关电源的工作原理 (3) 2.1 高频开关电源的基本原理 (3) 2.2 高频开关变换器 (5) 2.2.1 单端反激型开关电源变换器 (5) 2.2.2 多端式变换器 (6) 2.3 控制电路 (8) 3高频开关电源主电路的设计 (9) 3.1 PWM开关变换器的设计 (9) 3.2 变换器工作原理 (10) 3.3 变换器中的开关元件及其驱动电路 (11) 3.3.1 开关器件 (11) 3.3.2 MOSFET的驱动 (11) 3.4高频变压器的设计 (13) 3.4.1 概述 (13) 3.4.2 变压器的设计步骤 (13) 3.4.3 变压器电磁干扰的抑制 (15) 3.5 整流滤波电路 (15) 3.5.1 整流电路 (15) 3.5.2 滤波电路 (16) 4 总结 (19) 参考文献 (20)

1 绪论 1.1高频开关电源概述 八十年代,国内高频开关电源只在个人计算机、电视机等若干设备上得到应用。由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。这些问题和要求可归纳为以下五个方面: (l)能否全面贯彻电磁兼容各项标准? (2)能否大规模稳定生产或快捷单件特殊生产? (3)能否组建大容量电源? (4)电气额定值能否更高(如功率因数)或更低(如输出电压)? (5)能否使外形更加小型化、外形适应使用场所要求? 这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。(简称五挑战)把挑战看成开关电源发展的动力和机遇,一向是电源科技工作者的态度。以功率因数为例,AC-DC开关电源或其他电子仪器输入端产生功率因数下降问题,用什么办法来解决?毫无疑问,利用开关电源本身的工作原理来解决开关电源应用中产生的问题是最积极的态度。实践中,用DC-DC开关电源和有源功率因数校正的开关电源,(成本比单机增加20%):成功解决了这个问题。现在,又进一步发展成单级有功率因数校正的开关电源,(成本只增加5%);在三相升压式单开关整流器中减少谐波方法,有人采用注入六次谐波调脉宽控制,抑制住输入电流的五次谐波,解决了电流谐波畸变率小于100k的要求。

基于UC3845的横机专用输出大功率开关电源

基于UC3845的横机专用4路输出大功率 开关电源 目录 一横机专用开关电源背景 二横机专用开关电源系统级分析 2.1技术指标 2.2拓扑结构 2.21反激式开关电源 2.22正激式开关电源 2.3工作模式 2.31DCM模式 2.32CCM模式 2.4系统框架 三横机专用开关电源电路级设计 3.1主回路 3.11输入保护电路 3.12降功耗的EMI滤波电路 3.13整流电路 3.14输出电路 3.2 13V辅助输出电路 3.21高频变压器 3.22钳位电路 3.23反馈电路 3.24控制电路 3.25输出电路 3.3 24V输出电路 3.31高频变压器 3.32钳位电路 3.33反馈电路 3.34控制电路 3.35输出电路 3.4 12V输出电路 3.41高频变压器 3.42钳位电路 3.43反馈电路 3.44控制电路 3.45输出电路 3.5 5V输出电路 3.51高频变压器 3.52钳位电路 3.53反馈电路 3.54控制电路 3.55输出电路 四实验 附录A电路原理图 附录B PCB和实物

一、横机电源背景 21 世纪是建设可持续发展的社会,提倡的是节约资源,提高能效,环境友好。由于开关电源在体积、重量、功能和能耗等方面有显著优势,而且稳定性很高,因此它正广泛应用于通信、航天、家电等领域。随着技术的发展,高功率密度、高变换效率、高可靠性、低污染己成为开关电源的发展方向。 本设计开关电源是为满足针织横机的供电需要,基于当前流行的单片集成开关电源芯片UC3845设计的一款四路集成电源。该电源可靠性高、功率密度大、抗干扰能力、输出电压稳定,高效率、体积小等特点。为用户节约了安装空间,方便了用户的安装使用,提高了人工的安装效率。 二、横机专用开关电源系统级分析 2.1 技术指标 四路集成电源技术指标 序号技术参数备注 1 电源输入:AC220V单相输入 A 误差范围175V ~ 275V B 电源频率50Hz±10% 2 电源输出:V1:5V6A、V2:12V5A、V3:24V14.6A、V4:24V14.6A。 ①5V电源输出(主电源): A 输出电压+5V 出厂调到5.2V B 输出电流6A C 电压调整率<1% D 负载调整率<1% E 纹波噪声(P-P值)100mVmax ②12V电源输出 A 输出电压12V 出厂调到12.10V B 输出电流5A C 电压调整率<1% D 负载调整率<2% E 纹波噪声(P-P值)200mVmax ③24V1电源输出 A 输出电压+24V(22-28可调)出厂调到24.5V B 输出电流14.6A C 电压调整率<2% D 负载调整率<2% E 纹波噪声(P-P值)350mVmax ④24V2电源输出 A 输出电压+24V (22-28可调)出厂调到24.5V B 输出电流14.6A C 电压调整率<2% D 负载调整率<2% E 纹波噪声(P-P值)350mVmax 3 效率(85%)min

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

低压系统短路电流计算与断路器选择

低压系统短路电流计算与断路器选择 低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。本文拟在通过对低压短路电流的计算简述以及实例介绍,说明低压断路器的选择及校验方法。 在设计中,短路电流计算与断路器选择的步骤如下: ①简单估算低压短路电流; ②确定配电中心馈出电缆满足热稳定的最小截面; ③选择合适的低压断路器; ④合理选择整定值,校验灵敏度及选择性。 1.低压短路电流估算 1.1短路电流的计算用途 短路电流的计算用途主要有以下几点: ①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。 ②确定保护电器的整定值,使其在短路电流对开关电器及线路器材造成破坏之前切断故障电路。 ③校验开关电器及线路器材的动热稳定是否满足规范和实际运行的要求。 1.2短路电流的计算特点 短路电流计算的特点:

①用户变压器容量远小于系统容量,短路电流周期分量不衰减。 ②计入短路各元件有效电阻,但不计入元件及设备的接触电阻和电抗。 ③因线路电阻较大,不考虑短路电流非周期分量的影响。 ④变压器接线方式按D、yn11考虑。 1.3短路电流的计算方法 短路电流计算的方法: ——三相短路电流或单相短路电流kA; 式中 I k Z ——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母 k 线阻抗及电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗) U——电压V(用于三相短路电流时取230,用于单相短路电流时取220) 1.4短路电流的计算示例 下面通过范例来叙述低压短路电流的计算过程。

基于UC3875的高频开关电源的设计

引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压, T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容 C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

高频开关电源变压器的动态测试

高频开关电源变压器的动态测试 (JP2581B+JP619B材料功耗测量系统应用笔记之一) 1 引言 目前,对高频开关电源变压器电磁参数‘测试’大约使用两种方法:一种是用LCR表测量一些基本电磁参数,例如,开关电源变压器初次级电感、漏感、分布电容、绕组直流电阻以及匝比、相位等,我们称这种测试方法为’静态’测试;一种是将开关电源变压器放到主机上考核其工作情况,对已经定型生产的开关电源变压器,为考核外购磁芯质量,通过测量变压器工作温升判断磁芯的损耗比较直观简便。前一种方法因在弱场、低频低磁感应强度(例如Bm<0.25mT、f=1kHz)下测量,由于磁性材料特性的非线性、不可逆和对温度敏感,其在强场下工作与在弱场情况下工作电磁特性有很大不同。弱场下测量结果不能反映磁性器件工作在强场下的情况;后一种方法虽随主机在强场下应用,但不能得到被测器件电磁参数。磁芯损耗需要专用仪器才能测量。 高频开关电源变压器的上述测试分析现状影响了此类器件的开发和生产。 需要开发一种仪器或测试系统,这种测试系统能够模拟实际工作条件,完成对高频开关电源变压器主要电磁参数分析,例如,各种负载(包括满载和空载)情况下变压器初级复数阻抗z、有效初级电感L,通过功率Pth、功率损耗PT、传输效率η以及在指定频率下磁芯的传输功率密度等,我们称这种模拟实际工作条件的测试为‘动态’测试。作为磁性器件综合测试系统,还要求具有对磁芯材料功率损耗分析功能。在电磁机器进一步小型化、高频化和采用高密度组装情况下对器件进行‘动态’分析,对加速象高频开关电源之类的电磁器件开发、提高器件质量显得特别重要。 2 测试系统简介 JP2581B+JP619B材料功耗及器件功率测量系统是一种交流电压、电流和功率精密测量装置。其主要测量功能、指标和测量精度非常适用于磁性材料和磁性器件(例如,开关电源变压器)研究开发和磁芯产品快速检测。该系统配套完整,自成体系,无需用户增加额外投资,系统主要测试功能如下: 1、软磁材料及器件交流功率损耗(总功耗PL , 质量比功耗 Pcm , 体积比功耗 Pcv)测量; 2、磁性材料振幅磁导率μa测量; 3、磁芯(有效)振幅磁导率(μa)e测量; 磁芯因素(AL)e.测量 以上测量均符合IEC367--1(或GB9632--88)标准中推荐的测量方法。 4、电感、电容及组成器件(例如,开关电源变压器)等效电磁参数的动态测量和分析; 5、由测量结果分析器件下列参数: z |z| Ls Rs Lp Rp C Q D。 测试系统具有如下使用、操作特点:

相关主题
文本预览
相关文档 最新文档