当前位置:文档之家› 无人驾驶共轴直升机的兴起

无人驾驶共轴直升机的兴起

无人驾驶共轴直升机的兴起
无人驾驶共轴直升机的兴起

飞机结构重要知识点

1,航线结构损伤维修特点 ?数量多——雷击,冰雹,鸟撞,勤务车辆、工作梯撞击等?修理周期较长 ?时间紧迫——需要保障航班正常运营, 2.结构维修基本原则 安全性原则——结构持续适航影响结构持续适航性的损伤,必须立即停场进行结构修理 经济性原则——降低维修成本有计划地进行结构修理:不影响结构持续适航性的损伤,不一定立即进行结构修理 3.目前制约航线结构维修的主要因素 航线技术支援基本上为非结构修理专业人员,普遍缺乏基本结构工程技术支援技能,AOG技术支援基本上依靠结构工程师提供,耽误抢修进度。具体表现在:不能正确应用SRM有效过滤允许损伤极限范围内的结构损伤 不能正确报告结构损伤:提供给结构工程师的结构损伤信息不符合要求,难以满足损伤评估以及修理方案制定需要4.结构种类及其含义 飞机结构分为主要结构(primary structure)和次要结构(secondary structure)两大类 主要结构:传递飞行、地面或者增压载荷的结构。 主要结构包含重要结构(PSE/SSI)和其它主要结构。 重要结构指传递飞行、地面或者增压载荷的关键结构

件或者关键结构组件。重要结构件一旦失效,将导致 飞机灾难性事故 次要结构:仅传递局部气动载荷或者自身质量力载荷的结构。 次要结构失效不影响结构持续适航性/飞行安全。大多 数次要结构主要作用为保证飞机气动外形、降低飞行 时空气阻力。例如翼-身整流罩。 5.门的种类及用途 登机门/勤务门:登机门和勤务门分别为旅客和机组和勤务人员接近客舱内部的通道口。 应急门:紧急出口指紧急情况下的撤离出口 货舱门:用以接近货舱内部区域。 登机梯门:放出后,该梯能形成通道供旅客和机组进入或离开飞机 前设备舱门(Forward access) 电子设备舱门(Electronic equipment compartment) 各种检查盖板(Access Doors)各种勤务盖板(Service Doors)驾驶舱门(Fixed Interior Doors) 6.门的主要/重要结构和次要结构、作用 主要/重要结构:门的蒙皮、结构、止动座和止动销 次要结构:各种检查盖板,各种勤务盖板,驾驶舱门门的蒙皮和结构:

AC-61-20民用无人驾驶航空器系统驾驶员管理暂行规定

中国民用航空局飞行标准司 编号:AC-61-FS-2013-20 咨询通告下发日期:2013年 11月18日 编制部门:FS 批准人:万向东民用无人驾驶航空器系统驾驶员管理暂行规定 1、目的 近年来随着技术进步,民用无人驾驶航空器(也称遥控驾驶航空器,以下简称无人机)的生产和应用在国内外得到了蓬勃发展,其遥控驾驶人员的种类和数量也在快速增加。面对这样的情况,局方有必要在不妨碍民用无人机多元发展的前提下,加强对民用无人机驾驶人员的规范管理,促进民用无人机产业的健康发展。 由于民用无人机在全球范围的发展速度非常快,国际民航组织已经开始为无人机及其相关系统制定标准和建议措施(SARPs)、空中航行服务程序(PANS)和指导材料的任务。这些标准和建议措施预计将在未来几年成熟,因此多个国家推出了临时性管理规定。鉴于此,本咨询通告也属于临时性管理规定,针对目前出现的无人机及其系统的驾驶员实施指导性管理,并将根据行业发展情况随时修订,最终目的是按照国际民航组织的标准

建立我国完善的民用无人机驾驶员监管措施。 2、适用范围 本咨询通告用于民用无人机系统驾驶人员的资质管理。其涵盖范围包括但不限于: (1)无机载驾驶人员的航空器; (2)有机载驾驶人员的航空器,但该航空器可由地面人员或母机人员实施完全飞行控制。 3、法规解释 无论驾驶员是否位于地面或航空器上,无人机系统和驾驶员必须符合民航法规在相应章节中的要求。由于无人机系统中可能没有机载驾驶员,原有法规有关驾驶员部分章节已不能适用,本文件对相关内容进行说明。 4、定义 本咨询通告使用的术语定义: (1)无人驾驶航空器(UA: Unmanned Aircraft),是一架由遥控站管理(包括远程操纵或自主飞行)的航空器,也称遥控驾驶航空器(RPA:Remotely Piloted Aircraft)。 (2)无人机系统(UAS: Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS: Remotely Piloted Aircraft Systems),是指一架无人机、相关的遥控站、所需的指令与控制

飞机结构

飞机组成示意图 (二)飞机的基本组成 飞机有四个基本组成部分:机体、推进装置、飞机系统和机载设备。 1、机体 飞机机体由机翼、机身、尾翼(组)起落架等组成,如图: 机翼是为飞机飞行提供举力的部件,同时,它还作为油箱和起落架舱 的安放位置。机翼的翼型是流线型的,上表面凸起弯曲大,下表面弯曲小 或是平面.机翼的前缘和后缘加装了很多改善或控制飞机气动性能的装 置,这些装置包括副翼、襟翼、缝翼和扰流板等。如图所示 副翼是飞机的主操纵面之一,位于机翼后缘外侧(远离机身),一对 副翼总是以相反的方向偏转,使一侧机翼的升力增加而另一侧机翼的升 力减小,从而使飞机滚转(见图)。襟翼和前缘缝翼都是增加飞机起飞降落 时的升力的装置,以缩短飞机的起降滑跑距离。扰流板是铰接于机翼上 表面的金属薄板,打开时分离上翼面的气流,造成机翼上的升力下降、 阻力增加。在空中扰流板可以协助副翼使飞机滚转,在地面扰流板可起 减速板的作用。民用飞机的燃油箱大多位于机翼内。 机身是飞机的主体,它是左右对称并呈流线型。机身用来装载人员、 货物、安装设备,并将飞机的各部件连接为整体。大型客机机身由机头、 前段、中段、后段和尾锥组成。 机头主要是雷达天线和整流罩;前段和中段为气密增压舱,空间被地板分成上、下两部分,上部为驾驶舱和客舱,下部为货舱、设备舱和起落架舱;后段主要安装尾翼及部分设备;尾锥主要是辅助动力装置的排气管。 尾翼组由垂直尾翼和水平尾翼组成。垂直尾翼包括垂直安定面和方向舵,提供方向(航向)稳定性和操纵性;水平尾翼包括水平安定面和升降舵,提供俯仰稳定性和操纵性. 飞机起落架的主要部件有支柱、机轮、减震装置和收放机构等,其功用主要是使飞机起降时能在地面滑跑和滑行、以及使飞机能在地面移动和停放。现代飞机的起落架都是可以放的,可以大大减小飞机阻力,也有利于飞机姿态的控制。

无人驾驶飞机

无人驾驶飞机 无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动驾驶仪、程序控制装置等设备。地面、舰艇上或母机遥控站人员通过雷达等设备,对其进行跟踪、定位、遥控、遥测和数字传输。可在无线电遥控下像普通飞机一样起飞或用助推火箭发射升空,也可由母机带到空中投放飞行。回收时,可用与普通飞机着陆过程一样的方式自动着陆,也可通过遥控用降落伞或拦网回收。可反覆使用多次。广泛用于空中侦察、监视、通信、反潜、电子干扰等。 一、无人驾驶飞机简介 无人驾驶飞机是一种以无线电遥控或由自身程序控制为主的不载人飞机。它的研制成功和战场运用,揭开了以远距离攻击型智能化武器、信息化武器为主导的“非接触性战争”的新篇章。 与载人飞机相比,它具有体积小、造价低、使用方便、对作战环境要求低、战场生存能力较强等优点,备受世界各国军队的青睐。在几场局部战争中,无人驾驶飞机以其准确、高效和灵便的侦察、干扰、欺骗、搜索、校射及在非正规条件下作战等多种作战能力,发挥着显著的作用,并引发了层出不穷的军事学术、装备技术等相关问题的研究。 二、无人驾驶飞机的构成 无人机主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。 而其中与本专业自动控制有关的主要是无人驾驶飞机的飞控系统。无人机通常具备自动驾驶功能,能按任务要求进行自主飞行,避免人工操作造成的各项限制。飞行控制系统是无人机系统的灵魂和核心组件,是实现无人机自主飞行执行任务的关键设备。 其实飞控系统的定义就是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总合。它包括3个部分: 1、中央操纵机构,具体包括驾驶盘/侧杆和脚蹬。 2、传动机构,包括机械传动和电传。 3、驱动机构,包括液压的和电动的。它可以实现飞机绕纵轴、横轴、立轴旋转,以完成对飞机的飞行姿态和飞行轨迹的控制。 主要用于实现自动驾驶,获得所要求的最佳飞行性能。 三、飞机飞行自动控制系统(automatic flight control system of aircraft)

航空术语缩写简表

航空术语缩写简表 A/THR 自动推力 咨询通告 AC 交流电 ACARS 通讯寻址和报告系统 ACD 适航符合性文件 ACJ 咨询通告-联合 ADIRU 大气数据基准组件 ADR 大气数据基准 ADS-B 广播式自动相关监视(ADS-B)ADS-C 合约式自动相关监视(ADS-C) AFM 飞机飞行手册 AGL 离地高 AIME 独立监控推断 AINS 飞机信息网络系统 ALT 高度 AMC 可接受的符合方式 AMJ 咨询资料包 AMM 飞机维修手册 ANSU 飞机网络伺服组件 AOA 迎角 AOC

航空公司运行控制AP 自动驾驶 APU 辅助动力装置 AR 所需授权 ARINC 航路无线电INC ASD 加速停止距离ASDA 可用加速停止距离ASI 空速指示器 ATA 航协 ATC 空中交通管制ATSU 空中交通服务组件AWO 所有天气操作 BC 背航道 BSCU 刹车和转弯控制组件CAA 民航管理局 CDL 构型偏差清单CDLS 驾驶舱门锁系统CFR 联邦规章代码 CG 重心 CIS 独联体 CLB 爬升 CMP 构型维护和程序CPDLC

管制员飞行员数据链通讯CS 运行规范 CSM/G 恒速马达发电机 CWY 净空道 D-ATIS 数字式自动终端服务 DA 决断高度 DC 直流电 DCL 离场指令 DGAC 民航总局 DH 决断高 DMC 显示管理计算机 DME 测距仪 DNA 国家适航 DNAR 国家的适航条例 DO 文件指令 显示组件 DU 文件单元 EASA 欧洲航空安全局 ECAM 飞机电子中央监控 ED EUROCAE文件 EDTO 延长改航时间运行 EFIS 电子飞行仪表系统EGPWS 增强型近地警告系统

FH-1共轴式无人直升机

“FH FH--1” 无人无人直升直升直升机系统机系统机系统 北方天途航空技术发展北方天途航空技术发展((北京北京))有限公司有限公司 2010年9月

一、用途及功能 用途: “FH-1”无人直升机是经多年科研攻关,自主研发的具有国内先进水平的小型无人直升机。该机采用共轴双旋翼形式,目前在国内,该技术居领先或独有的地位。该机具有尺寸小、结构紧凑、悬停效率高的特点。可在较小的陆地和甲板上起飞和降落,陆地和海上运载方便,可广泛应用于图像传输、对地观测、电子对抗、数据通讯、海上作战、中继转发、空中监测、电力巡线、高压架线、航空摄影等领域。 功能: 1.可以对任务侦察区域在不同高度进行侦察摄像,将图像实时下传。 2.夜间对任务侦察区域,在不同高度进行红外摄像。 3.可以利用无线电测控系统进行自主程序飞行,减轻操作手的负担,又可提高飞行航线精度和目标定位准确性。

二、主要特点 自动起飞 定位降落 稳定悬停 空中任意回转 有效载荷大 续航时间长 飞行稳定性强 低速近距拍摄 抗风能力强 该机采用了独创专利技术:共轴式直升机机械增稳系统。该系统显著增加了无人直升机的飞行稳定性和操纵性。 该机机身采用了独特的金属盒形结构, 机身既是承力结构又是油箱和机载设备舱,结构紧凑,空间利用率高。 该机在国内外首次采用左右对置安装2台活塞发动机的布局形式,改善了发动机的维护性和工作环境,减小了发动机对设备的干扰。在一台发动机出现故障时,另一台发动机可保证飞行器安全降落,提高了飞行器的安全性。 三、主要技术指标 几何参数几何参数::

旋翼直径 2.6 米 桨叶片数 2×2 起落架跨度 0.8 米 机高 1.3 米 发动机功率 2×15 马力 重量重量:: 空机重量 50 公 斤 任务载重+ 燃油 40 公斤 最大起飞重量 90 公斤 飞行性能飞行性能:: 海平面最大平飞速度 100 公 里/小时 海平面巡航速度 60 ~70公里/小时 风力(飞行时) 60 公里/小时 (阵风70公里/小时) 风力(起降时) 36 公里/小时(无阵风) 悬停升限 1500 米 动升限 2500 米 续航时间(速度为60公里/小时) 2 小时(15升油) 2.6 小时 (20升油) 3.3 小时(25升油) 最大航程(速度为60公里/小时) 120 公 里(15升油) 150 公里(20升油); 190 公里(25升油)

无人机结构及系统

第1章 无人机结构与系统 一一无人机结构与系统分为结构和系统两个方面,其中无人机结构主要是指无人机的硬件结构,无人机系统主要是指无人机动力系统二控制站二飞行控制系统二通信导航系统二任务载荷系统和发射回收系统等三 1.1 无人机概述 一一18世纪后期,热气球在欧洲升空,迈出了人类翱翔天空的第一步三20世纪初期,美国莱特兄弟的 飞行者 号飞机试飞成功,开创了现代航空的新篇章三20世纪40年代初期第二次世界大战时,德国成功发射大型液体火箭V-2,把航天理论变成现实三1961年,苏联航天员加加林乘坐 东方1号 宇宙飞船在最大高度为301k m的轨道上绕地球一周,揭开了人类载人航天器进入太空的新篇章三 无人机的起源可以追溯到第一次世界大战,1914年英国的两位将军提出了研制一种使用无线电操纵的小型无人驾驶飞机用来空投炸弹的建议,得到认可并开始研制三1915年10月,德国西门子公司成功研制了采用伺服控制装置和指令制导的滑翔炸弹三1916年9月12日,第一架无线电操纵的无人驾驶飞机在美国试飞三1917 1918年,英国与德国先后研制成功无人遥控飞机三这些被公认为是遥控无人机的先驱三 随后,无人机被逐步应用于靶机二侦察二情报收集二跟踪二通信和诱饵等军事任务中,新时代的军用无人机很大程度上改变了军事战争和军事调动的原始形式三与军用无人机的百年历史相比,民用无人机技术要求低二更注重经济性三军用无人机技术的民用化降低了民用无人机市场进入门槛和研发成本,使得民用无人机得以快速发展三 目前,民用无人机已广泛应用于航拍二航测二农林植保二巡线巡检二防灾减灾二地质勘测二灾害监测和气象探测等领域三 未来,无人机将在智能化二微型化二长航时二超高速二隐身性等方向上发展,无人机的市场空间和应用前景非常广阔三 中国民用航空局飞行标准司在2016年7月11日颁布的‘民用无人机驾驶员管理规定“(A C-61-F S-2016-20-R1),其对无人机及相关概念作了定义三

无人驾驶靶机飞行控制系统设计

无人驾驶靶机飞行控制系统设计 2010-06-22 15:39:08 作者:admin来源: 介绍了无人驾驶靶机的飞行控制系统,详细讨论了系统的功能、基本组成、自动驾驶仪控制规律、发动机控制原理、回收控制方案及系统软件设计等。 靶机是无人机的一种主要类型,其作用在平时可应用于防空武器系统的试验鉴定;在战时,可用作诱饵或假目标。90年代中期由我单位设计定型的某型号无人靶机采用小型活塞式发动机,固体火箭助推起飞,伞降回收方式,具有良好的战场机动。该靶机的飞行控制系统采用比例式数模混合控制方案,把变参数控制方法应用于飞机姿态角和高度的控制规律中,使飞机在动态气压、高度、阵风等环境变化扰动的不良条件下,都有良好的稳定性和飞行品质,同时,该控制系统中的发动机控制,回收控制方案合理,可靠性高,本文介绍该靶机飞行控制系统的功能、基本组成、控制原理以及系统软件设计等。 1 系统基本功能及组成 系统功能如下: ①稳定飞机的俯仰角、倾斜角、航向角,保证飞机在给定气压高度上飞行,在飞行过程中,给定的气压高度值可连续改变; ②操纵飞机按给定的俯仰角、倾斜角、航向角飞行,在飞行过程中,俯仰角和倾斜角随飞行高度变化而自动调整,定向角度值可在0~360°范围内任意设定; ③随着飞行高度和飞行速度变化自动改变控制参数; ④接收和执行遥控指令,改变飞行状态,执行放拖靶,投放诱饵弹,点燃曳光弹等作业任务; ⑤采集飞行状态参数,发送给遥测调制器及发射机,下传至地面控制站; ⑥飞行航线可预编程,并且具有自动返航功能,在无线电控制范围内,能控制飞机自动

飞回地面控制站上空; ⑦进行发动机控制,回收控制及飞行故障的应急处理。 该系统由垂直陀螺、高度空速传感器、航向传感器、飞行控制计算机、舵机、电源、整机电缆等组成,如图1所示。 图1 飞行控制系统组成框图 2 系统控制原理 2.1 自动驾驶仪控制规律 在略去舵回路惯性后,控制系统纵向和横向两个通道自动驾驶仪调节规律如下: (1) (2)

蜜蜂28(M28)无人直升机系统框图介绍

蜜蜂28(M28)无人直升机介绍 M28无人直升机系统框图 一、 M28无人直升机简介 M28无人直升机经由多年的研究论证和试验研制,是目前中国军民用市场上具有完全自主知识产权的最成熟、载重量最大的国产无人直升机。 M28无人直升机参数介绍 M28无人直升机 动力系统 发动机 发电机 共轴反桨动部件 自动驾驶系 统 GPS 大气数据机 惯性测量单 元 气压高度计无线电高度 计磁航向计捷联惯导 舵系统 舵机 舵机驱动系 统光电吊舱 增稳云台 可见光、红外影像

旋翼直径 5.1m 机身高度 2.2m 机身宽度 1.5m 总重380kg(海平面) 有效载荷80kg (海平面) 续航时间3~4小时 动升限3000m 最大飞行速度120km/s 巡航速度100km/s 悬停定位水平方向CEP(圆概率误差)< 5m 悬停定位高度方向误差<1.8m 直线航线飞行误差<15m 数传电台有效距离10-180Km M28总体尺寸设备舱尺寸如图所示: M28外型图

M28总体尺寸 M28设备舱尺寸 完全自主起降 M28无人直升机采用完全自主垂直起降系统,不需要人为干预即可以完成从起飞、航线飞行到降落的整个过程。 有效载荷80公斤 M28无人直升机以反桨共轴直升机为机体,无尾桨的气动特点使其结构紧凑,动力效率高,避免了飞行中比例高达75%的由尾桨失效引起的事故,尤其适用于海上平台起降。其有效商用载荷达到80公斤,一个外挂架和一个尺寸为50cm

×50cm×40cm的载荷舱均可使用。 多余度设计 M28无人直升机采用HeliAP自动驾驶仪和整体设计的机身,具有可靠的多余度飞行控制和舵系统,用户通过10-180公里的可靠数据链路和简洁的图形用户界面甚至可以操纵直升机在雨中完成从起飞到着陆的整个任务。 M 28无人直升机的机身采取单体横造的高级复合材料外壳,它提供了卓越的强度/重量比例,动力传动系统原件航空级铝钛材料。北京拓云海智能设备技术有限公司正与民航局密切合作,确保了设计、生产和系统的运作符合有关民航条例。 以下就从分系统方面作一下详细介绍。 二、动力系统 1.发动机 目前M28使用的发动机是奥地利生产的Rotax912S四缸四冲程发动机,发动机最大起飞功率100马力,最大持续功率95马力,可以达到海拔3000m高度 Rotax912S 2.发电机 发电机采用德国Bosch的专用发电机,可以向有效载荷提供12伏和24伏高达600瓦的电力。

最全面的无人机分类

一、什么是无人机? 无人机是无人驾驶飞机的简称(Unmanned Aerial Vehicle,LHUAS),是利用无线电遥控设备和自备的程序控制装置的不载人飞机,包括无人直升机、固定翼机、多旋翼飞行器、无人飞艇、无人伞翼机。广义地看也包括临近空间飞行器(20-100公里空域),如平流层飞艇、高空气球、太阳能无人机等。从某种角度来看,无人机可以在无人驾驶的条件下完成复杂空中飞行任务和各种负载任务,可以被看做是“空中机器人”。 按照不同结构来分类,无人机可主要有固定翼无人机、无人直升机和多旋翼无人机三大平台,其它小种类无人机平台还包括伞翼无人机、扑翼无人机和无人飞船等。固定翼无人机是军用和多数民用无人机的主流平台,最大特点是飞行速度较快;无人直升机是灵活性最强的无人机平台,可以原地垂直起飞和悬停;多旋翼(多轴)无人机是消费级和部分民用用途的首选平台,灵活性介于固定翼和直升机中间(起降需要推力),但操纵简单、成本较低。 按不同使用领域来划分,无人机可分为军用、民用和消费级三大类,对于无人机的性能要求各有偏重:1)军用无人机对于灵敏度、飞行高度速度、智能化等有着更高的要求,是技术水平最高的无人机,包括侦察、诱饵、电子对抗、通信中继、靶机和无人战斗机等机型;国内有最具代表性的无人机“天将” 2)民用无人机一般对于速度、升限和航程等要求都较低,但对于人员操作培训、综合成本有较高的要求,因此需要形成成熟的产业链提供尽可能低廉的零部件和支持服务,目前来看民用无人机最大的市场在于政

府公共服务的提供,如警用、消防、气象等,占到总需求的约70%,而我们认为未来无人机潜力最大的市场可能就在民用,新增市场需求可能出现在农业植保、货物速度、空中无线网络、数据获取等领域;国内有最具代表新盖的DJI. 3)消费级无人机一般采用成本较低的多旋翼平台,用于航拍、游戏等休闲用途。

无人机自动驾驶仪

无人机自动驾驶仪 1.自动驾驶仪(autopilot): 按一定技术要求自动控制飞行器的装置。在有人驾驶飞机上使用自动驾驶仪是为了减轻驾驶员的负担,使飞机自动地按一定姿态、航向、高度和马赫数飞行。飞机受暂时干扰后,自动驾驶仪能使它恢复原有的稳定飞行状态,因此,初期的自动驾驶仪称为自动稳定器。自动驾驶仪与飞机上其他系统交联还可实现对飞机的控制。在导弹上,自动驾驶仪起稳定导弹姿态的作用,故称导弹姿态控制系统。它与导弹上的或地面的导引装置交联组成导弹制导和控制系统,实现稳定和控制的功能。 1.1发展概况 1914年美国人E.斯派雷制成电动陀螺稳定装置,这是自动驾驶仪的雏型。30年代,为了减轻驾驶员长时间飞行的疲劳,开始使用三轴稳定的自动驾驶仪。它的主要功用是使飞机保持平直飞行。50年代,通过在自动驾驶仪中引入角速率信号的方法制成阻尼器或增稳系

统,改善了飞机的稳定性。50年代以来自动驾驶仪发展成为飞行自动控制系统。50年代后期,又出现自适应自动驾驶仪,它能随飞行器特性的变化而改变自身的结构和参数。60~70年代,数字式自动驾驶仪应运而生,它在“阿波罗”号载人飞船登月舱的登月过程中得到应用。 1.2原理和组成 自动驾驶仪是模仿驾驶员的动作驾驶飞机的。它由敏感元件、计算机和伺服机构组成。当某种干扰使飞机偏离原有姿态时,敏感元件(例如陀螺仪)检测出姿态的变化;计算机算出需要的修正舵偏量;伺服机构(或称舵机)将舵面操纵到所需位置。自动驾驶仪与飞机组成反馈回路,保证飞机稳定飞行。 1.3分类和特点 自动驾驶仪可按能源形式、使用对象、调节规律等分类。 ①按能源形式:分为气压式、液压式、电气式或者是这几种形式的组合。现代超音速飞机多安装电气(或电子)-液压式自动驾驶仪。气压式伺服机构主要用于导弹。 ②按使用对象:分为飞机自动驾驶仪和导弹自动驾驶仪。飞机自动驾驶仪多具有检测飞机姿态角的敏感元件,能稳定飞机的姿态角。为了提高这种自动驾驶仪的稳定效果,可配合使用速率陀螺仪。战术导弹只需要稳定角速度,其姿态角根据目标的运动而改变,因此,在自动驾驶仪中不设检测角位置的敏感元件。巡航导弹、战略导弹和运载火箭需要稳定姿态角,在这些飞行器的自动驾驶仪中仍有检测姿态角的敏感元件。 ③按调节规律:自动驾驶仪的调节规律(即数学模型)表示伺服机构的输出量与被调参量之间的函数关系。飞机自动驾驶仪依调节规律的不同分为比例式自动驾驶仪和积分式自动驾驶仪。比例式自动驾驶仪是以伺服机构输出的位置偏移量(如舵偏角)与被调参量(如姿态角)的偏差成比例的原理工作的。它的结构简单,应用很广,但在干扰作用下会产生静态误差。积分式自动驾驶仪是以伺服机构输出的位置偏移量与被调参量偏差的积分成比例的原理工作的,它没有静态误差,但系统的稳定性差,结构复杂,应用受到一定限制。 导弹自动驾驶仪按被调参量的性质可分为位置式自动驾驶仪、定向式自动驾驶仪和加速度式自动驾驶仪。位置式自动驾驶仪的被调参量是飞行器的角位置(即姿态角),伺服机构的输出量与姿态角的偏差成比例。定向式自动驾驶仪的被调参量是飞行器的姿态角速度,伺服机构的输出量与姿态角速度的偏差成比例。加速度式自动驾驶仪的被调参量是飞行器的法向加速度,伺服机构的输出量与法向加速度的偏差成比例。 现代自动驾驶仪的趋势是向数字化和智能化方向发展。80年代以前,战术导弹由于工

捕食者无人机的原理和结构

捕食者无人机的原理和结构 MQ-1 捕食者(Predator)是一种无人机,美国空军将其描述为“中海拔、长时程”(MALE)无人机系统。它可以扮演侦察角色,可发射两枚AGM-114地狱火飞弹。它是一种遥控飞行器,机长8.27米,翼展14.87米,最大活动半径3700公里,最大飞行时速240公里,在目标上空滞空时间24小时,最大续航时间60小时。捕食者无人机装有光电/红外侦察设备、GPS导航设备和具有全天候侦察能力的合成孔径雷达,在4000公尺高处分辨率为0.3米,对目标定位精度0.25米。可采用软式着陆或降落伞紧急回收。 军事指挥官们要应用各种战略和战术,力求以最少的资源和战斗人员来给敌人造成最沉重的打击。这正是开发RQ-1和MQ-1型“捕食者”无人机的核心原则。这种高科技飞行器可以由远离战斗危险数公里之外的机组进行控制,并能够在最危险的战场上执行侦察、战斗和支援任务。在最糟糕的情况下,即使有一架“捕食者”飞机在战斗中损失了,那么作战人员也只需派出一架新的无人机,而且在短时间内就可以把它送上天空——整个过程中不会发生常规飞机坠毁所导致的人员伤亡或被俘的惨重损失。 “捕食者”曾经和有人驾驶飞机并肩战斗,也曾为地面部队提供过空中支援,还曾对敌方防空力量尚未被完全压制的地区实施打击。另外,它们还可以代替载人飞机在非常危险的环境中(如远海或受到生化污染的环境)执行任务。而且,即使在装载了MTS系统之后,“捕食者”MQ-1型无人机仍能有效地执行战场侦察任务。 一.捕食者无人机的发展历程. 捕食者远程无人机,是作为“高级概念技术验证”而从1994年1月到1996年6月发展起来的。加利福尼亚州圣地亚哥的通用原子公司得到了第一份合同,首飞于1994年,并于当年具备了实战能力。 2002年6月,美国空军正式将携带“地狱火”的RQ-1B命名为MQ-1B。M表示多用途,反映了“捕食者”从侦察无人机发展为多任务型飞无人机。正式的MQ-1B无人机将装载雷神公司的多频谱瞄准系统,采用一个增强型热成像器、高分辨率彩色电视摄像机、激光照射器和激光测距器。此外还可能装Talon Radiance超频谱成像器,可穿透树叶探测隐蔽的地面目标。同时装有信号情报装置。 1998年5月,“捕食者”系统开始进行Block 1升级计划。改进包括一个用于减轻系统工作的系统,使得侦察信息在系统内部不受损失,提供保密空中交通管制语音中转,Ku波段卫星调谐和空军任务支援系统。 2001年3月“捕食者-B”无人机001号首飞。该项目包括具有不同结构的3架飞机。“捕食者”B001装备一台通用电气公司的TPE-331-10T涡轮螺桨发动机,起飞重量2900公斤,能携带340千克的负载,在15200米的高度以370千米/小时的速度巡航飞行。目前正在制造的“捕食者”B002号机将使用一台威廉姆斯公司的FJ44-2A涡喷发动机,可在约18300米的高度以500千米/小时的速度飞行。其飞行试验于2001年秋进行。“捕食者”B系列的最后机种ALTAIR将用于科学和商业用途,需要具有较大的负载能力和15850米的升限。ALTAIR将装备通用电气公司的涡桨发动机。它能同时执行各种大气研究任务,并且通过卫星将搜集到的数据实时发送出去。 “捕食者”B基型单价在250万美元至450万美元之间。B型能够在5000米高度至10000米高度之间执行任务,约为基型的两倍。飞行速度为基型的三倍。 下一步的计划还包括发射FIM-92“毒刺”近距地空导弹的试验。另外“从无人机向战斗机传送图像”的试验也在进行。。

共轴双桨无人直升机

飞行器名称:SERVOHELI 260共轴双桨汽油动力直升机 产品介绍: 复合式共轴双桨无人直升机是我公司经多年科研攻关,自主研发的具有国际先进水平的小型无人直升机。 该机完全自主研发,更改了俄式共轴通过桨距离差改变航向的结构缺陷,采用共轴双主旋翼形式复合了尾桨设计,使安全和飞行稳定性、环境适应性均有所提高,在结构上实现俄式共轴体积无法小型化的弊端,使直升机完成不炸桨情况下的安全伞降回收。目前在国内,该技术居领先或独有的地位。这款无人直升机在2011年国际无人机大赛上取得佳绩,拥有完全知识产权。截止2012年3月,这款复合式共轴双桨直升机已经申请到国家知识产权局发明专利2项,实用新型专利1项,外观设计专利2项。 几何参数:

机体长度:1800mm 机体宽度:300mm 机体高度:600mm 旋翼直径:1600mm 起落架跨度:400mm 桨叶片数:2×2 发动机功率:26 cc 重量: 空机重量:16公斤 任务载重:5公斤 最大起飞重量:25公斤 飞行性能: 海平面最大平飞速度:80 公里/小时 海平面巡航速度:50~60公里/小时 风力(飞行时):40公里/小时(阵风50公里/小时) 风力(起降时):26公里/小时(无阵风) 实用升限:1800 米 最大续航时间:1 小时 燃料:97(93)号车用汽油+高级摩托车2冲程油 启动方式: 12v(45Ah以上)直流车用电瓶地面启动。发动机自带启动方式。实现目标: 同级别直升机任务载重提高到130%; 抗风飞行能力比传统直升机提高150% 安全性比传统单旋翼直升机提高400%; 安定性能在结构上不依靠平衡仪的情况下实现自主悬停。 主要特点:

论无人驾驶飞机在电视新闻采访中的运用(同名21189)

论无人驾驶飞机在电视新闻采访中的运用(同名21189)

论无人驾驶飞机在电视新闻采访中的运用 无人驾驶飞机简称“无人机”,在词典中的定义是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动驾驶仪、程序控制装置等设备。地面、舰艇上或母机遥控站人员通过雷达等设备,对其进行跟踪、定位、遥控、遥测和数字传输。广泛用于空中侦察、监视、通信、反潜、电子干扰等。我们看到在使用用途中并没有提到新闻报道中使用无人机,但是经过最近发生在云南的一次事情,也许会让无人机的定义有了新变化。 2012年9月7日,云南昭通市彝良县与贵州毕节交界处发生5.7级地震,震后几天,某电视台记者搭乘成都军区直升机飞到受灾最重的洛泽河镇上空进行航拍,并做了采访报道。在当天的电视新闻直播中,我们看到从直升机上拍摄的画面总是固定在远远的大景上,只看得见层峦叠嶂的山脉和那条蜿蜒前进的洛泽河,这时突然出现了几个看得见陆地上倒塌房屋以及救灾帐篷等受灾地区的中近景画面,还有滑坡后在山体上留下的条条痕迹以及当地发生洪水后,被淹的帐篷街道,这些画面质量明显不如电视台专业摄像机在直升机上拍摄的画面色彩鲜亮,与电视台高清摄像机不同,这些画面右上角还有一个显示几点几分的时间码。虽然画面还原度不能与专业摄像机相比,但是这些画面让观众看到了最想看的“灾区到底怎么样了”,这些画面向观众及时传达了受灾地区的详细面貌,有助于观众更好地了解灾情。后来,作者通过了解得知这些灾区中近景画面并不是由电视台拍摄的,而是由一名无人机发烧友拍摄的,他花费10多万元,购买了一架无人机并在上面捆绑上摄像机,在灾区上空拍摄下了这些珍贵的画面。我不经问,为什么负责采访新闻的电视台没能做到的事,他做到了,后来了解到这固然

《民用无人驾驶航空器系统驾驶员管理暂行规定》

中 国 民 用 航 空 局 飞 行 标 准 司 编 号:AC-61-20 咨询通告下发日期:2013年 XX月XX日 编制部门:FS 批 准 人: 民用无人驾驶航空器系统驾驶员管理暂行规定 1、目的 近年来随着技术进步,民用无人驾驶航空器(也称遥控驾驶航空器,以下简称无人机)的生产和应用在国内外得到了蓬勃发展,其遥控驾驶人员的种类和数量也在快速增加。面对这样的情况,局方有必要在不妨碍民用无人机多元发展的前提下,加强对民用无人机驾驶人员的规范管理,促进民用无人机产业的健康发展。 由于民用无人机在全球范围的发展速度非常快,国际民航组织已经开始为无人机及其相关系统制定标准和建议措施(SARPs)、空中航行服务程序(PANS)和指导材料的任务。这些标准和建议措施预计将在未来几年成熟,因此多个国家推出了临时性管理规定。鉴于此,本咨询通告也属于临时性管理规定,针对目前出现的无人机及其系统的驾驶员实施指导性管理,并将根据行业发展情况随时修订,最终目的是按照国际民航组织的标准

建立我国完善的民用无人机驾驶员监管措施。 2、适用范围 本咨询通告用于民用无人机系统驾驶人员的资质管理。其涵盖范围包括但不限于: (1)无机载驾驶人员的航空器; (2)有机载驾驶人员的航空器,但该航空器可由地面人员或母机人员实施完全飞行控制。 3、法规解释 无论驾驶员是否位于地面或航空器上,无人机系统和驾驶员必须符合民航法规在相应章节中的要求。由于无人机系统中可能没有机载驾驶员,原有法规有关驾驶员部分章节已不能适用,本文件对相关内容进行说明。 4、定义 本咨询通告使用的术语定义: (1)无人驾驶航空器(UA: Unmanned Aircraft),是一架由遥控站管理(包括远程操纵或自主飞行)的航空器,也称遥控驾驶航空器(RPA:Remotely Piloted Aircraft)。 (2)无人机系统(UAS: Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS: Remotely Piloted Aircraft Systems),是指一架无人机、相关的遥控站、所需的指挥与管制

无人飞行器的设计

远程无线通信系统第1章绪论 1.1 引言 1.2 课题研究背景 1.2.1 国内外研究现状 1.2.2 市场需求 1.3 研究内容和意义 1.3.1 研究内容 1.3.2 研究意义 1.4 本文结构 第2章无人机中继系统概述 2.1 无人机中继系统的总体结构 2.2 无人机的控制系统 2.3 无人机的实时图像传输系统 2.4 本章小结 第3章实时图像传输系统 3.1 摄像头 3.1.1 DSP控制芯片 3.1.2 图像传感器 3.1.3 镜头 3.3 摄像头的选择 3.4 图传频率 3.4.1 我国无线频率规划 3.4.2 无线图传频率选择 3.5 图传天线 3.5.1 天线的介绍 3.5.2 天线的选择 3.6 图传系统传输距离的估算 第4章动力系统 4.1 电机 4.2 舵机 4.2 电池 第5章GPS定位及飞机控制系统 5.1 GPS模块 5.2 飞控模块

第1章绪论 1.1引言 无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动驾驶仪、程序控制装置等设备。地面、舰艇上或母机遥控站人员通过雷达等设备,对其进行跟踪、定位、遥控、遥测和数字传输。可在无线电遥控下像普通飞机一样起飞或用助推火箭发射升空,也可由母机带到空中投放飞行。回收时,可用与普通飞机着陆过程一样的方式自动着陆,也可通过遥控用降落伞或拦网回收。可反覆使用多次。广泛用于空中侦察、监视、通信、反潜、电子干扰等。 本课题研究一套无人机中继系统,该系统是由目前市面上可购买到的不同模块组成。本课题研究的中继系统包括:摄像头模块、图像传输模块、动力模块、GPS定位模块及飞控模块;该无人机搭载此中继系统可实现手动遥控和飞机自主飞行两种飞行模式,飞机在飞行过程中,可以将机载摄像头所拍摄到的视频信息实时的传回地面控制台。具备此功能的无人机具有广阔的应用前景,不仅成本低还可以派到非常恶劣的环境中执行任务而不用担心人员损失。 1.2课题研究背景 随着控制技术的不断提高和智能控制理论的完善,在飞机中出现了一类不需要人驾驶就能够执行任务的飞机——无人机。无人机以其优越的性能,在现代高科技战争中发挥着独特的作用。无人飞机,顾名思义,就是不用驾驶员驾驶,而依靠嵌在飞机内的自动飞机驾驶仪器或地面无线电遥控飞行的飞机。无人机可以专门实际造型制作,也可以由普通飞机改造制成。无人飞机跟普通飞机一样,必须具备起落装置,机身、机翼、机载控制系统等,还因无人驾驶,必须配备自动驾驶仪、电子计算机、自动起落装置、程序控制装置等,因要求实现远距离控制,必须装有遥控接收机、电子摄像机等实时控制设备,相应的在遥控站设有机外遥控站、起飞装置和监测系统。 1.2.1 国内外研究现状 无人机出现在1917年,早期的无人驾驶飞行器的研制和应用主要用作靶机,应用范围主要是在军事上,后来逐渐用于作战、侦察及民用遥感飞行平台。20世纪80年代以来,随着计算机技术、通讯技术的迅速发展以及各种数字化、重量轻、体积小、探测精度高的新型传感器的不断面世,无人机的性能不断提高,应用范围和应用领域迅速拓展。世界范围内的各种用途、各种性能指标的无人机的类型已达数百种之多。续航时间从一小时延长到几十个小时,任务载荷从几公斤到几百公斤,这为长时间、大范围的遥感监测提供了保障,也为搭载多种传感器和执行多种任务创造了有利条件。 1.国内研究现状 我国无人机发展起步于上世纪50年代末。上世纪90年代以来,西北工业大学、北京航空航天大学和南京航空航天大学三所高校无人机事业蓬勃发展,并相继成立了无人机专门研究机构。迄今,上述三所高校已为国家研发了几十个型号上千架无人机。 2000年以来,中航工业集团、航天科工集团、航天科技集团、电子科技集团公司下属一些院所也开始无人机研制,加快了我国无人机的发展步伐。据不完全统计,国内从事无人机的单位超过300家,从事无人机总体(提供无人机系统)的单位超过40家。据了解,目前绝大部分还只是停留在研制、生产阶段,更多的是满足特定的个别用户的定制应用服务

民用微型共轴无人机历史现状和前景

民用微型共轴无人机历史现状和前景 图:旋翼类共轴无人机。 本文的目的:1、介绍什么是无人机。2、介绍微型无人飞行器的历史。3、介绍民用微型飞行器市场的目前状况。 首先,无人机就是不载人的飞行器,而说到飞行器,通常我们把飞行器分为三类。 1、固定翼(fixed wing)。平时坐的波音747空客A380,还有F-16歼-15之类的都是固定翼飞机。顾名思义就是翅膀形状固定,靠流过机翼的风提供升力。动力系统包括桨和助推发动机。固定翼根据机翼尺寸的不同还有很多小的分类,在此不细说。固定翼飞行器的优点是在三类飞行器里续航时间最长、飞行效率最高、载荷最大,缺点是起飞的时候必须要助跑,降落的时候必须要滑行。 2、单旋翼直升机(helicopter)。特点是靠一个或者两个主旋翼提供升力。如果只有一个主旋翼的话,还必须要有一个小的尾翼抵消主旋翼产生的自旋力。为了能往前后左右飞,主旋翼有极其复杂的机械结构,通过控制旋翼桨面的变化来调整升力的方向。动力系统包括发

动机、整套复杂的桨调节系统、桨。直升机的优点是可以垂直起降,续航时间比较中庸,载荷也比较中庸。缺点是极其复杂的机械结构导致了比较高的维护成本。 3、微型旋翼飞行器(multi-rotor)。空机重量小于7公斤,具有两个或者更多个旋翼的直升机,也能垂直起降,多旋翼主要利用相反方向转动的旋翼来克服反扭矩,这种飞行器操作简单,如果是共轴双旋翼飞行器,同样基本的动力源,任务载荷要大于单旋翼的飞行器30%左右。下图是共轴无人直升机的动力系统结构,共轴双旋翼的优点是控制简单,能垂直起降,任务载荷大,缺点是结构重量偏大。 图:旋翼类共轴直升机。 上文谈到了三种飞行器外形和续航时间的不同点,这里要再说一些更理论的不同之处。 首先,固定翼是自稳定系统,简单说就是固定翼飞上天、助推发动机稳定工作之后,不需要怎么控制,固定翼就能自己抵抗气流的干扰保持稳定。此外对于飞行器姿态控制来说,固定翼是完整驱动系统,意思是它在任何姿态下可以调整到任何姿态,并且保持住这个姿态(当然失速的时候不可以,但是失速是特殊情况,我们也可以忽略……)。 其次,单直升机是不稳定系统,飞上天之后如果不施加控制,一阵风吹来就翻了。不过还好的是,直升机也是完整驱动系统,可以自由调整姿态。这是因为直升机的桨面不但可以产生相对机身向上的推力,也可以产生相对机身向下的推力。而且直升机没有失速的问题,什么时候都能调整姿态,可以在天上如散步一般自由运动。所以直升机虽然不稳定、很难控制好,但是姿态翻了的时候完全可以控制回到正常的姿态。

无人机大全

无人机大全 无人机即无人驾驶飞机,是机上没有驾驶员,*程序控制自动飞行或者由人在地面或母机上进行遥控的飞机.它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机与有人驾驶的飞机相比,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务。 自30 年代国外首次采用无线电操纵的模型飞机作为靶机以后,无人机的发展十分迅速。4 0年代,低空低速的小型活塞式靶机投入实用。50年代出现了高亚音速和超音速高性能的靶机。60年代以后,随着微电子技术、导航与控制技术的发展,一些国家研制了无人驾驶侦察机。无人机的应用领域不断扩大:在军事上用于侦察、通信、反潜、电子对抗和对地攻击;在民用上用于大地测量、资源勘探、气象观测、森林防火和人工降雨;在科研上用于大气取样、新技术研究验证等。 中国无人机的研究始于50年代后期,1959年已基本摸索出安-2和伊尔-28两种飞机的自动起降规律。60年代中后期投入无人机研制,形成了“长空”1靶机、无侦5高空照相侦察机和D4小型遥控飞机等系列,并以高等学校为依托建立了无人机设计研究机构,具有自行设计与小批生产能力。中国生产的各种型别的无人机,基本上满足了国内军需民用,并且逐步走向国际市场。 一、“长空”1靶机系列

靶机是供防空导弹、航空机炮、高射炮试验和打靶用的无人驾驶飞机。50年代采用靶机主要是前苏联制造的拉-17。1968年,国家正式下达任务,要求南京航空学院研制“长空”1中高空靶机。1976年和1977年该院相继研制成功“长空”1中高空靶机和1015B型雷达伞靶。1977年成立无人机研究室,1979年又扩充成为无人机研究所。研究所设总体、结构强度与系统、无线电和电气、发动机四个研究室和两个生产车间。飞行控制系统研究室和特设车间设在自动控制工程系内。1977年以后,南京航空学院又相继研制出“长空”1核试验取样机、“长空”1低空型和大机动型靶机。基本满足了国产多种防空导弹打靶需要,成功地完成了核试验穿云取样任务。 (一)“长空”1中高空型靶机(CK1) 1960年代,由于苏联援助的取消、专家的撤离,解放军空军试验用的拉-17无人靶机严重缺失,国家下决心搞自己的无人靶机,从而促生了长空一号。长空一号(CK-1)高速无人机由位于巴丹吉林沙漠的空军某试验训练基地二站在1965年~1967年成功定型,主要负责人是被誉为“中国无人机之父”的中国工程院院士赵煦将军。1966年12月6 日,长空一号首飞成功。实际上长空一号就是仿制拉-17的产品,从开始仿制到总体设计成功用了三个月。后转由南京航空学院具体负责。在南航,该机型于1976年底设计定型,总设计师为该校的郭荣伟。早在60年代末,该所开始了无人机的研制。长空一号研制成功后,在我国空空武

相关主题
文本预览
相关文档 最新文档