当前位置:文档之家› 材料力学教案(第二章)

材料力学教案(第二章)

材料力学教案(第二章)
材料力学教案(第二章)

山东大学授课教案

课程名称材料力学本次授课内容第二章杆件的内力教学日期第2~5讲

授课教师姓名李文娟职称讲师授课对象本科二年级授课时数 2

教材名称及版本材料力学(蔺海荣主编)授课方式(讲课实验实习设计)讲课

本单元或章节的教学目的与要求

1.理解轴向拉伸和压缩的概念,熟练掌握轴力的计算和轴力图的绘制。

2.理解扭转变形的概念,掌握外力偶矩的计算方法,熟练掌握扭矩的计算和扭矩图的

绘制。

3.理解弯曲变形和平面弯曲的概念,熟练写出剪力方程和弯矩方程并且画剪力图和弯

矩图。

4.熟练掌握根据载荷集度、剪力和弯矩的关系做剪力图和弯矩图。

授课主要内容及学时分配:

轴向拉伸或压缩的概念.轴力与轴力图(50min),扭转的概念.扭矩与扭矩图(50min),弯曲的概念.剪力与弯矩(30min)剪力方程与弯矩方程.剪力图和弯矩图(40min),载荷集度、剪力与弯矩之间的关系(50min)平面刚架与平面曲杆的弯矩内力(30min)

重点、难点及对学生的要求(掌握、熟悉、了解、自学)

重点:各种基本变形杆件内力的计算及其内力图的绘制

难点:内力的正负号的判定,载荷集度、剪力和弯矩之间的微分关系的理解,平面刚架与平面曲杆的弯矩内力

要求:

1.熟练掌握截面法计算轴力,画轴力图。

2.熟练掌握截面法计算扭矩,画扭矩图。

3. 理解对称弯曲的概念。

4.熟练掌握截面法计算剪力与弯矩,写剪力方程与弯矩方程,画剪力图与弯矩图。

5.熟练掌握载荷集度、剪力和弯矩之间的微分关系及其应用。

6.掌握平面刚架与平面曲杆的内力计算。

7.自学叠加法求剪力图、弯矩图。

主要外语词汇

内力internal force,截面法method of sections,轴向拉伸axial tension ,轴向压缩axial compression,轴力axial force,轴力图axial force diagram,扭转torsion,外力偶矩external moment,扭矩图torque diagram,梁beams,弯曲bending,平面弯曲plane bending,简支梁simply supported beam,外伸梁overhanging beam,悬臂梁cantilever beam,剪力shear force,弯矩bending moment,剪力图shear-force diagrams,弯矩图bending-moment diagrams,平面刚架plane frame members,平面曲杆Plane curved bars

辅助教学情况(多媒体课件、板书、绘图、标本、示教等)

多媒体课件、板书

复习思考题

参考教材(资料)

1.《材料力学》[美]S.铁摩辛柯科学出版社出版。

2.《材料力学》(第四版,上、下册)刘鸿文主编高等教育出版社

3 《材料力学》(第三版,上、下册)孙训方主编高等教育出版社

4.《材料力学解题指导及习题集》清华材料力学教研室编高等教育出版社5.《材料力学学习指导》华东材料力学与强度协会编著中国矿业大学出版社

表示轴力沿杆件轴线变化规律的图线。该图一般以平行于杆件轴线的横坐标x 轴表示横截面位置,纵轴表示对应横截面上轴力的大小。正的轴力画在x 轴上方,负的轴力画在x 轴

当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为

m).(N 7024e n

P

M =

3)扭矩、扭矩图

当外力偶矩已知,利用截面法可求任一横截面上的内力偶矩—扭矩,用T 表示。

扭矩的正负号规定:按右手螺旋法则,T 矢量背离截面为正,指向截面为负(或矢量与截面外法线方向一致为正,反之为负)。

表示扭矩随杆件轴线变化规律的图线称为扭矩图。扭矩图作法与轴力图相似。正的扭矩画在x 轴上方,负的扭矩画在x 轴下方。

3.弯曲内力

在梁轴线上的位置,则横截面上的剪力和弯矩可以表示为x 的函数,即)()

(S S x M M x F F ==

上述函数表达式称为梁的剪力方程和弯矩方程。

5)剪力图和弯矩图

为了直观地表达剪力F S 和弯矩M 沿梁轴线的变化规律,以平行于梁轴线的横坐标x 表示横截面的位置,以纵坐标按适当的比例表示响应横截面上的剪力和弯矩,所绘出的图形分别称为剪力图和弯矩图。

剪力图和弯矩图的绘制方法有以下两种:

(1)剪力、弯矩方程法:即根据剪力方程和弯矩方程作图。其步骤为: 第一,求支座反力。

第二,根据截荷情况分段列出F S (x )和M (x )。 在集中力(包括支座反力)、集中力偶和分布载荷的起止点处,剪力方程和弯矩方程可能发生变化,所以这些点均为剪力方程和弯矩方程的分段点。

第三,求控制截面内力,作F S 、M 图。一般每段的两个端点截面为控制截面。在有均布载荷的段内,F S =0的截面处弯矩为极值,也作为控制截面求出其弯矩值。将控制截面的内力值标在的相应位置处。分段点之间的图形可根据剪力方程和弯矩方程绘出。并注明

max

max

M

F S

、的数值。

(2)微分关系法:即利用载荷集度、剪力与弯矩之间的关系绘制剪力图和弯矩图。 载荷集度q (x )、剪力F S (x )与弯矩M (x )之间的关系为:

)()

(S x q dx x dF = )()

(S x F dx

x dM = )()

()(S 2

2x q dx x dF dx

x M d == 根据上述微分关系,由梁上载荷的变化即可推知剪力图和弯矩图的形状。

(a)若某段梁上无分布载荷,即0)(=x q ,则该段梁的剪力F S (x )为常量,剪力图为平行于x 轴的直线;而弯矩)(x M 为x 的一次函数,弯矩图为斜直线。

(b)若某段梁上的分布载荷q x q =)((常量),则该段梁的剪力F S (x )为x 的一次函数,剪力图为斜直线;而)(x M 为x 的二次函数,弯矩图为抛物线。当0>q (q 向上)时,弯矩图为向下凸的曲线;当0

(c)若某截面的剪力F S (x )=0,根据0)

(=dx

x dM ,该截面的弯矩为极值。

利用以上各点,除可以校核已作出的剪力图和弯矩图是否正确外,还可以利用微分关系直接绘制剪力图和弯矩图,而不必再建立剪力方程和弯矩方程,其步骤如下:

第一,求支座反力(对悬臂梁,若从自由端画起,可省去求支反力); 第二,分段确定剪力图和弯矩图的形状;

第三,求控制截面内力,根据微分关系绘剪力图和弯矩图; 第四,确定max

S

F 和max M 。

max

S

F 可能出现的地方:①集中力F 作用处;②支座处。max M 可能出现的地方:①剪

力F S =0的截面;②集中力F 作用处;③集中力偶M 作用处。

6)平面刚架和平面曲杆的弯曲内力

刚架:杆系结构若在节点处为刚性连接,则这种结构称为刚架。

平面刚架:由在同一平面内、不同取向的杆件,通过杆端相互刚性连接而组成的结构。 各杆连接处称为刚节点。

刚架变形时,刚节点处各杆轴线之间的夹角保持不变。静定刚架:凡未知反力和内力能

由静力学平衡条件确定的刚架。

平面刚架各杆的内力,除了剪力和弯矩外,一般还有轴力。作刚架内力图的方法和步骤与梁相同,但因刚架是由不同取向的杆件组成,习惯上按下列约定:弯矩图画在各杆的受压一侧,且不注明正、负号。剪力图及轴力图可画在刚架轴线的任一侧(通常正值画在刚架外侧),且必须注明正负号;剪力正负号的规定与梁相同,轴力仍以拉伸为正,压缩为负。

平面曲杆:轴线为一平面曲线的杆。平面曲杆横截面上的内力情况及其内力图的绘制方法,与刚架相类似。

典型例题分析 例2-1 在图

F 2、F 3、F 4。已知:F 4=4kN 解:1AC 段:以截面分(图(b ))。

由0=∑x F 得

F CD 段:以截面分(图(c))。

由0=∑x F 得

F 2N F DB 段:以截面由0=∑x F 得

443N -=-=F F kN (压力)

3N F 的方向与图中所示方向相反。

2.绘轴力图

以横坐标x 表示横截面位置,纵轴表示对应横截面上的轴力N F ,选取适当比例,绘出轴力图(图(e ))。在轴力图中正的轴力(拉力)画在x 轴上侧,负的轴力(压力)画在x 轴下侧。

例2-2

输出功率分别为P B =解:1=M A =M B =M D 2BC 段:以截面I 部分(图(b))得

负号说明1T 同理,在CA m N 7002?-=--=B C M M T

在AD 段内,

03=-D M T m N 4463?==D M T

3.以横坐标x 表示横截面位置,纵轴表示对应横截面上的扭矩大小,选取适当比例,绘出扭矩图。正的扭矩画在x 轴上侧,负的扭矩画在x 轴下侧。

例2-3

弯矩图。解:1.由,0=∑∑F y F A =

2.在AC段内,

x F (S x M (

在BC 段内

()l x a l Fa

F x F B <<-

=-=,)(S ()()()l x a x l l Fa

x l F x M B ≤≤-=-=,)( 3.求控制截面内力,作剪力图、弯矩图。

S F 图:在AC 、CB 段内,剪力方程均为常数,因此两段剪力图均为平行于x 轴的直线。

在集中力F 作用处,l

Fb

F l Fa F C C =

=右左,-

S S ,左、右两侧截面的剪力值发生突变,突变量F l

Fa

l Fb =--=

)(;M 图:在AC 、CB 段内,弯矩方程)(x M 均是x 的一次函数,因此两段弯矩图均为斜直线。求出控制截面弯矩l

Fab

M M M C B A ===,0,标在x M -坐标系中,并

分别连成直线,即得该梁的弯矩图。显然在集中力F 作用处左、右两侧截面上弯矩值不变,

例2.3.()()82,0,002

ql

l M l M M =??

? ??==

8

,22

max max S ql M ql F ==

在某一段上作用分布载荷,剪力图为一斜直线,弯矩图为一抛物线。且在F S =0处弯

矩M 取得极值。

例2-5 如图2-10所示简支梁,在C 点处受矩为M e 的集中力偶作用,试作梁的剪力图和弯矩图。

解:

2.在在

3.l

l F F e -==S S 0

()()

b

M M l a M M l M M e e =,=-,右左00==

变。

例2-6 如图2-11所示简支梁。解:1.求支反力。

由平衡方程∑=0)(F M B 和∑=0)(F M A

ql F A 83=,ql F B 8

1=

2.列剪力、弯矩方程 AC 段:

qx ql qx F x F A -=-=83)(S 0(<222

1

8321)(qx qlx qx x F x M A -=-=

)20(l

x ≤≤

CB 段:

ql F x F B 81)(S -=-= )2

(l x l

<≤

)(81)()(x l ql x l F x M B -=-= )2

(l x l

≤≤

3.求控制截面内力,绘Q 、M 图

S F 图:AC 段内,剪力方程)(S x F 是x 的一次函数,剪力图为斜直线,求出两个端截面的

剪力值,ql F A 83S =,ql F C 8

1

S -=,标在x F -S 坐标系中,连接两点即得该段的剪力图。CB

段内,剪力方程为常数,求出其中任一截面的内力值,连一水平线即为该段剪力图。梁AB 的剪力图如图2-11(b)所示。

M 图:AC 段内,弯矩方程)(x M 是x 的二次函数,弯矩图为二次曲线,求出两个端截面

的弯矩,0=A M ,2

16

1ql M C =

,分别标在x M -坐标系中。在0S =F 处弯矩取得极值。令剪力方程0)(S =x F ,解得l x 83=,求得2128

9

)83(ql l M =,标在x M -坐标系中。根据上面三

点绘出该段的弯矩图。CB 段内,弯矩方程)(x M 是x 的一次函数,分别求出两个端点的弯矩,标在x M -坐标系中,并连成直线。AB 梁的M 图如图2-11(c)所示。

例2-7

解:1.由平衡方程F 2.由于载荷在A 内力图。

)

()(S 2

2dx x dF dx

x M d =图为向上凸的抛物线。

3.求控制截面的内力值,绘S F 、M 图

S F 图:kN 3S -=右C F ,kN 7S =右A F ,据此可作出CA 和AD 两段S F 图的水平线。kN 7S =右D F ,kN 5S -=左B F ,据此作出DB 段S F 图的斜直线。

M 图:0=C M ,m KN 8.1?-=左A M ,据此可以作出CA 段弯矩图的斜直线。A 支座的约束反力A F 只会使截面A 左右两侧剪力发生突变,不改变两侧的弯矩值,故

m KN 8.1?-===A A A M M M 右左,m kN 4.2?=左D M ,据此可作出AD 段弯矩图的斜直线。D

处的集中力偶会使D 截面左右两侧的弯矩发生突变,故需求出m KN 2.1?-=右D M ,0=B M ;由DB 段的剪力图知在E 处0S =F ,该处弯矩为极值。根据BE 段的平衡条件∑=0y F ,知BE 段的长度为0.5m ,于是求得m kN 25.1?=E M 。根据上述三个截面的弯矩值可作出DB 段的M 图。

对作出的S F 、M 图要利用微分关系和突变规律、端点规律作进一步的校核。如DB 段内

AD 段的S F D 自由端C

例2-7 解:1.对CA 对BA 段距B 端为x 2的截面

()F x F =2N ,()22S qx x F =,())0(2

1

2222l x qx Fa x M <≤-=

??

?

??

-===θθθθθθsin )(cos )(sin )(N S F F F F FR M 2

0πθ≤≤

(3)绘曲杆内力图

由内力方程绘出的内力图如图(c )、(d)、(e )所示。

材料力学第二章计算题

1. 杆系结构如图所示,已知杆AB 、AC 材料相同,[]160=σMPa ,横截面积分别为 9.706=1A mm 2,314=2A mm 2,试确定此结构许可载荷[P ]。(15分) 2. 在图示直径为d=10mm 的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。已知:F1=6kN ,F2=18kN ,F3=8kN ,F4=4kN ,弹性模量E=210GPa 。试求各段横截面上的轴力及作轴力图并求杆的最大拉应力及压应力。 3.图示吊环,载荷F=1000KN ,两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm ,h=90mm ,斜杆的轴线与吊环对称,轴线间的夹角为а=200 。钢的许用应力[б]=120Mpa 。试校核斜杆的强度。 4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa ,试作轴力图并求杆的最大正应力。 5.图示板状硬铝试件,中部横截面尺寸a =2mm ,b =20mm 。试件受轴向拉力P =6kN 作

用,在基长l =70mm 上测得伸长量?l =0.15mm ,板的横向缩短?b =0.014mm 。试求板材料的弹性模量E 及泊松比。 6.钢制直杆,各段长度及载荷情况如图。各段横截面面积分别为A 1=A 3=300mm 2,A 2=200mm 2。材料弹性模量E =200GPa 。材料许用应力[σ]=210MPa 。试作杆的轴力图并校核杆的强度。 7.图示钢杆的横截面面积为2 200mm A =,钢的弹性模量GPa E 200=,求各端杆的应变、伸长及全杆的总伸长 。 8.等截面实心圆截面杆件的直径d=40mm ,材料的弹性模量E=200GPa 。AB =BC =CD =1m ,在B 、C 、D 截面分别作用有P 、2P 、2P 大小的力,方向和作用线如图所示,P=10KN 。①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件C 截面的铅垂位移。 1m 1m 1m 3kN 7kN 6kN C B A D 2m 4m B A C q=5kN/m

材料力学习题册答案-第2章-拉压

第二章 轴向拉压 一、 选择题 1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) A.平动 B.转动 C.不动 D.平动加转动 2.轴向拉伸细长杆件如图2所示,则正确的说法是 ( C ) A.1-1、2-2面上应力皆均匀分布 B.1-1、2-2面上应力皆非均匀分布 C. 1-1面上应力非均匀分布,2-2面上应力均匀分布 D.1-1 面上应力均匀分布,2-2面上应力非均匀分布 F P P 1 1 2 2 图1 图2 3.有A 、B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线( B )材料的弹性模量E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。 A B C 图3 ε σ B A C 图4 p α h b a 图5 4.材料经过冷却硬化后,其( D )。 A .弹性模量提高,塑性降低 B .弹性模量降低,塑性提高 C .比利极限提高,塑性提高 D .比例极限提高,塑性降低 5.现有钢铸铁两种杆件,其直径相同。从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A )。 A .1杆为钢,2 杆为铸铁 B .1杆为铸铁,2杆为钢 C .2杆均为钢 D .2杆均为铸铁 6.如图5所示木接头,水平杆与斜杆成角,其挤压面积A 为( A )。 A .bh B .bh tg C .bh/cos D .bh/(cos -sin ) 7.如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为( C ),计算挤压面积为 ( D ) A . B . C . D (3d+D )

二、填空题 1.直径为d 的圆柱体放在直径为D =3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P ,则基座剪切面的剪力 。 F F h h D d 图6 P d t D 图7 2.判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生 相对错动 趋势的平面;挤压面是构件 相互挤压 的表面。 三、试画下列杆件的轴力图 2 3 1 1 2 F F F F 3 + -解: 2KN 1 1 2 2 3 3 18KN 3KN 25KN 10KN + -15KN 10KN 解: 四、计算题 1.作出图示等截面直杆的轴力图,其横截面积为,指出最大正应力发生的截面,并计 算相应的应力值。 4KN 10KN 11KN 5KN A B C D 解:+ + -轴力图如下: 4KN 5KN

最新材料力学(柴国钟、梁利华)第4章答案电子教案

4.1 试求:(1)图示各梁横截面1-1、2-2、 3-3上的剪力和弯矩;(2)梁的剪力方程和弯矩方程;(3)绘制剪力图和弯矩图。 a a a 解: (a )0 0321 ===S S S F F F F ,,,Fa M Fa M Fa M -=-=-=321 ,,; (b )0 321===S S S F qa F qa F ,,,0 2 1 2 1322 2 1 =-==M qa M qa M ,,; (c )qa F qa F qa F S S S 2 12121321 -===,,,0 03221 ===M M qa M ,,; (d )0 0321 ===S S S F F F F ,,,0 321 ===M Fa M Fa M ,,; 4.2 利用载荷集度、剪力和弯矩之间的微分关 系和积分关系,绘制梁的剪力图和弯矩图。

2F 2F Fa Fa Fa a B A a (a) 2qa a B A a 2 qa 2 qa 2 q (c) 2Fa F 4F /34F /3 4Fa /3 5Fa /3 F /3 F /3 a a a A B F S x (kN) M x (kN m) .F S x (kN) M x (kN m) .F S x (kN) M x (kN m) . a 1.5a a q qa A (f)qa a a a B A 2 qa 2 qa /8 22qa 2 qa 2 q (d) qa 5qa /63qa /27qa /3 7qa /3 4qa /3qa /3 2qa /3 2qa /3 3qa /2 qa /2 qa /2 qa /65qa /6 5qa /6 22qa /3 7qa /6 a a a B A q Fa F S x M x (kN m) .7qa /6 F S x (kN) M x (kN m) 17qa /9 2 5qa /32F S x (kN) M x (kN m)4a /3

材料力学计算题库

第一章绪论 【例1-1】钻床如图1-6a所示,在载荷P作用下,试确定截面m-m上的内力。 【解】(1)沿m-m 截面假想地将钻床分成两部分。取m-m 截面以上部分进行研究(图1-6b),并以截面的形心O为原点。选取坐标系如图所示。 (2)为保持上部的平衡,m-m 截面上必然有通过点O的内力N和绕点O的力偶矩M。 (3)由平衡条件 ∴ 【例1-2】图1-9a所示为一矩形截面薄板受均布力p作用,已知边长=400mm,受力后沿x方向均匀伸长Δ=0.05mm。试求板中a点沿x方向的正应变。 【解】由于矩形截面薄板沿x方向均匀受力,可认为板内各点沿x方向具有正应力与正

应变,且处处相同,所以平均应变即a 点沿x 方向的正应变。 x 方向 【例1-3】 图1-9b 所示为一嵌于四连杆机构内的薄方板,b=250mm 。若在p 力作用下CD 杆下移Δb=0.025,试求薄板中a 点的剪应变。 【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。 第二章 拉伸、压缩与剪切 【例题2.1】 一等直杆所受外力如图2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。 解:在AB 段范围内任一横截面处将杆截开,取左段为脱离体(如图2. 1 (b)所示),假定轴力N1F 为拉力(以后轴力都按拉力假设),由平衡方程 0x F =∑,N1300F -= 得 N130kN F = 结果为正值,故N1F 为拉力。 同理,可求得BC 段内任一横截面上的轴力(如图2. 1 (c)所示)为 N2304070(kN)F =+= 在求CD 段内的轴力时,将杆截开后取右段为脱离体(如图2. 1 (d)所示),因为右段杆上包含的外力较少。由平衡方程 0x F =∑,N330200F --+=

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A.p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 、 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 和L 均为初始值;和L 均为瞬时值; 为初始值,L 为瞬时值;为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 A.外力一定最大,且面积一定最小; B.轴力一定最大,且面积一定最小; # C.轴力不一定最大,但面积一定最小; D.轴力与面积之比一定最大。 9. 图示拉杆的外表面上画有一斜线,当拉杆受力变形时,斜线将 发生。 。 题5图 题6图 题9图

材料力学电子教案

材料力学是固体力学的一个基础分支,是工科重要的技术基础课,只有学好材料力学才能学好与本专业有关的后续课程(例如:机械零件等)。 材料力学与工程的关系:材料力学广泛应用于各个工程领域中,如众所周知的飞机、飞船、火箭、火车、汽车、轮船、水轮机、气轮机、压缩机、挖掘机、拖拉机、车床、铇机、铣机、磨床、杆塔、井架、锅炉、贮罐、房屋、桥梁、水闸、船闸等数以万计的机器和设备、结构物和建筑物,在工程设计中都必须用到材料力学的基本知识。对于某些工程如化学工程,由于客观条件的苛刻,如:高温、高压、低温、低压、易燃、易爆、腐蚀、毒性对于机器和设备的力学设计将提出更高的要求。因此对于各类高等工业大学的学生和实际工程中的工程师们都必须具备扎实的材料力学知识。 第一章绪论 §1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法和应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式 §1.1 材料力学的任务 材料力学主要研究固体材料的宏观力学性能,构件的应力、变形状

态和破坏准则,以解决杆件或类似杆件的物件的强度、刚度和稳定性等问题,为工程设计选用材料和构件尺寸提供依据。 材料的力学性能:如材料的比例极限、屈服极限、强度极限、延伸率、断面收缩率、弹性模量、横向变形因数、硬度、冲击韧性、疲劳极限等各种设计指标。它们都需要用实验测定。 构件的承载能力:强度、刚度、稳定性。 构件:机械或设备,建筑物或结构物的每一组成部分。 强度:构件抵抗破坏(断裂或塑性变形)的能力。 所有的机械或结构物在运行或使用中,其构件都将受到一定的力作用,通常称为构件承受一定的载荷,但是对于构件所承受的载荷都有一定的限制,不允许过大,如果过大,构件就会发生断裂或产生塑性变形而使构件不能正常工作,称为失效或破坏,严重者将发生工程事故。如飞机坠毁、轮船沉没、锅炉爆炸、曲轴断裂、桥梁折断、房屋坍塌、水闸被冲垮,轻者毁坏机械设备、停工停产、重者造成工程事故,人身伤亡,甚至带来严重灾难。工程中的事故屡见不鲜,有些触目惊心,惨不忍睹……因此必须研究受载构件抵抗破坏的能力——强度,进行强度计算,以保证构件有足够的强度。 刚度——构件抵抗变形的能力。 当构件受载时,其形状和尺寸都要发生变化,称为变形。工程中要求构件的变形不允许过大,如果过大构件就不能正常工作。如机床的齿轮轴,变形过大就会造成齿轮啮合不良,轴与轴承产生不均匀磨损,降低加工精度,产生噪音;再如吊车大梁变形过大,会使跑车出现爬坡,

工程材料力学性能-第2版习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、金属的弹性模量主要取决于什么因素为什么说它是一个对组织不敏感的力学性能指标 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别为什么 4、决定金属屈服强度的因素有哪些【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 7、何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 第二章金属在其他静载荷下的力学性能

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学第二章计算题

1.杆系结构如图所示,已知杆AB、AC材料相同,丨-160 MPa,横截面积分别为 A i = 706.9 mm2,A2=314 mm2,试确定此结构许可载荷[P]。(15分) 2. 在图示直径为d=10mm的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。已知:F仁6kN, F2=18kN, F3=8kN, F4=4kN,弹性模量E=210GPa试求各段横截面上的轴力及作轴力图并求杆的最大 ________ 拉应力及压应力。 3?图示吊环,载荷F=1000KN两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm h=90mm斜杆的轴线与吊环对称,轴线间的夹角为 a =20°。钢的许用应力[6 ]=120Mpa。试校核斜杆的强度。 4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa试作轴力图并求杆的最大正应力。 5.图示板状硬铝试件,中部横截面尺寸a= 2mm , b = 20mm。试件受轴向拉力P = 6kN作

用,在基长I = 70mm 上测得伸长量 =1 = 0.15mm ,板的横向缩短 =b = 0.014mm 。试求板材 料的弹性模量E 及泊松比。 6 ?钢制直杆,各段长度及载荷情况如图。各段横截面面积分别为 =200mm 2。材料弹性模量 E = 200GPa 。材料许用应力[tr ]= 210MPa 。试作杆的轴力图 并校核杆的强度。 2 7.图示钢杆的横截面面积为 A =200mm ,钢的弹性模量E =200GP a ,求各端杆的应变、 伸长及全杆的总伸长 。 &等截面实心圆截面杆件的直径 d=40mm ,材料的弹性模量 E=200GPa 。AB = BC = CD = 1m ,在 B 、 C 、 D 截面分别作用有 P 、2P 、2P 大小的力,方向和作用线如图所示, P=10KN 。 ①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件 C 截面的铅垂位移。 9.图示为一轴心受力杆,横截面面积 A A B =A CD = 400mm, A Bc = 200mmo 材料的弹性模量 E=2 X 105MPa 求(1)杆各段横截面上的轴力;(2)杆端D 点的水平位移。 10 .角架受力如图所示。已知夹角为60度.F=20kN,拉杆BC 采用Q235圆钢,[匚钢]=140MPa, 压杆AB 采用横截面为正方形的松木,[■::木]=10MPa ,试用强度条件选择拉杆 BC 的直径d 和 压杆AB 的横截面边长a 。 2 A 1 = A 3 = 300mm , A 2 6 k N 7kN A E } C : [ 1m ■ *1 3kN q=5kN/m B C 4m 2m a 20k N

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

思考题2015年材料力学性能(重点标黄)

和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加 单向静拉伸时实验方法的特征是、、必须确定的。 .韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用

22. 应力状态软性系数:用试样在变形过程中的测得 和的比值表示。 23.微孔聚集型断裂是包括微孔、直至断裂的过程。 24.缺口试样的与等截面光滑试样的的比值。称为“缺口敏感度”。 25.机件在冲击载荷下的断口形式仍为、和。 26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。 27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。 28. 洛氏硬度是在一定的实验力下,将120o角的压入工件表面,用所得的来表示材料硬度值的工艺方法。 28.低温脆性是随的下降,材料由转变为的现象。 29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。 34. 金属材料的疲劳过程也是裂纹的和过程。 35.金属材料抵抗疲劳过载损伤的能力,用或表示。 36.金属在和特定的共同作用下,经过一段时间后所发生的 现象,成为应力腐蚀断裂。 37.应力腐蚀断裂的最基本的机理是和。 38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫 钢的氢致延滞断裂过程可分为、、三个阶 按磨损模型分为:、、、五大类。 44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列、、三类。其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。

《材料力学》第2章_轴向拉(压)变形_习题解

第二章 轴向拉(压)变形 [习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。 (a ) 解:(1)求指定截面上的轴力 F N =-11 F F F N -=+-=-222 (2)作轴力图 轴力图如图所示。 (b ) 解:(1)求指定截面上的轴力 F N 211=- 02222=+-=-F F N (2)作轴力图 F F F F N =+-=-2233 轴力图如图所示。 (c ) 解:(1)求指定截面上的轴力 F N 211=- F F F N =+-=-222 (2)作轴力图 F F F F N 32233=+-=- 轴力图如图所示。 (d ) 解:(1)求指定截面上的轴力 F N =-11 F F a a F F F qa F N 22222-=+?--=+--=- (2)作轴力图 中间段的轴力方程为: x a F F x N ?- =)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 2400mm A =,试求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 MPa mm N A N 50400102023111 1-=?-==--σ MPa mm N A N 2540010102 3222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ [习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 M P a mm N A N 10020010202311111-=?-==--σ MPa mm N A N 3.3330010102 32222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ

材料力学电子教案

Mechannincs of materials Strength of materials Introduction 材料力学是固体力学的一个基础分支,是工科重要的技术基础课,只有学好材料力学才能学好与本专业有关的后续课程(例如:机械零件等)。 材料力学与工程的关系:材料力学广泛应用于各个工程领域中,如众所周知的飞机、飞船、火箭、火车、汽车、轮船、水轮机、气轮机、压缩机、挖掘机、拖拉机、车床、铇机、铣机、磨床、杆塔、井架、锅炉、贮罐、房屋、桥梁、水闸、船闸等数以万计的机器和设备、结构物和建筑物,在工程设计中都必须用到材料力学的基本知识。对于某些工程如化学工程,由于客观条件的苛刻,如:高温、高压、低温、低压、易燃、易爆、腐蚀、毒性对于机器和设备的力学设计将提出更高的要求。因此对于各类高等工业大学的学生和实际工程中的工程师们都必须具备扎实的材料力学知识。 第一章绪论 §1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法和应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式 §1.1 材料力学的任务 材料力学主要研究固体材料的宏观力学性能,构件的应力、变形状态和破坏准则,以解决杆件或类似杆件的物件的强度、刚度和稳定性等问题,为工程设计选用材料和构件尺寸提供依据。 材料的力学性能:如材料的比例极限、屈服极限、强度极限、延伸率、断面收缩率、弹性模量、横向变形因数、硬度、冲击韧性、疲劳极限等各种设计指标。它们都需要用实验测定。 构件的承载能力:强度、刚度、稳定性。 构件:机械或设备,建筑物或结构物的每一组成部分。 强度:构件抵抗破坏(断裂或塑性变形)的能力。 所有的机械或结构物在运行或使用中,其构件都将受到一定的力作用,通常称为构件承受一定的载荷,但是对于构件所承受的载荷都有一定的限制,不允许过大,如果过大,构件就会发生断裂或产生塑性变形而使构件不能正常工作,称为失效或破坏,严重者将发生工程事故。如飞机坠毁、轮船沉没、锅炉爆炸、曲轴断裂、桥梁折断、房屋坍塌、水闸被冲垮,轻者毁坏机械设备、停工停产、重者造成工程事故,人身伤亡,甚至带来严重灾难。工程中的事故屡见不鲜,有些触目惊心,惨不忍睹……因此必须研究受载构件抵抗破坏的能力——强度,进行强度计算,以保证构件有足够的强度。 刚度——构件抵抗变形的能力。 当构件受载时,其形状和尺寸都要发生变化,称为变形。工程中要求构件的变形不允许过大,如果过大构件就不能正常工作。如机床的齿轮轴,变形过大就会造成齿轮啮合不良,轴与轴承产生不均匀磨损,降低加工精度,产生噪音;再如吊车大梁变形过大,会使跑车出现爬坡,引起振动;铁路桥梁变形过大,会引

材料力学性能-第2版课后习题答案

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】

金属材料力学性能练习题

第二章第一节金属材料的力学性能 一、选择题 1.表示金属材料屈服强度的符号是()。 A.σ e B.σ s C.σ b D.σ -1 2.表示金属材料弹性极限的符号是()。 A.σ e B.σ s C.σ b D.σ -1 3.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是()。 A.HB B.HR C.HV D.HS 4.金属材料在载荷作用下抵抗变形和破坏的能力叫()。 A.强度 B.硬度 C.塑性 D.弹性 二、填空 1.金属材料的机械性能是指在载荷作用下其抵抗()或()的能力。 2.金属塑性的指标主要有()和()两种。 3.低碳钢拉伸试验的过程可以分为弹性变形、()和()三个阶段。 4.常用测定硬度的方法有()、()和维氏硬度测试法。 5.疲劳强度是表示材料经()作用而()的最大应力值。 三、是非题 1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。() 2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。() 四、改正题 1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。 2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。 3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。 4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。

5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。 五、简答题 1.说明下列机械性能指标符合所表示的意思:σ S 、σ 0.2 、HRC、σ -1 。 2.说明下列机械性能指标符合所表示的意思:σ b 、δ 5 、HBS、a kv 。 2.2金属材料的物理性能、化学性能和工艺性能 一、判断题 1.金属材料的密度越大其质量也越大。() 2.金属材料的热导率越大,导热性越好。() 3.金属的电阻率越小,其导电性越好。() 二、简答题: 1.什么是金属材料的工艺性能?它包括哪些? 2.什么是金属材料的物理性能?它包括哪些? 3.什么是金属材料的化学性能?它包括哪些?

材料力学第二章习题

材料力学第二章习题

习 题 2.1试画出图示各杆的轴力图 题2.1图 2.2 图示中段开槽的杆件,两端受轴向载荷P 作用,试计算截面1 - 1和截面2 – 2上的正应力。已 知: ,mm b 20=,mm b 100=,mm t 4=。 题2.2图 2.3 图示等直杆的横截面直径mm d 50=,轴向载荷 。 ( 1 ) 计算互相垂直的截面AB 和BC 上正应力和切应力; ( 2 ) 计算杆内的最大正应力和最大切应力。 2.4图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正应力[]σ的1/2。问α为何值时,胶缝处的切应力和

正应力同时达到各自的许用应力。 2.5图示用绳索起吊重物,已知重物, 绳索直径。许用应力,试校核绳索的强度。绳索的直径应多大更经济。 , 2.6冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,镦压力P=1100KN。连杆矩形截面的高度h与宽度b之比为:h/b=1.4。材料为45钢,许用应力【 】=58MPa,试确定截面尺寸h及b。 2.7图示结构杆1与杆2由同一种材料制成,其

许用应力[σ]=100MPa。杆1横截面面积A1=300mm2,杆2横截面面积A2=200mm2,CE=0.5m, ED=1.5m。试按杆1,杆2的强度确定许可载荷[F]。 2.8杆长,横截面积均相同的两杆,一为钢杆另一为灰铸铁杆。欲组装成图示等边三角架。已知 杆长=0.5m,杆的横截面积A=400mm2,钢的许用应力【σ】=160MPa,灰铸铁的许用拉应力 =30MPa,许用压应力=90MPa。试问如何安装较为合理?求这时的最大许可载荷[F]。 2.9图示桁架,由圆截面杆1与杆2组成,并在节点A承受外力F=80kN作用。杆 1,杆2的直径分别为d1=30mm和 d2=20mm,两杆的材料相同,屈服极 限σs=320MPa,安全系数n s=2.0。试校核桁架的强度。 2.9图

材料力学第二章训练题

第二章 拉伸、压缩与剪切训练题(拉伸与压缩) 一、填空及改错题: 1.如图所示多力杆上1-1、2-2、3-3截面上的轴力,分别为F N1 = ,F N2 = ;F N3 = ; A B C D 题1图 题2图 2.如图所示阶梯形杆AB 段横截面积为A 1,BC 段截面积为A 2=2A 1,CD 段截面积为A 3=3A 1,则1-1、2-2、3-3截面上的轴力和应力分别应为F N1= , σ1-1= ;F N2= , σ2-2= ;F N3= , σ3-3= 。 3.如图所示杆受力已知,若总变形量ΔL =0,则F 1与F 2的关系 为 。 题3图 题4图 4.如图所示直杆,受力为F ,AB 段弹性模量为E 1, 截面积为A 1,BC 和CD 段的弹性模量为E 2, CD 段截面积为A 2,则ΔL 的计算式为ΔL = 。 5.如图所示直杆,计算m - m 截面上的轴力时,有人得F N =500+800=1300kN 。这样计算是否正确,为什么?若不正确应如何改正。 题5图 6.如图所示圆形薄板的半径为R ,变形后R 的增量为ΔR ,则沿半径方 向的线应变εR 的计算式为εR = ,沿圆周方向的平均线应变ε的 计算式为ε= 。

题6图 7.如图抗拉压杆刚度为EA 的等直杆,受力如图。试问:下面的计算是否正确?若不正确应如何改正。 1)计算总变形量是否为EA L F EA L F L 2 211+= ?? 2)应变能为EA L F EA L F V 222 22121+=ε 题7图 二、计算题: 1.做(a )(b)图示多力杆的轴力图: F (a) (b) 2.汽车离合器踏板如图示。已知踏板受压力F 1=400N ,拉杆1的直径D =9mm, 杠杆臂长L =330mm, l =56mm, 拉杆的许用应力[σ]=50 MPa ,校核拉杆1的强度。

相关主题
文本预览
相关文档 最新文档