当前位置:文档之家› 流体力学基础讲解

流体力学基础讲解

流体力学基础讲解
流体力学基础讲解

第 二章 流 体 力 学 基础

ξ 1 流体的主要性质

1.1 流体的主要物理性质

1、 流体的流动性

——流体的易变形性

流体的基本属性

流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质

2、流体的连续性

? 连续介质模型

? 流体质点:含有大量分子的流体微团

3、质量和重力特性

– 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量

– 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3)

4、流体的可压缩性与热膨胀性

? 等温压缩系数( m 2/N ):

? 热膨胀系数(1/K )

? 液体的压缩系数和膨胀系数都很小

? 压强和温度的变化对气体密度和体积的变化影响较大

? 可压缩流体与不可压缩流体

5. 流体的粘滞性

(1) 粘滞性:

? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。

? 一切流体都具有粘性,这是流体固有的特性。

? 粘性的物理本质:分子间引力、分子的热运动,动量交换

(2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力:

(3) 粘性系数

动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) :

理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0)

)/(2m N dy u d μτ-=)

(N A dy u

d F μ-=ρμν=

1.3 作用于流体上的力

1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力

当质量力仅为重力:F bx =0,F by =0,F bz = -g

2 表面力

表征:

切向应力(剪切应力):τ =T/(N/m 2)

法向应力(压应力):p=P/A (N/m 2)

ξ 2 流体运动的微分方程

1、 流体运动的描述

(1)描述流体运动的数学方法——拉格朗日法和欧拉法

拉格朗日法——

– 着眼于流体质点,设法描述每个流体质点自始至终的运动过程

– 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ)

欧拉法——空间描述

– 着眼于流体质点,设法描述每个流体质点自始至终的运动过程

– 描述流体物理量表示为:f =F (x ,y ,z ,τ)

(2) 迹线与流线

迹线:

– 同一流体质点在连续时间内的运动轨迹线

– 是拉格朗日法对流体运动的描述 流线:

– 某一时刻流场中不同位置的连续流体质点的流动方向线

– 是欧拉法对流体运动的描述

– 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合;

(3)系统与控制体

系统

——某一确定的流体质点集合的总体,与外界无质量交换

流体系统的描述是与拉格朗日描述相对应

控制体

——流场中确定的空间区域

可与外界进行质量交换和能量交换

控制体描述则是与欧拉描述相对应

2、质量守恒定律——连续性方程

m

F F m F F m F F z bz y by x bx ===,,

? 原则:质量守恒定律: ? 研究对象: 微元六面体为控制体 ; ? 方法: 欧拉法 对于稳定流动过程

3、动量定理:

运动方程(纳维-斯托克斯方程) 原则: 动量方程 不可压缩流体的运动微分方程:

1.3 流体静力学

1.3.1 静压强及特性

1、流体静压强:

● 定义: ● 表征:流体所受的平均静压强:

– 某点处流体静压强: ● 单位: 1Pa = 1N/m2

2、流体静压强的性质

第一个特性——流体静压强的方向必然沿着作用面的内法线方向。(垂直并指向其作用面) 第二个特性——任意一点流体静压强的大小与作用面的方向无关,只是与该点位置有关。

——某点处静压强的大小各向等值。 px= py= pz = pn

流体静压强只是空间位置的单值函数:

p = f (x ,y ,z )

0)()()(=??+??+??z u y u x u z y x ρρρu F u b 2P dt d ?+?-=μρρ∑

=dt u m d F )( dA dP A P p =??=lim A P p =

1.3.2重力场中静止流体中的压强分布

1、流体静力学平衡方程

x f x

p ρ=??, y f y

p ρ=?? , z f z

p ρ=?? ——流体平衡微分方程 C g p z =+

ρ——流体静力学基本方程式 对流体中任两点:

方程的物理意义

1)能量意义

Z -——表示为单位重量流体对某一基准面的位势能。

p/ρg -——表示单位重量流体的压强势能

2).几何意义

Z ----位置水头(几何压头):相对于基准面的垂直高度

p/ρg ——压强水头 测压管高度,或测压管水头,在重力作用下静止流体中各点的测压管高度都相等

2、静止液体中的压强分布

——液体静力学基本方程式

0p p gh ρ=+——表明在均质静止液体中压强分布的特征

3、等压面及其特性

等压面与质量力正交 –

静止流体中,水平面为等压面。 –

静止流体中,分界面是水平面,是等压面 –

。静止流体中,自由面是水平面、等压面 – 上述等压面性质的适用条件:静止、同种、连续的流体。

c g p z =+ρg p z g p z ρρ2211+=+

1.3.3 静压强的计算基准和度量单位:

1、两种计算基准

– 绝对压强

– 相对压强:

2、压强的三种度量单位:

– 应力单位、

– 大气压单位、

– 液体柱高度

4、静力学方程应用

(1)被测容器中的流体压强高于大气压强(即p>p a ):

(2)被测容器中的流体压强小于大气压强(即p <p a )

(3)气体压强的计算:

0p p gh ρ=+。

在高差不大的情况下,可以忽略ρgh 的影响,p=p0。

1.4 流体动力学

1. 基本概念

(1) 流动分类

流动参数随时间的变化——

? 不恒定流动:R = R (x 、y 、z 、 τ )

? 恒定流动: R = R (x 、y 、z )

均匀流动和非均匀流动

流动要素依赖于空间坐标的个数——

? 一元流动:

? 二元流动: 平面流动, R = R (x 、y 、τ)

? 三元流动

(2)流管、流束、流量

(3)有效断面(过流断面)

(4)平均流速:V=UA

(5)一元流动模型:

2 连续性方程

——质量守恒定律的应用

连续性方程的积分形式

对于均质流体2211V V ρρ=,或222111A U A U ρρ=

对不可压缩流体:212211,V V A U A U ==

3 。流体流动的伯努利方程(包括两气体方程)

(1)理想流体运动微分方程

无粘性流体(μ=0)的N-S 方程 :

分量形式: ????

???????-=??-=??-=z p Z dt du y p Y dt du x p X dt du z y x ρρρ111——理想流体流动的欧拉方程

对可压缩与不可压缩流体均适用。

2、理想流体沿流线流动的伯努利方程式 (1)方程的导出:

由欧拉(Euler )方程,积分

对沿流线上对任意两点:

(2)方程的物理意义:

? 能量意义、单位重量流体所具有的能能量。单位重量流体的所具有机械能保持一个常数,各个能量之间可相互转化

? 几何意义:总水头高度保持不变

(3)方程中各项的单位: m 流体柱;

各项量纲: [L]

c g u g p z =++22ρg

u g p z g u g p z 2222222111++=++ρρ

3、粘性流体的伯努利方程

4、流体沿管道流动的伯努利方程式

(1)动能修正系数

(2)渐变流

(3)实际流体的总流伯努利方程 ——管道内实际流体的总流伯努利方程。 方程适用条件:

定常流动,,均质不可压缩流体,质量力只有重力,所选取的两个截面是渐变流截面

在工程计算中,一般可以认为α≈ 1

? 几何意义:水头高度

? 能量意义:有效断面上单位重量流体所具有平均能量

工 程 应 用

——流速和流量的测量

毕托管----流速的测量

1.5不可压缩粘性流体的流动

1.5.1、 层流与湍流

(1)两种流态:层流与湍流(紊流)

(2)流动状态判别

流动是层流还是湍流状态主要取决于雷诺数νUd =

Re 的大小

(3) 紊流的结构

层流底层:

湍流主体(紊流核心) : 212

222211122-+++=++w h g u g p z g u g p z ρρ212

22222111122-+++=++w h g

U g p z g U g p z αραρ212222211122-+++=++w h g U g p z g

U g p z ρρ

过渡层:

1.5.3、不可压缩粘性流体的层流运动

(1)切应力分布

20r

l p p l -=τ ——斯托克斯公式

——在圆管流动中流体剪应力的大小与径向坐标r 成正比,在管中心线上为0,而在管壁上达到最大值 园管中层流运动的切应力,或表示为:w r r ττ0=

即,管壁处,r=r 0 ,τ

w =τmax =P r 0/2; 管中心处,r=0, τ=τ

min =0 (2)速度分布 2200(),4r P u r r r r μ

=-≤ ——表明无限长直圆管中的流动速度沿半径呈抛物线分布 ——管中心处达到最大值,220max 0044l r p p P u r r l

μμ-=-= ——圆管中流动的平均速度U ,200max 20182V l r Q p p U r u r l πμ-=

== 1.5.4、不可压缩粘性流体的湍流运动

1、湍流脉动——湍流的基本特征

? 时均速度u ,

? 瞬时速度u ,

? 脉动速度u ', u u u -=',

2、湍流的半经验理论

(1)湍流阻力

湍流切应力==粘性应力+惯性应力

惯性应力和分子粘性应力这两种应力在整个流场中并不是同等重要

(2)湍流的速度分布 断面速度分布:C y U u +=

ln 1*β ——沿着半径方向,呈对数曲线分布。且,平均速度 U=( 0.78~0.85u max )

3、尼古拉兹(J.Nikurads )实验

(1)尼古拉兹实验

(2)实验结果

? 1.层流区 当 Re<2300时, ? 层流到紊流的过渡区: 2300

? 紊流水力光滑管区:)(Re f =λ ? 紊流水力粗糙管过渡区,)(d Re f /,ελ=

? .紊流水力粗糙管平方阻力区 ,)(d f /ελ=

1.6流体流动的阻力与管路计算

1.6.1流体流动的阻力

1 沿程阻力与沿程损失

(1)一般计算公式:

适用于在管道中的流动

g

U d l h 22

f λ=或 22f U d l p ρλ=? ——达西-威斯巴赫 公式

(2)层流运动的沿程阻力计算公式:

Re 64=λ,有,g

U d l h f 2)Re 64(2

=

(3) 紊流沿程阻力损失

2 局部阻力与局部损失 计算公式:g

U h m 22

ξ= ζ=f (局部阻碍形状、相对粗糙、Re )

3、非圆形截面管道阻力损失的计算

水力半径(R H ): (R H =A/x)

Re 64=λ)

(Re f =λ

当量直径(de ) de =4 R H

非圆形截面管道的沿程阻力损失及雷诺数:

4. 总阻力与总能量损失

总能量损失=沿程损失+局部损失

——能量损失的叠加原理

2、 管 路 计 算

(1)阻力损失-管路状况-流量三者关系

í 对于园管,综合阻力系数:)/(8)(

5242m s g d d l s πζλ∑∑+= í 则:H W =sV 2

(2) 串 联 管 路

(3) 并 联 管 路

w

w w w h h h h V V V V ====++321321; 3213211:11s s :s :V

:V V = g U d l h e 22f λ=ν

e

Ud Re =∑∑+=j f w h h h s s s s h h h h w w w w =++=++321321,V

V V V ==== 321111111

1

s s s s ++

=

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

2018流体力学实验指导书

《流体力学》实验指导书 杨英俊 2018.

目录 实验一平面上静水总压力测量实验 (4) 实验二恒定总流动量方程验证实验 (7) 实验三流态演示与临界雷诺数量测实验 (10) 实验四沿程水头损失测量实验 (13) 实验五文透里流量计率定实验 (16) 实验六局部水头损失测量实验 (19) 实验七恒定总流能量方程演示实验 (22)

前言 流体力学是一门重要的技术基础课,它的主要研究内容为流体运动的规律以及流体与边界的相互作用,它涉及到建筑、土木、环境、水利造船、电力、冶金、机械、核工程、航天航空等许多学科。在自然界中,与流体运动关联的力学问题是很普遍的,所以流体力学在许多工程领域有着广泛的应用。例如水利工程、机械工程、环境工程、热能工程、化学工程、港口、船舶与海洋工程等,因此流体力学是高等学校众多理工科专业的必修课。 流体力学课程的理论性强,同时又有明确的工程应用背景。它是连接前期基础课程和后续专业课程的桥梁。因此,掌握流体力学的基本概念、基本理论和解决流体力学问题的基本方法,具备一定的实验技能,为后续课程的学习打好基础,培养分析和解决工程实际中有关水力学问题的能力。 流体力学和其它学科一样,大致有三种研究方法。一是理论方法,分析问题的主次因素,提出适当的假定,抽象出理论模型(如连续介质、理想流体、不可压缩流体等),运用数学工具寻求流体运动的普遍解。二是实验方法,将实际流动问题概括为相似的实验模型,在实验中观察现象、测定数据,并进而按照一定方法推测实际结果。第三种方法是数值计算,根据理论分析与实验观测拟订计算方案,通过编制程序输入数据,用计算机算出数值解。三种方法各有千秋,既是互相补充和验证,但又不能互相取代。实验方法仍是检验与深化研究成果的重要手段,现代实验技术的突飞猛进也促进了流体力学的蓬勃发展。因此,流体力学实验在流体力学学科及教学中占有重要位置,也是在学习流体力学课程中一个不可缺少的重要教学环节。目前,针对我院各专业本科生,流体力学实验包括以下7个实验: 1)平面上静水总压力测量实验 2)恒定总流动量方程验证实验 3)流态演示与临界雷诺数量测实验 4)沿程水头损失测量实验 5)文透里流量计率定实验

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

北航研究生课程实验流体力学重点

实验流体力学 第一章:相似理论和量纲分析 ①流体力学相似?包括几方面内容?有什么意义? 流体力学相似是指原型和模型流动中,对应相同性质的物理量保持一定的比例关系,且对应矢量相互平行。 内容包括: 1.几何相似—物体几何形状相似,对应长度成比例; 2.动力相似—对应点力多边形相似,同一性质的力对应成比例并相互平行 (加惯性力后,力多边形封闭); 3.运动相似—流场相似,对应流线相似,对应点速度、加速度成比例。 ②什么是相似参数?举两个例子并说明其物理意义 必须掌握的相似参数:Ma ,Re ,St 。知道在什么流动条件下必须要考虑这些相似参数。 相似参数又称相似准则,是表征流动相似的无量纲特征参数 。 1.两物理过程或系统相似则所有对应的相似参数相等。例如:假定飞机缩比模型风洞试验可以真正模拟真实飞行,则原型和模型之间所有对应的相似参数都相等,其中包括C L , C D , C M : S V L C L 22 1 ρ= S V D C D 22 1 ρ= Sb V M C M 22 1 ρ= 风洞试验可以测得CL, CD, CM 值,在此基础上,将真实飞行条件带入CL, CD, CM 表达式,可以求得真实飞行的升力、阻力和力矩等气动性能参数。 2.所有对应的相似参数相等且单值条件相似则两个物理过程或系统相似。例如:对于战斗机超音速风洞试验,Ma 和Re 是要求模拟的相似参数,但通常在常规风动中很难做到。 由于对于此问题,Ma 影响更重要,一般的方案是保证Ma 相等,对Re 数影响进行修正。 ; Re V p Ma a RT a V L l St V ρ ρωμ∞∞= ====

流体力学基础知识

流体力学基础知识 第一节 流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m 3。流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m 3,两者之间的关系为g ργ=,g 为重力加速度,通常g =9.806m/s 2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。 所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60℃下。 第二节 液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa 。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△F ,当△F 逐渐趋近于零时作用在△F 面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示

大学工程流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室二○○六年静水压强实验1.同一静止液体内的测压管水头线是根什么线?测压管水头指z p ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当p B 0 时,试根据记录数据,确定水箱内的真空区域。 p B 0 ,相应容器的真空区域包括以下三个部分: (1)过测压管2 液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而 言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管 4 中,该平面以上的水体亦为真 空区域。 (3)在测压管5 中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4 液面高于小水杯液面高度相等。3.若再备一根直尺,试采用另外最简便的方法测定0 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5 油水界面至水面和油水界面至油面的垂直高度h和h0 ,由式w h w 0h0 ,从而求得0 。4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体容量;d 为测压管的内径;h 为毛细升高。常温的水, 0.073N m ,0.0098N m3。水与玻璃的浸润角很小,可以认为cos 1.0。 于是有 h 29.7 d (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10 mm时,毛细影响可略而不计。另外,当水质 不洁时,减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角较大,其h 较普通玻璃管小。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5 及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2 及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5 个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5 与水箱之间不符合条件(4),相对管5 和水箱中的液体而言,该水平面不是水平面。

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

流体力学基础知识

第一章流体力学基本知识 学习本章的目的与意义:流体力学基础知识就是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容与要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点与重点: 难点:流体的粘滞性与粘滞力 重点:牛顿运动定律的理解。 2.教学内容与知识要点: 2、1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动 性。 流体也被认为就是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度与重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ = V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13、6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ = V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9、8×103kg/ m3 γ水银=133、28×103kg/ m3 密度与重度随外界压强与温度的变化而变化 液体的密度随压强与温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2、、3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体阻抗

流体力学基础.

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

工程流体力学(含实验演示)

工程流体力学(含实验演示) 一、选择题 (共26题) 1、 以下物理量中,量纲与运动粘度相同的是() A、 动力粘度 B、 粘性力 C、 压强与时间的乘积 D、 面积除以时间 考生答案:D 2、 在源环流动中,等势线是() A、 平行直线 B、 同心圆 C、 过圆心的半辐射线 D、 螺旋线 考生答案:D 3、 己知某井筒环形截面管路的内径d1为10cm,外径d2为15cm,则水力半径与之相等的圆形截面的管路半径为() A、 2.5 B、 5 C、 7.5 D、 10 考生答案:B 4、

并联管段AB有3条管线并联,设流量Q1>Q2>Q3,则三段管路水头损失的关系为()A、 B、 C、 D、 考生答案:B 5、 以下物理量中,量纲与动力粘度相同的是() A、 运动粘度 B、 粘性力 C、 密度 D、 压强与时间的乘积 考生答案:D 6、 在点汇流动中,等势线是() A、 平行直线 B、 同心圆 C、 过圆心的半辐射线 D、 螺旋线 考生答案:B 7、 己知某管路截面为正方形,边长为12cm,其水力半径为() A、 12cm B、 6cm C、 4cm D、 3cm

考生答案:D 8、 理想流体是一种通过简化得到的流体模型,在理想流体中不存在() A、 体积力 B、 惯性力 C、 压力 D、 粘性力 考生答案:D 9、 以下物理量中,量纲与应力相同的是() A、 动力粘度 B、 总压力 C、 压强 D、 表面张力 考生答案:C 10、 在纯环流中,等势线是() A、 平行直线 B、 同心圆 C、 过圆心的半辐射线 D、 螺旋线 考生答案:C 11、 己知某管路截面为正方形,边长为10cm,则其水力半径为() A、 2.5 B、 5 C、 7.5

CFD 基 础(流体力学)解析

第1章 CFD 基 础 计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、 热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。 本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。 1.1 流体力学的基本概念 1.1.1 流体的连续介质模型 流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。 连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。 连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。 1.1.2 流体的性质 1. 惯性 惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。惯性与质量有关,质量越大,惯性就越大。单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。对于均质流体,设其体积为V ,质量为m ,则其密度为 m V ρ= (1-1) 对于非均质流体,密度随点而异。若取包含某点在内的体积V ?,其中质量m ?,则该点密度需要用极限方式表示,即 0lim V m V ρ?→?=? (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性(compressibility)可用体积压缩率k 来量度

流体力学基本概念和基础知识

流体力学基本概念和基础知识

————————————————————————————————作者:————————————————————————————————日期: ?

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体)? 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流体质

流体力学基础

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

流体力学基本知识

第一章流体力学基本知识解析 第一节流体及其空气的物理性质 流动性是流体的基本物理属性。流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。易流动性还表现在流体不能承受拉力。 (一) 流体的流动性 通风除尘与气力输送涉及的流体主要是空气。 流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着33107个水分子,在体积为1mm3的空气中有2.731016个各种气体的分子。质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。然而,也不是在所有情况下都可以把流体看成是连续的。高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。所谓连续性的假设,首先意味着流体在宏观上质点

是连续的,其次还意味着质点的运动过程也是连续的。有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。 (二)惯性(密度) 流体的第一个特性是具有质量。流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。 在均质流体内引用平均密度的概念,用符号ρ表示: V m =ρ 式中: m ——流体的质量[Kg]; V ——流体的体积[m 3 ]; ρ——流体密度Kg/m 3。 但对于非均质流体,则必需用点密度来描述。 所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即: dV dm V m lim V = ??=→?0ρ

流体力学路线图

流体力学基础理论的学习历来被初学者视为畏途,每到学习结束要进入期末考试的时候,老师和学生一样心中难免忐忑,在流体力学这门课上挂科已经成为某种常态。即使是学习多年的老手也会在具体问题面前感到基础尚不完备,还不够扎实。这个问题的起源当然与流体运动规律本身的复杂性有关,这个复杂性导致流体力学与大家印象中的“学科”概念有一定的出入。比如我们在学习高等数学时,很容易发现,数学是一门“咬文嚼字”的学科,里面充满严格定义的概念,不论学习线性代数还是微积分,都是从一些基本公理出发,循着一条严格的逻辑路线,架构起整门课程。因为数学有这样逻辑严密的特点,所以虽然学起来也不容易,但大家一致认为数学是美的,而且不论谁写的数学书,比如微积分的书,内容都只有程度深浅的差异,而绝没有内容上的巨大差异。 流体力学则有所不同,流体的流动本身是一种连续不断的变形过程,经典的流体力学理论以连续介质假设为基础,将整个流体看作连续介质,同时将其运动看作连续运动。但是由于流体是复杂的,实际上至今还没有完全掌握其全貌,因此流体力学在建立了基本控制方程后,就开始转而从一些特殊的流动出发,采用根据流动特点进行简化的方式,先建立物理模型,再得到数学模型,进而得到我们在书中经常看到的很多“理论”,比如不可压无旋流、旋涡动力学、水波动力学、气体动力学等等,甚至理论中还包括理论,比如不可压无旋流中还有自由流线理论,等等。形成一个类似于俄罗斯套娃的学科结构,这种结构容易给人一种支离破碎的印象。特别是在各个理论之间联系比较薄弱的时候,更容易给人这种印象。似乎一门课中又包含了很多门“小课”,每门“小课”使用的数学工具也完全不同,甚至很多同行还进一步把自己分成是学气的(比如空气动力学),或者是学水的(比如学船舶的)等等。 就象旅行者要有一张地图才能更高效率地到达目的地一样,如果能有一张流体力学的地图,或者叫路线图(roadmap),应该对初学者有很大帮助。这张图就是这门学科的脉络,其中应包含流体力学的主要理论内容,扩展一步的话,还应该包括数学基础(先修课)和主要分支学科。先在这里做个记号,有时间的时候慢慢地先从流体力学基础理论入手,给出一个粗略的路线图,然后再逐渐给出分支学科的路线图,比如空气动力学、计算流体力学的路线图。希望能抛砖引玉,激发出同行们的兴趣,加入绘制路线图的工作。在想象中,这个路线图应该有学科的主要内容,同时应该有相关的参考书。这样初学者就可以按图索骥,沿着一

工程流体力学实验指导书(完整)

《工程流体力学》 实验指导书 开课单位:机械电子工程系 开课实验室:机械电子工程系流体力学实验室 编写:邓晓刚 审核:李良 2011年2月

目录 目录 ..................................................................................................................................... I 前言 ................................................................................................................................... III 工程流体力学实验规程............................................................................................................. IV (一)水静力学综合实验 .. (1) 一、实验目的 (1) 二、实验设备 (1) 三、实验原理 (1) 四、实验步骤 (2) 五、实验数据记录及处理 (3) 六、讨论 (3) (二)流线演示实验 (4) 一、实验目的 (4) 二、实验设备和仪器 (4) 三、实验步骤 (4) (三)伯努利能量方程实验测定 (6) 一、实验目的 (6) 二、实验设备 (6) 三、实验准备工作 (7) 四、实验步骤 (7) 五、结束实验 (8) 六、思考 (8) (四)雷诺数的测定 (10) 一、实验目的 (10) 二、实验装置 (10) 三、实验原理 (10) 四、实验步骤 (11) 五、实验数据记录及计算 (12)

(完整版)流体力学基本练习题

流体力学基本练习题 一、名词解释 流体质点、流体的体膨胀系数、流体的等温压缩率、流体的体积模量、流体的粘性、理想流体、牛顿流体、不可压缩流体、质量力、表面力、等压面、质点导数、定常场、均匀场、迹线、流线、流管、流束、流量、过流断面(有效截面)、层流、湍流、层流起始段、粘性底层、水力光滑管、水力粗糙管、沿程阻力、局部阻力 二、简答题 1. 流体在力学性能上的特点。 2. 流体质点的含义。 3. 非牛顿流体的定义、分类和各自特点。 4. 粘度的物理意义及单位。 5. 液体和气体的粘度变化规律。 6. 利用欧拉平衡方程式推导出等压面微分方程、重力场中平衡流体的微分 方程。 7. 等压面的性质。 8. 不可压缩流体的静压强基本公式、物理意义及其分布规律。 9. 描述流体运动的方法及其各自特点 10. 质点导数的数学表达式及其内容。写出速度质点导数。 11. 流线和迹线的区别,流线的性质。 三、填空题、判断 (一)流体的基本物理性质 1. 水力学是研究液体静止和运动规律及其应用的一门科学。() 2. 当容器大于液体体积,液体不会充满整个容器,而且没有自由表面。() 3. 气体没有固定的形状,但有自由表面。() 4. 水力学中把液体视为内部无任何间隙,是由无数个液体质点组成的。()

5. 粘滞性是液体的固有物理属性,它只有在液体静止状态下才能显示出来,并且是引起液体能量损失的根源。() 6. 同一种液体的粘滞性具有随温度升高而降低的特性。() 7. 作层流运动的液体,相邻液层间单位面积上所作的内摩擦力,与流速梯度成正比,与液体性质无关。() 8. 惯性力属于质量力,而重力不属于质量力。() 9. 质量力是指通过所研究液体的每一部分重量而作用于液体的、其大小与液体的质量成比例的力. () 10. 所谓理想流体,就是把水看作绝对不可压缩、不能膨胀、有粘滞性、没有表面张力的连续介质。() 11. 表面力是作用于液体表面,与受力作用的表面面积大小无关。() 12. 水和空气的黏度随温度的升高而减小。() 13. 流体是一种承受任何微小切应力都会发生连续的变形的物质。() 14. 牛顿流体就是理想流体。() 15. 在一个大气压下,温度为4C时,纯水的密度为1000kg/m A3o () 16. 不同液体的黏滞性各不相同,同一液体的黏滞性是一常数。() 17. 水力学中,单位质量力是指作用在单位_____ 液体上的质量力。() A 面积 B 体积 C 质量 D 重量 18. 水力学研究的液体是一种_____ 、____ 、_____ 续质。() A 不易流动易压缩均质 B 不易流动不易压缩均质 C 易流动易压缩均质 D 易流动不易压缩均质 19. 不同的液体其粘滞性_____ ,同一种液体的粘滞性具有随温度 _________ 而降低的特性。() A 相同降低 B 相同升高 C 不同降低 D 不同升高 20. 动力粘滞系数的单位是:(B) 22 A N.s/m B N.s/m 2 C m 2/s D m/s 21. 下列说法正确的是:()

计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中, 所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表示式, 最后介绍几种常见的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂, 在考虑粘性作用时更是如此, 如果不靠计算机, 就只能对比较简单的情形或简化后的欧拉方程或 N-S方程进行计算。20世纪30~40年代, 对于复杂而又特别重要的流体力学问题, 曾组织过人力用几个月甚至几年的时间做数值计算, 比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到 1947年。 数学的发展, 计算机的不断进步, 以及流体力学各种计算方法 的创造, 使许多原来无法用理论分析求解的复杂流体力学问题有了 求得数值解的可能性, 这又促进了流体力学计算方法的发展, 并形 成了"计算流体力学"。 从20世纪60年代起, 在飞行器和其它涉及流体运动的课题中, 经常采用电子计算机做数值模拟, 这能够和物理实验相辅相成。数

值模拟和实验模拟相互配合, 使科学技术的研究和工程设计的速度加快, 并节省开支。数值计算方法最近发展很快, 其重要性与日俱增。 自然界存在着大量复杂的流动现象, 随着人类认识的深入, 人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理创造了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有创造前, 流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题, 无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现, 从而催生了计算流体力学这门交叉学科。 计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或 Navier-Stokes方程)以发现各种流动现象规律的学科。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动, 甚至数值天气预报也可列入其中。 自20世纪60年代以来, CFD技术得到飞速发展, 其原动力是不断增长的工业需求, 而航空航天工业自始至终是最强大的推动力。传

相关主题
文本预览
相关文档 最新文档