当前位置:文档之家› 《有限元基础教程》_【MATLAB算例】3.2.5(2)__四杆桁架结构的有限元分析(Bar2D2Node)

《有限元基础教程》_【MATLAB算例】3.2.5(2)__四杆桁架结构的有限元分析(Bar2D2Node)

《有限元基础教程》_【MATLAB算例】3.2.5(2)__四杆桁架结构的有限元分析(Bar2D2Node)
《有限元基础教程》_【MATLAB算例】3.2.5(2)__四杆桁架结构的有限元分析(Bar2D2Node)

【MATLAB算例】3.2.5(2)四杆桁架结构的有限元分析(Bar2D2Node)

如图3-8所示的结构,各个杆的弹性模量和横截面积都为42

E N mm

=?,

29.510/

2

=。试基于MA TLAB平台求解该结构的节点位移、单元应力以及支反力。

100

A mm

图3-8 四杆桁架结构

解答:对该问题进行有限元分析的过程如下。

(1)结构的离散化与编号

对该结构进行自然离散,节点编号和单元编号如图3-8所示,有关节点和单元的信息见表3-1~表3-3。

(2)计算各单元的刚度矩阵(基于国际标准单位)

建立一个工作目录,将所编制的用于平面桁架单元分析的4个MA TLAB函数放置于该工作目录中,分别以各自函数的名称给出文件名,即:Bar2D2Node_Stiffness,Bar2D2Node_Assembly,Bar2D2Node_Stress,Bar2D2Node_Forces。然后启动MA TLAB,将工作目录设置到已建立的目录中,在MA TLAB环境中,输入弹性模量E、横截面积A,各点坐标x1,y1,x2,y2,x3,y3,x4,y4,角度alpha 1, alpha 2和alpha 3,然后分别针对单元1,2,3和4,调用4次Bar2D2Node_Stiffness,就可以得到单元的刚度矩阵。相关的计算流程如下。>>E=2.95e11;

>>A=0.0001;

>>x1=0;

>>y1=0;

>>x2=0.4;

>>y2=0;

>>x3=0.4;

>>y3=0.3;

>>x4=0;

>>y4=0.3;

>>alpha1=0;

>>alpha2=90;

>>alpha3=atan(0.75)*180/pi;

>> k1=Bar2D2Node_Stiffness (E,A,x1,y1,x2,y2,alpha1)

k1 = 73750000 0 -73750000 0

0 0 0 0

-73750000 0 73750000 0

0 0 0 0

>>k2=Bar2D2Node_Stiffness (E,A,x2,y2,x3,y3,alpha2)

k2 = 1.0e+007 *

0.0000 0.0000 -0.0000 -0.0000 0.0000 9.8333 -0.0000 -9.8333 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -9.8333 0.0000 9.8333

>> k3=Bar2D2Node_Stiffness (E,A,x1,y1,x3,y3,alpha3) k3 = 1.0e+007 *

3.7760 2.8320 -3.7760 -2.8320 2.8320 2.1240 -2.8320 -2.1240 -3.7760 -2.8320 3.7760 2.8320 -2.8320 -2.1240 2.8320 2.1240

>> k4=Bar2D2Node_Stiffness (E,A,x4,y4,x3,y3,alpha1) k4 = 73750000 0 -73750000 0 0 0 0 0 -73750000 0 73750000 0 0 0 0 0

(3) 建立整体刚度方程

由于该结构共有4个节点,因此,设置结构总的刚度矩阵为KK (8×8),先对KK 清零,然后四次调用函数Bar2D2Node _Assembly 进行刚度矩阵的组装。相关的计算流程如下。

>>KK=zeros(8,8);

>>KK=Bar2D2Node_Assembly (KK,k1,1,2); >>KK=Bar2D2Node_Assembly (KK,k2,2,3); >>KK=Bar2D2Node_Assembly (KK,k3,1,3); >>KK=Bar2D2Node_Assembly (KK,k4,4,3) KK= 1.0e+008 *

1.1151 0.2832 -0.7375 0 -0.3776 -0.2832 0 0 0.2832 0.2124 0 0 -0.2832 -0.2124 0 0 -0.7375 0 0.7375 0.0000 -0.0000 -0.0000 0 0 0 0 0.0000 0.9833 -0.0000 -0.9833 0 0 -0.3776 -0.2832 -0.0000 -0.0000 1.1151 0.2832 -0.7375 0 -0.2832 -0.2124 -0.0000 -0.9833 0.2832 1.1957 0 0 0 0 0 0 -0.7375 0 0.7375 0 0 0 0 0 0 0 0 0

(4) 边界条件的处理及刚度方程求解

由图3-8可以看出,节点1的位移将为零,即10u =, 10v =,节点2的位移20v =,节点4的40u =,40v =。节点载荷3F =10N 。采用高斯消去法进行求解,注意:MATLAB 中的反斜线符号“\”就是采用高斯消去法。

该结构的节点位移为:[]T

v u v u v u v u 44332211=q

而节点力为:[]

T

y x y y x R R R R R 4

44

2

4

1

1

10

5.20

10

2?-?=+=F R P

其中,11(,)x y R R 为节点1处沿x 和y 方向的支反力,2y R 为节点2处y 方向的支反力,

44(,)x y R R 为节点4处沿x 和y 方向的支反力。相关的计算流程如下。

>>k=KK([3,5,6],[3,5,6]) k =1.0e+008 *

0.7375 -0.0000 -0.0000

-0.0000 1.1151 0.2832 -0.0000 0.2832 1.1957

>> p=[20000;0;-25000]; >>u=k\p

u = 1.0e-003 *

0.2712 0.0565 -0.2225 [这里将列排成了一行,以节省篇幅]

由此可以看出,所求得的结果2330.271 2,0.056 5,0.222 5u m m u m m v m m ===-,则所有节点位移为

[]0

0.271 2

0.056 5

0.222 5

0T

mm =-q (3-75)

与前面通过数学推导得到的结果相同,见式(3-72)。

(5)支反力的计算

在得到整个结构的节点位移后,由原整体刚度方程就可以计算出对应的支反力。将整体的位移列阵q (采用国际单位)代回原整体刚度方程,计算出所有的节点力P ,按上面的对应关系就可以找到对应的支反力。相关的计算流程如下。

>> q=[0 0 0.0002712 0 0.0000565 -0.0002225 0 0]' q = 1.0e-003 *

0 0 0.2712 0 0.0565 -0.2225 0 0 [这里将列排成了一行,以节省篇幅] >>P=KK*q P = 1.0e+004 *

-1.5833 0.3126 2.0001 2.1879 -0.0001 -2.5005 -0.4167 0 [这里将列排成了行]

按对应关系,可以得到对应的支反力为

(3-76)

(6)各单元的应力计算

先从整体位移列阵q 中提取出单元的位移列阵,然后,调用计算单元应力的函数Bar2D2Node_ElementStress ,就可以得到各个单元的应力分量。当然也可以调用上面的Bar2D2Node_ElementForces(E,A,x1,y1,x2,y2,alpha,u)函数来计算单元的集中力,然后除以面积求得单元应力。相关的计算流程如下。

>>u1=[q(1);q(2);q(3);q(4)] u1 = 1.0e-003 *

0 0 0.2712 0 [这里将列排成了一行,以节省篇幅] >> stress1=Bar2D2Node_Stress(E,x1,y1,x2,y2,alpha1,u1) stress1 =2.0001e+008

>>u2=[q(3);q(4);q(5);q(6)] u2 = 1.0e-003 *

0.2712 0 0.0565 -0.2225 [这里将列排成了一行,以节省篇幅]

>> stress2=Bar2D2Node_Stress(E,x2,y2,x3,y3,alpha2,u2) stress2 = -2.1879e+008

>>u3=[q(1);q(2);q(5);q(6)] u3 = 1.0e-003 *

0 0 0.0565 -0.2225 [这里将列排成了一行,以节省篇幅] >> stress3=Bar2D2Node_Stress(E,x1,y1,x3,y3,alpha3,u3) stress3 = -52097000

>>u4=[q(7);q(8);q(5);q(6)] u4 = 1.0e-003 *

0 0 0.0565 -0.2225 [这里将列排成了一行,以节省篇幅] >> stress4=Bar2D2Node_Stress(E,x4,y4,x3,y3,alpha1,u4) stress4 = 41668750

可以看出:计算得到的单元1的应力为82.000 110Pa e σ=?;单元2的应力为

8

2.187 910P a σ=-?,单元3的应力为75.209 7

10P a σ=-?,单元4的应力为7

4.16710P a

σ=?。与前面通过数学推导得到的结果相同,见式(3-73)。

ansys桁架和梁的有限元分析

ansys桁架和梁的有限元分析

————————————————————————————————作者:————————————————————————————————日期:

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

结构力学实验-平面桁架结构的设计

结构力学实验土木建筑学院 实验名称:平面桁架结构的设计 实验题号:梯形桁架D2-76 姓名: 学号: 指导老师: 实验日期:

一、实验目的 在给定桁架形式、控制尺寸和荷载条件下,对桁架进行内力计算,优选杆件截面,并进行刚度验算。 ①掌握建立桁架结构力学模型的方法,了解静定结构设计的基本过程; ②掌握通过多次内力和应力计算进行构件优化设计的方法; ③掌握结构刚度验算的方法。 梯形桁架D ;其中结点1到结点7的水平距离为15m;结点1到结点8的距离为2m;结点7到结点14的距离为3m。选用的是Q235钢,[ɑ]=215MPa。

完成结构设计后按如下步骤计算、校核、选取、设计、优化 二、强度计算 1)轴力和应力 2)建立结构计算模型后,由“求解→内力计算”得出结构各杆件的轴力N(见图3)再由6=N/A得出各杆件应力。 表1内力计算 杆端内力值 ( 乘子 = 1) -------------------------------------------------------------------------------------------- 杆端 1 杆端 2 ------------------------------------- ------------------------------------------ 单元码轴力剪力弯矩轴力剪力弯矩 -------------------------------------------------------------------------------------------- 1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 2 51.9230769 0.00000000 0.00000000 51.9230769 0.00000000 0.00000000 3 77.1428571 0.00000000 0.00000000 77.1428571 0.00000000 0.00000000 4 67.5000000 0.00000000 0.00000000 67.5000000 0.00000000 0.00000000 5 39.7058823 0.00000000 0.00000000 39.7058823 0.00000000 0.00000000 6 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 7 -54.0000000 0.00000000 0.00000000 -54.0000000 0.00000000 0.00000000 8 -52.0383336 0.00000000 0.00000000 -52.0383336 0.00000000 0.00000000 9 -77.3140956 0.00000000 0.00000000 -77.3140956 0.00000000 0.00000000 10 -81.1798004 0.00000000 0.00000000 -81.1798004 0.00000000 0.00000000 11 -81.1798004 0.00000000 0.00000000 -81.1798004 0.00000000 0.00000000 12 -67.6498337 0.00000000 0.00000000 -67.6498337 0.00000000 0.00000000 13 -39.7940198 0.00000000 0.00000000 -39.7940198 0.00000000 0.00000000 14 -54.0000000 0.00000000 0.00000000 -54.0000000 0.00000000 0.00000000 15 66.4939824 0.00000000 0.00000000 66.4939824 0.00000000 0.00000000 16 -41.5384615 0.00000000 0.00000000 -41.5384615 0.00000000 0.00000000 17 33.3732229 0.00000000 0.00000000 33.3732229 0.00000000 0.00000000 18 -21.8571428 0.00000000 0.00000000 -21.8571428 0.00000000 0.00000000 19 5.27613031 0.00000000 0.00000000 5.27613031 0.00000000 0.00000000 20 -18.0000000 0.00000000 0.00000000 -18.0000000 0.00000000 0.00000000 21 19.7385409 0.00000000 0.00000000 19.7385409 0.00000000 0.00000000 22 -31.5000000 0.00000000 0.00000000 -31.5000000 0.00000000 0.00000000 23 42.0090820 0.00000000 0.00000000 42.0090820 0.00000000 0.00000000 24 -47.6470588 0.00000000 0.00000000 -47.6470588 0.00000000 0.00000000 25 62.0225709 0.00000000 0.00000000 62.0225709 0.00000000 0.00000000

四杆桁架结构的有限元分析命令流

四杆桁架结构的有限元分析 在ANSYS 平台上,完成相应的力学分析。即如图1所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E =?, 2 100mm A =,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。 图1四杆桁架结构 完整的命令流 !直接生成有限元模型 / PREP7 !进入前处理 /PLOPTS,DA TE,0 !设置不显示日期和时间 !设置单元、材料,生成节点及单元 ET,1,LINK1 !选择单元类型 UIMP,1,EX, , ,2.95e11, !给出材料的弹性模量 R,1,1e-4, !给出实常数(横截面积) N,1,0,0,0, !生成1号节点,坐标(0,0,0) N,2,0.4,0,0, !生成2号节点,坐标(0.4,0,0) N,3,0.4,0.3,0, !生成3号节点,坐标(0.4,0.3,0) N,4,0,0.3,0, !生成4号节点,坐标(0,0.3,0) E,1,2 !生成1号单元(连接1号节点和2号节点) E,2,3 !生成2号单元(连接2号节点和3号节点) E,1,3 !生成3号单元(连接1号节点和3号节点) E,4,3 !生成4号单元(连接4号节点和3号节点) FINISH !前处理结束 !在求解模块中,施加位移约束、外力,进行求解 /SOLU !进入求解状态(在该状态可以施加约束及外力) ANTYPE,0 !定义分析类型为静力分析 D,1,ALL !将1号节点的位移全部固定 D,2,UY , !将2号节点的Y 方向位移固定 D,4,ALL !将4号节点的位移全部固定 F,2,FX,20000, !在2号节点处施加X 方向的力(20000)

Matlab有限元分析操作基础

Matlab 有限元分析20140226 为了用Matlab 进行有限元分析,首先要学会Matlab 基本操作,还要学会使用Matlab 进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵 11221 21200k k k k k k k k -????-????--+??

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

步骤二:构造单元刚度矩阵 >>k1=SpringElementStiffness(100) >>…?

步骤三:构造系统刚度矩阵 a) 分析SpringAssemble库函数function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ?? ?? -- ?? ?

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

第七专题平面桁架结构

平面桁架结构 一、平面桁架的形式 1.屋盖结构体系 屋盖分为无檩屋盖有檩屋盖。无檩屋盖一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架上。有檩屋盖常用于轻型屋面材料的情况。 2.屋架的形式 屋架外形常用的有三角形、梯形、平行弦和人字形等。 桁架外形应尽可能与其弯矩图接近,这样弦杆受力均匀,腹杆受力较小。腹杆的布置应尽量用长杆受拉、短杆受压,腹杆的数目宜少,总长度要短,斜腹杆的倾角一般在30°~60°之间,腹杆布置时应注意使荷载都作用在桁架的节点上。 (1)三角形桁架 三角形桁架适用于陡坡屋面(i>1/3)的有檩屋盖体系,屋架通常与柱子只能铰接。弯矩图与三角形的外形相差悬殊,弦杆受力不均,支座处内力较大,跨中内力较小,弦杆的截面不能充分发挥作用。支座处上、下弦杆交角过小内力又较大,使支座节点构造复杂。 (2)梯形桁架 梯形屋架适用于屋面坡度较为平缓的无檩屋盖体系,它与简支受弯构件的弯矩图形比较接近,弦杆受力较为均匀。梯形屋架与柱的连接可以做成铰接也可以做成刚接。梯形屋架的中部高度一般为(1/10~1/8)L,与柱刚接的梯形屋架,端部高度一般为(1/16~1/12)L,通常取为2.0~2.5m。与柱铰接的梯形屋架,端部高度可按跨中经济高度和上弦坡度决定。 (3)人字形桁架 人字形屋架的上、下弦可以是平行的,坡度为1/20~1/10,节点构造较为统一;也可以上、下弦具有不同坡度或者下弦有一部分水平段,以改善屋架受力情况。人字形屋架因中高度一般为2.0~2.5m,跨度大于36m时可取较大高度但不宜超过3m;端部高度一般为跨度的1/18~1/12。 (4)平行弦桁架 平行弦桁架在构造方面有突出的优点,弦杆及腹杆分别等长、节点形式相同、能保证桁架的杆件重复率最大,且可使节点构造形式统一,便于制作工业化。 3.托架形式 支承中间屋架的桁架称为托架,托架一般采用平行弦桁架,其腹杆采用带竖杆的人字形体系。托架高度般取跨度的1/5~1/10,托架的节间长度一般为2m或3m。 二、屋盖支撑

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

基于MATLAB的平面刚架静力分析

基于MATLAB 的平面刚架静力分析 为了进一步理解有限元方法计算的过程,本文根据矩阵位移法的基本原理应用MATLAB 编制计算程序对以平面刚架结构进行了静力分析。本文还利用ANSYS 大型商用有限元分析软件对矩阵位移法的计算结果进行校核,发现两者计算结果相当吻合,验证了计算结果的可靠性。 一、 问题描述 如图1所示的平面刚架,各杆件的材料及截面均相同,E=210GPa ,截面为0.12×0.2m 的实心矩形,现要求解荷载作用下刚架的位移和内力。 5m 4m 3m 图1 二、矩阵位移法计算程序编制 为编制程序方便考虑,本文计算中采用“先处理法”。具体的计算步骤如下。

(1) 对结构进行离散化,对结点和单元进行编号,建立结构(整体)坐标系 和单元(局部)坐标系,并对结点位移进行编号; (2) 对结点位移分量进行编码,形成单元定位向量e λ; (3) 建立按结构整体编码顺序排列的结点位移列向量δ,计算固端力e F P 、等 效结点荷载E P 及综合结点荷载列向量P ; (4) 计算个单元局部坐标系的刚度矩阵,通过坐标变换矩阵T 形成整体坐标 系下的单元刚度矩阵e T e K T K T = ; (5) 利用单元定位向量形成结构刚度矩阵K ; (6) 按式1=K P δ- 求解未知结点位移; (7) 计算各单元的杆端力e F 。 根据上述步骤编制了平面刚架的分析程序。程序中单元刚度矩阵按下式计算。 32322 23 2 32 22 0000 1261260 064620 00001261260062640 EA EA l l EI EI EI EI l l l l EI EI EI EI l l l l K EA EA l l EI EI EI EI l l l l EI EI EI EI l l l l ??- ??? ???- ?? ? ???- ??? ?=??-?? ? ???---??? ???-??? ?

桁架支撑的计算和构造

桁架支撑的计算和构造 如上所述,桁架支撑是垂直于桁架平面设置的支撑桁架,承受纵向和横向水平荷载,如风荷载、悬挂或桥式吊车的水平制动或振动荷载、地震荷载等,其杆件承受轴心拉力或轴心压力。由于水平荷载通常可为正或负方向,故多数支撑杆件的内力可能是受拉也可能是受压,应按压杆设计;只有限定只受拉力(受压时退出受力)的交叉柔性斜腹杆和柔性系杆按拉杆设计。 在一般屋架跨度和水平荷载不大的情况下,支撑杆件受力较小,常可不作内力计算,杆件截面由满足极限长细比条件λmax≤[λ]确定。规范GBJ17-88规定,屋盖支撑压杆[λ]=200,拉杆[λ]=400(有重级工作吊车的厂房中350)。 计算杆件λmax时,对双角钢组成的T形截面杆件,应考虑支撑桁架平面内(截面x轴)和平面外(y轴)方向。对交叉柔性单角钢斜拉杆也是如此,但因其平面外计算长度是平面内计算长度的一倍,故总是平面外y轴方向控制。对仅在两端连接的单角钢杆件或双角钢组成的十形截面杆件,则应按斜方向即截面最小回转半径i mim轴方向的λmax考虑。 当支撑桁架的跨度或荷载较大时,必要时应按桁架分析计算杆件内力,再按轴心受拉或受压验算截面的强度和稳定是否足够。 为了安装方便,屋盖支撑通常用M20C级螺栓与屋架相连(图1~3),支撑与天窗架的连接螺栓可考虑略减小至M16。每处连接螺栓一般至少用两个。在有较大起重量或重级工作吊车、或有较大振动设备的厂房,支撑与屋架下弦的连接宜用焊接,这时C级螺栓起安装定位作用。水平支撑的横杆和刚性系杆都受压力且长度相同,应尽量做成杆件本身以及连接构造和尺寸上互相统一。 图1 屋架上弦水平支撑 上弦横向水平支撑的交叉斜杆应做成角钢尖均向下,且连接处适当离开屋架

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

平面桁架结构的有限元分析

运用ANSYS进行平面刚架模拟建模及误差分析 摘要 有限单元法(或称有限元法)是在当今工程分析中获得最广泛应用的数值计算方法。由于它的通用性和有效性,受到工程技术界的高度重视。伴随着计算机科学和技术的快速发展,现已成为计算机辅助设计和计算机辅助制造的重要组成部分。ANSYS软件是目前世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计软件接口,实现数据的共享和交换。本文主要分析平面刚架在均布荷载作用下模拟的有限元模型计算与手工计算之间的误差。 关键字:ANSYS软件有限元平面刚架 PIANE STEEL FRAME WITH ANSYS SIMULATION MODELING AND ERROR ANALYSIS ABSTRACT Finite element method (or finite element method) is the most widely used in modern engineering analysis of numerical calculation method. Because of its versatility and effectiveness, attaches great importance to by the engineering and technology. Along with the rapid development of computer science and technology, has now become a computer aided design and computer aided manufacturing is an important part .At present,the software of ANSY is the fastest growing computer aided engineering (CAE) software on the world, interfacing with the majority of computer aided design software, realizing the sharing and exchange of data. This paper mainly analyzes the model of planar frame software of ANSYS. KEYWARDS:software of ANSYS,finite element,planar frame

2016基本平面刚架各种荷载MATLAB程序

% 平面刚架MATLAB程序 % 2003.9.16 2007.2.28 2008.4.1 2009.10 2011.10 2013.9 2014.09 2016.03 %************************************************* % 变量说明 % NPOIN NELEM NVFIX NFPOIN NFPRES % 总结点数,单元数, 约束个数, 受力结点数, 非结点力数 % COORD LNODS YOUNG % 结构节点坐标数组, 单元定义数组, 弹性模量 % FPOIN FPRES FORCE FIXED % 结点力数组,非结点力数组,总体荷载向量, 约束信息数组 % HK DISP % 总体刚度矩阵,结点位移向量 %************************************************** format short e %设定输出类型 clear %清除内存变量 FP1=fopen('6-6.txt','rt') %打开初始数据文件 %读入控制数据 NELEM=fscanf(FP1,'%d',1); %单元数 NPOIN=fscanf(FP1,'%d',1); %结点数 NVFIX=fscanf(FP1,'%d',1); %约束数 NFPOIN=fscanf(FP1,'%d',1); %作用荷载的结点个数 NFPRES=fscanf(FP1,'%d',1); %非结点荷载数 YOUNG=fscanf(FP1,'%f',1); %弹性模量 % 读取结构信息 LNODS=fscanf(FP1,'%f',[6,NELEM])' % 单元定义:左、右结点号,面积,惯性矩,线膨胀系数,截面高度(共计NELEM组)COORD=fscanf(FP1,'%f',[2,NPOIN])' % 坐标:x,y坐标(共计NPOIN 组) FPOIN=fscanf(FP1,'%f',[4,NFPOIN])' % 节点力(共计NFPOIN 组):受力结点号、X方向力(向右正), % Y方向力(向上正),M力偶(逆时针正) FPRES=fscanf(FP1,'%f',[7,NFPRES])' % 均布力(共计 % NFPRES 组):单元号、荷载类型、荷载大小、距离左端长度,温差=(下端-上端)梯形上边。下边(改) % 荷载类型1-均布荷载2-横向集中力3-纵向集中力4-三角形荷载5-温度荷载6-梯形荷载 FIXED=fscan f(FP1,'%f',NVFIX)' % 约束信息:约束对应的位移编码(共计NVFIX 组) %--------------------------------------------------------- HK=zeros(3*NPOIN,3*NPOIN); % 张成总刚矩阵并清零 FORCE=zeros(3*NPOIN,1); % 张成总荷载向量并清零 %形成总刚 for i=1:NELEM % 对单元个数循环

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

基于matlab的有限元法分析平面应力应变问题刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) (K k I f) (k u) (k u A) (E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa,v=,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵

通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,,,0,,1) k1 = +006 * Columns 1 through 5 0 0 0 0 0 0 0 0 Column 6 >> NU= NU = >> t= t = >> k2=LinearTriangleElementStiffness(E,NU,t,0,0,,0,,,1)

平面桁架结构matlab

桁架结构计算第四章P56 ******************************************************************************* function y=plane_truss_element_stiffness(E,A,L,theta) %平面桁架单元刚度 x=theta*pi/180; C=cos(x); S=sin(x); y=E*A/L*[ C*C C*S -C*C -C*S; C*S S*S -C*S -S*S; -C*C -C*S C*C C*S; -C*S -S*S C*S S*S];%平面桁架刚度矩阵 ******************************************************************************* function y=plane_truss_assemble(K,k,i,j) %平面桁架组装 K(2*i-1,2*i-1)=K(2*i-1,2*i-1)+k(1,1); K(2*i-1,2*i)=K(2*i-1,2*i)+k(1,2); K(2*i-1,2*j-1)=K(2*i-1,2*j-1)+k(1,3); K(2*i-1,2*j)=K(2*i-1,2*j)+k(1,4); K(2*i,2*i-1)=K(2*i,2*i-1)+k(2,1); K(2*i,2*i)=K(2*i,2*i)+k(2,2); K(2*i,2*j-1)=K(2*i,2*j-1)+k(2,3); K(2*i,2*j)=K(2*i,2*j)+k(2,4); K(2*j-1,2*i-1)=K(2*j-1,2*i-1)+k(3,1); K(2*j-1,2*i)=K(2*j-1,2*i)+k(3,2); K(2*j-1,2*j-1)=K(2*j-1,2*j-1)+k(3,3); K(2*j-1,2*j)=K(2*j-1,2*j)+k(3,4); K(2*j,2*i-1)=K(2*j,2*i-1)+k(4,1); K(2*j,2*i)=K(2*j,2*i)+k(4,2); K(2*j,2*j-1)=K(2*j,2*j-1)+k(4,3); K(2*j,2*j)=K(2*j,2*j)+k(4,4); y=K; ******************************************************************************* function y=plane_truss_element_force(E,A,L,theta,u)%力的表达式 x=theta*pi/180; C=cos(x); S=sin(x); y=E*A/L*[-C -S C S]*u; ******************************************************************************* function y=plane_truss_element_stress(E,L,theta,u) %应力表达式 x=theta*pi/180; C=cos(x); S=sin(x); y=E/L*[-C -S C S]*u; ***************************************************************************************************** *****************************************************************************************************

桁架单元例子MATLAB 1

no axial forces acting on the beam. Use two elements to solve the problem. (a) Determine the deflection and slope at x = 0.5, 1 and 1.5 m; (b) Draw the bending moment and shear force diagrams for the entire beam; (c) What are the support reactions? (d) Use the beam element shape functions to plot the deflected shape of the beam. Use EI = 1,000 Nm, L = 1 m, and F = 1,000 N. Solution: Solution: (a) Given, ?(?)=?(?)=?=1?; ??=1000??; ?=1000? For any element of length L, the structural stiffness matrix is defined as, ???=????? 126? ?126? 6?4?? ?6?2?? ?12?6? 12?6?6?2?? ?6?4?? ? The element stiffness matrix for element 1 is: ?(?) =????(?)???126?12664?62?12?612?6 62?64?=1000?126?126 64?62?12?612?662?64 ? The element stiffness matrix for element 2 is: Element 1 Element 2

建筑力学分类题型计算桁架

1. 计算图4所示桁架的支座反力及1、2杆的轴力。 解: (1)求支座反力 由∑=0A M 得,09303404=?+?-?By F 即)(↓-=kN 5.37By F 由∑=0x F 得,)(kN 10←=Ax F 由∑=0y F 得,) (↑=+=kN 5.575.3720Ay F (2)求杆1、2的轴力 截面法 (压) (压) kN 5.370 930536 kN 500340512 02211-==?+?=-==?+? =∑∑N N B N N A F F M F F M 2. 计算图1所示静定桁架的支座反力及1、2杆的轴力。 图1 解: (1)求支座反力 由∑=0A M 得,0420820121016=?-?-?-?By F 即)(↑=kN 5.22By F 由 ∑=0x F 得,0=Ax F

由 ∑=0y F 得,) (↑=-=kN 5.275.2250Ay F (2)求杆1、2的轴力 截面法 (压) (压)kN 77.162 5150 kN 2044 200 1 -≈-==-=?-==∑∑N I NGE A F M F M 结点H kN 14.14210kN 10022-=?-=-==∑N y N y F F F (压) 3. 计算图1所示桁架的支座反力及1、2杆的轴力。 图1 解: (1)求支座反力 (4分) 由∑=0A M 得,012304=?+?By F 即)(↓-=kN 90By F 由 ∑=0x F 得,0=Ax F 由∑=0y F 得,) (↑=+=kN 1203090Ay F (2).求杆1、2的轴力 (6分) kN 901-=N F (压) kN 502-=N F (压) 4. 计算图所示桁架的支座反力及1、2杆的轴力。 解:

相关主题
文本预览
相关文档 最新文档