《有限元基础教程》_【MATLAB算例】3.2.5(2)__四杆桁架结构的有限元分析(Bar2D2Node)
- 格式:doc
- 大小:100.50 KB
- 文档页数:4
篇下载MATLAB4节点杆单元计算在工程结构分析领域中,节点杆单元是一种常用的有限元分析方法。
它通过将结构划分成多个小单元,然后对每个小单元进行力学分析,最终得出整个结构的受力情况。
MATLAB作为一种强大的工程计算工具,被广泛应用于结构分析中。
本文将介绍如何利用MATLAB进行4节点杆单元计算,并提供相应的代码实例。
1. 理论背景在进行4节点杆单元计算之前,首先需要了解节点杆单元的基本理论。
节点杆单元是将结构划分为多个杆件,并在每个节点处考虑位移和受力。
通过分析每个杆件的受力平衡和位移关系,可以得出整个结构的受力和变形情况。
4节点杆单元是其中的一种常用的单元类型,它由4个节点和2个杆件组成,可以用来模拟各种不同形状和受力情况的结构。
2. MATLAB实现在MATLAB中,可以利用有限元分析工具箱进行4节点杆单元计算。
首先需要定义结构的几何形状和材料性质,并将其转化为有限元模型。
然后可以利用有限元分析工具箱提供的函数进行网格划分和边界条件设置。
接下来可以利用求解器进行结构的力学分析,并得出节点的位移和受力情况。
最后可以利用MATLAB的绘图工具对结果进行可视化展示。
3. 代码实例下面是一个简单的MATLAB代码实例,演示了如何利用有限元分析工具箱进行4节点杆单元计算:```matlab定义结构的几何形状和材料性质L = 1; 结构的长度A = 1; 结构的横截面积E = 1; 结构的弹性模量定义节点坐标node = [0, 0; 0, L; L, L; L, 0];定义单元节点关系element = [1, 2; 2, 3; 3, 4; 4, 1];网格划分和边界条件设置model = createpde();geometryFromEdges(model,(p)struct('p',p','e',[]),(p)ones(size(p,2 ),1));generateMesh(model);结构的力学分析structuralProperties(model,'YoungsModulus',E,'PoissonsRatio',0); structuralBC(model,'Edge',1,'Constraint','fixed');节点的位移和受力情况result = solve(model);可视化展示pdeplot(model,'XYData',result.displacement,'Deformation','on'); ```4. 结论通过以上代码实例,可以看到利用MATLAB进行4节点杆单元计算是非常简单和高效的。
matlab桁架结构有限元计算摘要:一、引言- 介绍MATLAB在桁架结构有限元计算中的应用- 说明本文的主要内容和结构二、有限元计算原理- 有限元方法的背景和基本原理- 有限元方法在桁架结构分析中的应用三、MATLAB实现桁架结构有限元计算- MATLAB的基本操作和编程基础- 使用MATLAB进行桁架结构有限元计算的步骤和示例四、MATLAB桁架结构有限元计算的应用- 分析不同桁架结构的特点和计算结果- 探讨MATLAB在桁架结构有限元计算中的优势和局限五、结论- 总结MATLAB在桁架结构有限元计算中的应用和优势- 展望MATLAB在桁架结构分析中的未来发展方向正文:一、引言随着计算机技术的不断发展,有限元方法已经成为工程界解决复杂问题的重要手段。
MATLAB作为一款功能强大的数学软件,可以方便地实现桁架结构的有限元计算。
本文将介绍MATLAB在桁架结构有限元计算中的应用,并详细阐述其操作方法和计算原理。
二、有限元计算原理1.有限元方法的背景和基本原理有限元法是一种数值分析方法,通过将连续的求解域离散为离散的单元,将复杂的问题转化为求解单元的线性或非线性方程组。
有限元方法具有适应性强、精度高、计算效率高等优点,广泛应用于固体力学、流体力学、传热等领域。
2.有限元方法在桁架结构分析中的应用桁架结构是一种由杆件组成的结构,其节点只有三个自由度。
有限元方法可以有效地分析桁架结构的强度、刚度和稳定性,为工程设计提供理论依据。
三、MATLAB实现桁架结构有限元计算1.MATLAB的基本操作和编程基础MATLAB是一种功能强大的数学软件,可以进行矩阵运算、绘制图形、编写程序等操作。
在MATLAB中,用户可以通过编写脚本文件或使用图形界面进行各种计算和分析。
2.使用MATLAB进行桁架结构有限元计算的步骤和示例(1) 建立桁架结构模型:根据实际结构绘制桁架的节点和杆件,确定各节点的三自由度。
(2) 离散化:将桁架结构离散为有限个单元,每个单元包含若干个节点。
四杆桁架结构的有限元分析下面针对【典型例题】(1)的问题,在ANSYS 平台上,完成相应的力学分析。
即如图3-8所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E,E=29.5X10 2100mm A ,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。
图3-8 四杆桁架结构解答 对该问题进行有限元分析的过程如下。
以下为基于ANSYS 图形界面( graphic user interface ,GUI)的菜单操作流程;注意:符号“→”表示针对菜单中选项的鼠标点击操作。
关于ANSYS 的操作方式见附录B 。
1. 基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): planetruss →Run → OK(2) 设置计算类型ANSYS Main Menu : Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Link :2D spar 1 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:2.95e11 (弹性模量),PRXY: 0 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定单元的截面积ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), AREA: 1e-4 (单元的截面积) →OK →Close(6) 生成单元 ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes → In Active CS →Node number 1 → X:0,Y:0,Z:0 →Apply →Node number 2 → X:0.4,Y:0,Z:0 →Apply →Node number 3 → X:0.4,Y:0.3,Z:0→Apply →Node number 4 → X:0,Y:0.3,Z:0→OKANSYS Main Menu: Preprocessor → Modeling → Create → Elements →Elem Attributes (接受默认值)→Usernumbered→Thru nodes→OK→选择节点1,2→Apply→选择节点2,3→Apply→选择节点1,3→Apply→选择节点3,4→Apply→OK(7)模型施加约束和外载添加位移的约束,分别将节点1 X和Y方向、节点2 Y方向、节点4的X和Y方向位移约束。
有限元分析基础教程前言有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。
在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。
一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。
在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。
本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。
用Matlab对四连杆运动模拟引言四连杆机构因其结构灵活、能够传递动力并有效地实现预定动作,在很多领域得到了广泛应用。
进行连杆机构运动分析,传统方法主要是图解法或分析法,无论设计精度还是设计效率都相对低下,无法满足现代机械高速高精度的要求。
随着计算机技术的飞速发展,特别是以MATLAB为代表的数值计算软件的出现,为进行机构分析提供了有力的工具。
1、四连杆介绍1.1、四连杆介绍与分类所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。
选定其中一个构件作为机架之后,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。
如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。
铰链四杆机构中,按照连架杆是否可以做整圆周转动,可以将其分为三种基本形式,即曲柄摇杆机构,双曲柄机构和双摇杆机构。
曲柄摇杆机构,两连架杆中一个为曲柄一个为摇杆的铰链四杆机构。
双曲柄机构,具有两个曲柄的铰链四杆机构称为双曲柄机构。
其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。
在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。
这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。
双摇杆机构。
双摇杆机构是两连架杆均为摇杆的铰链四杆机构。
1.2、格拉霍夫定理杆长之和条件:平面四杆机构的最短杆和最长杆的长度之和小于或者等于其余两杆长度之和。
在铰链四杆机构中,如果某个转动副能够成为整转副,则它所连接的两个构件中,必有一个为最短杆,并且四个构件的长度关系满足杆长之和条件。
在有整装副存在的铰链四杆机构中,最短杆两端的转动副均为整转副。
此时,如果取最短杆为机架,则得到双曲柄机构;若取最短杆的任何一个相连构件为机架,则得到曲柄摇杆机构;如果取最短杆对面构件为机架,则得到双摇杆机构。
第14卷第2期2019年6月Vol.14No.2Jun.2019陕西工业职业技术学院学报Journal of Shaanxi Polytechnic Institute基于MATLAB给定连杆预定位置的四杆机构设计韩二豹(陕西工业职业技术学院土木工程学院,陕西咸阳712000)摘要:连杆机构是一种典型的机械机构,运动设计是一个比较复杂和困难的问题,给定连杆预定位置的四杆机构的设计常用的设计方法主要为解析法。
本文以MATLAB语言为基础,利用计算机对给定连杆预定位置的四杆机构进行设计。
结果表明,此方法设计过程简洁,结果合理,准确,效率高。
关键词:四杆机构;MATLAB;预定位置中图分类号:TB121文献标识码:A文章编号=9459-2019(2)-0006-03A MATLAB-based Design of Four-bar Linkage with PresetPosition of Connecting RodHan Erbao(School of Civil Engineering,Shaanxi Polytechnic Institute,Xianyang Shaanxi712000,China)Abstract:Connecting rod is a typical mechanical linkage and its motion design is complex and ually, analytical method is the main method used in the design of four一bar linkage with preset position of connecting rod. In the study,a MATLAB一based design of four bar mechanism was made to link the preset position given by com・puter.The results show that the design process is simple Key words:Four bar linkage;MATLAB;Preset positiono引言MATLAB是一种高级技术语言和发展环境,特提供了一个人机交互的系统环境,并以矩阵作为基础的数据结构,节省编程时间,语法简单、容易掌握、调试方便,可以设置调试断点、快速查找程序错误等优点,可以将使用者从繁重重复的计算中解脱出来,已经被大家认可和广泛使用,充分展现其高效、直观、简单的特点⑷。
MATLAB 解题1.设有如图所示四杆机构,其中→R 4为机架(常矢),→R1为主动杆,→R3为从动杆,→R 2为连杆。
设在某一工作位置时各杆的角速度和角加速度分别取如下值:ω1=20 rad/s, ε1= 0;ω2=8.5 rad/s, ε2=-10 rad /s 2;ω3=13 rad/s, ε3=-160rad /s 2.试根据上述要求确定该机构尺寸比。
根据图(2),回路闭合方程可写为:→R 1 +→R 2 +→R 3=-→R 4 回路闭合方程对时间求导一次,利用(6)式,可得: 图2 ω1→R 1 +ω2→R 2 +ω3→R 3 = 0回路闭合方程对时间求导两次,利用(7)式,可得c 1→R 1 + c 2 →R 2 + c 3→R 3 = 0其中 c 1=ε1+j ω12 , c 2=ε2+j ω22, c 3=ε3+j ω32解关于→R 1 ,→R 2 和→R 3的线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→→→001111321321321R R R c c c ωωω→R 4 (13) 可得 →R 1=DDx →R 4, →R 2=DDy →R 4 , →R 3=DDz →R 4注意到上述解中含有相同的分母D,它是一个复数,不妨记为D =k<j α|,被它除的效果是把各杆的长度都缩小k 倍,同时方向都顺时针旋转α角,相当于机构不动,坐标轴逆时针旋转α角。
设计机构时,重要的是机构的形状与尺寸比例。
基于这种考虑,可设→R 4 / D =1,则有→R 1=D x =32320111c c ωω-=1230-j497.3 ; →R 2= D y =311030111c c ωω-=-3200-j1820 ; →R 3= D z =001112121c c ωω-=200+j1955 . 于是:→R 4 = -(→R 1 +→R 2+→R 3) = 1770+j362.3在坐标系上作出上述各杆矢量图,根据各杆矢量图作出机构的闭合矢量图,再根据实际需要选定某一杆长度,其它各杆长度按图比例相似放大。
matlab四连杆机构代码实现
下面是一个使用MATLAB实现四连杆机构的简单示例代码:
```matlab
% 定义连杆参数
a = [2 3 2 3]; % 连杆长度
theta = [pi/4 pi/3 pi/2 pi/6]; % 连杆转角
% 计算连杆末端坐标
x = zeros(1,5);
y = zeros(1,5);
for i = 2:5
x(i) = x(i-1) + a(i-1) * cos(theta(i-1));
y(i) = y(i-1) + a(i-1) * sin(theta(i-1));
end
% 绘制机构图像
figure;
hold on;
axis equal;
for i = 1:4
line([x(i) x(i+1)], [y(i) y(i+1)], 'LineWidth', 2);
plot(x(i+1), y(i+1), 'ro', 'MarkerSize', 8);
end
```
在这个例子中,我们使用数组`a`存储了四个连杆的长度,使用数组`theta`存储了四个连杆的转角。
通过循环计算每个连杆末端的坐标,并使用MATLAB的`line`函数和`plot`函数绘制连杆和末端坐标点。
你可以根据实际情况修改连杆长度和转角,然后运行代码来生成相应的机构图像。
希望对你有帮助!。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。