当前位置:文档之家› 干货—【基础】常用的机器学习&数据挖掘知识点

干货—【基础】常用的机器学习&数据挖掘知识点

干货—【基础】常用的机器学习&数据挖掘知识点
干货—【基础】常用的机器学习&数据挖掘知识点

【基础】常用的机器学习&数据挖掘知识点

Basis(基础):

MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),

QP(Quadratic Programming 二次规划),CP(Conditional Probability条件概率),JP(Joint Probability 联合概率),MP(Marginal Probability边缘概率),Bayesian Formula(贝叶斯公式),L1 /L2Regularization(L1/L2正则,以及更多的,现在比较火的L2.5正则等),

GD(GradientDescent 梯度下降),SGD(Stochastic Gradient Descent 随机梯度下降),Eigenvalue(特征值),Eigenvector(特征向量),QR-decomposition(QR分解),Quantile (分位数),Covariance(协方差矩阵)。

Common Distribution(常见分布):

Discrete Distribution(离散型分布):BernoulliDistribution/Binomial(贝努利分布/二项分布),Negative BinomialDistribution(负二项分布),MultinomialDistribution(多项式分布),Geometric Distribution(几何分布),HypergeometricDistribution(超几何分布),Poisson Distribution (泊松分布)

Continuous Distribution (连续型分布):UniformDistribution(均匀分布),Normal Distribution /Guassian Distribution(正态分布/高斯分布),ExponentialDistribution(指数分布),Lognormal Distribution(对数正态分布),GammaDistribution(Gamma分布),Beta Distribution(Beta分布),Dirichlet Distribution(狄利克雷分布),Rayleigh Distribution(瑞利分布),Cauchy Distribution(柯西分布),Weibull Distribution (韦伯分布)

Three Sampling Distribution(三大抽样分布):Chi-squareDistribution(卡方分布),

t-distribution(t-distribution),F-distribution(F-分布)

Data Pre-processing(数据预处理):

Missing Value Imputation(缺失值填充),Discretization(离散化),Mapping(映射),Normalization(归一化/标准化)。

Sampling(采样):

Simple Random Sampling(简单随机采样),OfflineSampling(离线等可能K采样),Online Sampling(在线等可能K采样),Ratio-based Sampling(等比例随机采样),

Acceptance-RejectionSampling(接受-拒绝采样),Importance Sampling(重要性采样),MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。

Clustering(聚类):

K-Means,K-Mediods,二分K-Means,FK-Means,Canopy,Spectral-KMeans(谱聚类),GMM-EM(混合高斯模型-期望最大化算法解决),K-Pototypes,CLARANS(基于划分),BIRCH(基于层次),CURE(基于层次),DBSCAN(基于密度),CLIQUE(基于密度和基于网格)

Classification&Regression(分类&回归):

LR(Linear Regression 线性回归),LR(LogisticRegression逻辑回归),SR(Softmax Regression 多分类逻辑回归),GLM(GeneralizedLinear Model 广义线性模型),RR(Ridge Regression 岭回归/L2正则最小二乘回归),LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归),RF(随机森林),DT(DecisionTree决策树),GBDT(Gradient BoostingDecision Tree 梯度下降决策树),CART(ClassificationAnd Regression Tree 分类回归树),KNN(K-Nearest Neighbor K近邻),SVM(Support VectorMachine),KF(KernelFunction 核函数PolynomialKernel Function 多项式核函数、Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、String KernelFunction 字符串核函数)、NB(Naive Bayes 朴素贝叶斯),BN(Bayesian

Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络),LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别),EL(Ensemble Learning集成学习Boosting,Bagging,Stacking),AdaBoost(Adaptive Boosting 自适应增强),MEM(MaximumEntropy Model最大熵模型)

Effectiveness Evaluation(分类效果评估):

Confusion Matrix(混淆矩阵),Precision(精确度),Recall(召回率),Accuracy(准确率),

F-score(F得分),ROC Curve(ROC曲线),AUC(AUC面积),LiftCurve(Lift曲线) ,KS Curve(KS曲线)。

PGM(Probabilistic Graphical Models概率图模型):

BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网

络/信念网络),MC(Markov Chain 马尔科夫链),HMM(HiddenMarkov Model 马尔科夫模型),MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型),

CRF(ConditionalRandom Field 条件随机场),MRF(MarkovRandom Field 马尔科夫随机场)。

NN(Neural Network神经网络):

ANN(Artificial Neural Network 人工神经网络),BP(Error BackPropagation 误差反向传播)

Deep Learning(深度学习):

Auto-encoder(自动编码器),SAE(Stacked Auto-encoders堆叠自动编码器:Sparse

Auto-encoders稀疏自动编码器、Denoising Auto-encoders去噪自动编码器、Contractive Auto-encoders 收缩自动编码器),RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),DBN(Deep Belief Network 深度信念网络),CNN(ConvolutionalNeural Network 卷积神经网络),Word2Vec(词向量学习模型)。

DimensionalityReduction(降维):

LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,PCA(Principal Component Analysis 主成分分析),ICA(IndependentComponent Analysis 独立成分分析),SVD(Singular Value Decomposition 奇异值分解),

FA(FactorAnalysis 因子分析法)。

Text Mining(文本挖掘):

VSM(Vector Space Model向量空间模型),Word2Vec(词向量学习模型),TF(Term Frequency词频),TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率),MI(MutualInformation 互信息),ECE(Expected Cross Entropy 期望交叉熵),QEMI(二次信息熵),IG(InformationGain 信息增益),IGR(Information Gain Ratio 信息增益率),Gini(基尼系数),x2 Statistic(x2统计量),TEW(TextEvidence Weight文本证据权),OR(Odds Ratio 优势率),N-Gram Model,LSA(Latent Semantic Analysis 潜在语义分析),PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析),LDA(Latent DirichletAllocation 潜在狄利克雷模型)

Association Mining(关联挖掘):

Apriori,FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),AprioriAll,Spade。

Recommendation Engine(推荐引擎):

DBR(Demographic-based Recommendation 基于人口统计学的推荐),

CBR(Context-basedRecommendation 基于内容的推荐),CF(Collaborative Filtering协同过滤),UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐),ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)。

Similarity Measure&Distance Measure(相似性与距离度量):

Euclidean Distance(欧式距离),ManhattanDistance(曼哈顿距离),Chebyshev Distance(切比雪夫距离),MinkowskiDistance(闵可夫斯基距离),Standardized Euclidean Distance(标准化欧氏距离),MahalanobisDistance(马氏距离),Cos(Cosine 余弦),HammingDistance/Edit Distance(汉明距离/编辑距离),JaccardDistance(杰卡德距离),Correlation Coefficient Distance(相关系数距离),InformationEntropy(信息熵),

KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)。

Optimization(最优化):

Non-constrainedOptimization(无约束优化):Cyclic VariableMethods(变量轮换法),Pattern Search Methods(模式搜索法),VariableSimplex Methods(可变单纯形法),Gradient Descent Methods(梯度下降法),Newton Methods(牛顿法),Quasi-NewtonMethods(拟牛

顿法),Conjugate Gradient Methods(共轭梯度法)。

ConstrainedOptimization(有约束优化):Approximation Programming Methods(近似规划法),FeasibleDirection Methods(可行方向法),Penalty Function Methods(罚函数法),Multiplier Methods(乘子法)。

Heuristic Algorithm(启发式算法),SA(SimulatedAnnealing,模拟退火算法),GA(genetic algorithm遗传算法)

Feature Selection(特征选择算法):

Mutual Information(互信息),DocumentFrequence(文档频率),Information Gain(信息增益),Chi-squared Test(卡方检验),Gini(基尼系数)。

Outlier Detection(异常点检测算法):

Statistic-based(基于统计),Distance-based(基于距离),Density-based(基于密度),Clustering-based(基于聚类)。

Learning to Rank(基于学习的排序):

Pointwise:McRank;

Pairwise:RankingSVM,RankNet,Frank,RankBoost;

Listwise:AdaRank,SoftRank,LamdaMART;

Tool(工具):

MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…

作者:尾巴子

End.

起重机械基础常识(正式版)

文件编号:TP-AR-L3207 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 起重机械基础常识(正式 版)

起重机械基础常识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、起重机械的工作特点及其分类 起重机械是以间歇工作方式,升降物件或提升并 在限定范围内运移物件的。 起重机械是现代工业生产不可缺少的设备,被广 泛的应用于各种物料的起重、运输、装卸和人员输送 等作业中。全国起重机械的保有量约25万台左右。 全国有起重机生产厂400多家,年产量约3万余台, 并以每年10%速度递增。 由于大多数起重机械活动空间大,暴露的活动零 部件多,使得事故隐患面积大;作业场所常常需要多 人配合,要求指挥、捆扎、驾驶等作业人员配合,存

在较大的难度。上述诸多因素的存在,决定了起重机伤害事故较多。据资料统计,我国每年起重伤害事故的死亡人数,占全部工业企业死亡总数的15%左右,每年起重机事故的死亡人数在所有机械事故死亡人数中居首位。在各类起重机械中,塔吊事故最为突出,据笔者在劳动部职安局工作时统计,全国塔吊在安装和拆卸中,死亡10人以上的特大事故,每年都要发生3起以上。因此,起重机械安全不能不引起人们的重视。 起重机械按其功能和结构特点,可分为三类:第一类:轻小型起重设备,其特点是轻便,机构紧凑,动作简单,作业范围投影以点、线为主;第二类:起重机,其特点是可以使挂在起重吊钩或其他取物装置上的重物在空间实现垂直升降和水平运移;第三类:升降机,其特点是重物或取物装置只能沿导轨升降。

浅谈机器学习与深度学习的概要及应用

龙源期刊网 https://www.doczj.com/doc/b35292724.html, 浅谈机器学习与深度学习的概要及应用 作者:宁志豪周璐雨陈豪文 来源:《科技风》2019年第15期 摘;要:在20世纪五六十年代,“人工智能”这个术语就早已被正式提出。经历了几十个年代的发展,在AlphaGo击败李世乭时,人工智能(Artificial Intelligence)又受到了学者们的广泛关注和研究,同时机器学习(Machine Learning)和深度学习(deep learning)也相应的被提及到,甚至作为了人工智能其中的一个发展方向去拓展。本文对机器学习和深度学习的概念进行了解释与区分,从实际应用出发阐述了机器学习和深度学习的方向与应用,以及机器学习算法的分类。鉴于没有系统的学习过,可能在许多地方会有出入,还望更多的人能够有自己的思考。 关键词:机器学习;深度学习;算法 1 定义与区分 随着愈来愈多的学者对机器学习领域的深入探索,机器学习这个词的不同解释也出现了很多。其中,Arthur Samuel对机器学习的定义是指在没有明确的设定情况下,使计算机具有学习能力的研究领域。计算机程序从经验E中学习,为了解决某一任务T进行某一性能度量P,通过P测定在T上的表现因经验E而提高,这是Tom Mitchell对机器学习的定义。[1]其实简单来说,它是对数据分布进行建模,然后从大量看似无规律的数据中抽象出共性的模式。而深度学习是机器学习的一个子类,可以把它看作一种特殊的机器学习。深度学习的概念源于人工神经网络的研究。深度学习是机器学习中一种基于对数据进行表征学习的方法,是一种能够模拟出人脑的神经结构的机器学习方法。 先举个例子来区分机器学习和深度学习,比如在识别猫和狗时,机器学习需要人工的将区别猫、狗的一些特征进行提取,而深度学习则自动找出分类问题的特征。因此,对于大量数据,使用深度学习较好,数据量少时,传统机器学习更适用。机器学习在解决问题时需把问题的步骤分解,而深度学习直接得到结果,可以实现实时的效果。当然,深度学习在具备高效能的优点时,它对硬件的要求也很高,尤其对GPU的要求。 2 机器学习算法分类 机器学习算法分为监督学习、无监督学习、强化学习以及推荐系统四大类。监督学习(Supervised Learning)是给出带有正确答案的数据集,通过算法得出更多的正确答案;无监督学习(Unsupervised Learning)是不提前告知算法,只给出一堆数据集。监督学习主要用于解决回归问题(预测连续的数据值)和分类问题(预测离散值输出)。如预测房价是回归问题,根据某些已有的数据可以得出直线、二次函数或二阶多项式。预测肿瘤的良性、恶性,只有两

机器学习与数据挖掘复习.

类器进行投票。他适用于不稳定的学习过程,即数据集的一个小变动会产生大的差别,例如决策树、多层感知器。 6. Boosting 方法:它能提高弱分类器的性能。它是带权值的抽样,改变数据对象的权值,分类好的数据给与小权值,分类不好的数据给与大权值,最终集成分类结果用加权投票的方法。 7. 一些经验: a 如果分类器不稳定用 bagging。 b 如果分类器稳定且简单用 boosting。 c 如果分类器稳定且复杂用随机注入。 d 如果数据有很多类,但是分类器只能处理两个类时,用错误纠正编码。 8. 为什么集成学习有效: a 从统计学角度来说当假设空间很大时,有可能有一些假设有着相同的精度,单一的学习器只能找出他们中的一个假设。然而集成多个假设就有可能找到最可能的假设。 b 从计算角度来讲,很多单一学习算法都只能找到一个局部最优假设,当数据集很大时,可能很难找到一个最优假设,集成学习可以从多个起始点去局部逼近,这样就有可能得到一个全局最优的假设。 c 从表示角度来说,很多情况下最好的假设并不存在于假设空间中,当用集成方法对多个假设空间加权集成时就有可能突破假设空间找到最符合的假设。第十一章聚类分析 1. 什么叫聚类分析:从给定对象中找出一些簇,使在同一簇中的对象要相似,类与类之间的对象要不相似。我们希望类内部越紧越好,类之间界限要越明显越好。 2. 聚类的三类方法和其代表算法思想: a 分层聚类:簇之间是一个嵌套的形式,没有必要定义有多少个类,需要几个都可以。且他可以定义多个含义,具体含义和问题有关。两种方法:聚合方法:每个数据点都看为一个类,两两合并直到合并为一个类。分裂方法:将所有的对象看做一个簇,分类直到每个类里包含一个点时停下。此方法一旦将两个簇合并后就不能再更改,它也没有定义一个明确的目标函数,即不是全局最优化;每种方法都有各种缺点。 b 分区聚类:一个数据对象只属于一个簇。 K-means:1. 随机选择 k 个点作为初始中心点。 2. 计算每个点到不同中心点的距离,将点划分到几个簇里。 3. 重新计算每个簇的中心点。 4. 重复簇的划分直到簇的分布基本不变时停止。 c 基于密度的聚类:对类的定义不同,他认为类是由一些密集的点组成,这些密集的点被一些稀疏的点分开。 DBSCAN:认为类是基于密度的,它认为一个簇是由密度连接的点组成的最大的集合。 3. 层次局类中计算距离的方法: a 两簇之间的最近距离:可以划分大小不同的类;对噪声和例外点敏感。 b 两簇之间的最远距离:

塔式起重机基础知识汇总(整理版)

塔式起重机基础知识汇总 塔式起重机的技术性能是用各种参数表示的,其主要参数包括幅度、起重量、起重力矩、自由高度、最大高度等;其一般参数包括:各种速度、结构重量、尺寸、尾部尺寸及轨距轴距等,下面分别简述: 一、幅度: 幅度是从塔式起重机回转中心线至吊钩中心线的水平距离,通常称为回转半径式工作半径。 二、起重量 起重量是吊钩能吊起的重量,其中包括吊索、吊具及容器的重量,起重量因幅度的改变而改变,因此每台起重机都有自己本身的起重量与起重幅度的对应表,俗称工作曲线表。 起重量包括两个参数:即最大起重量及最大幅度起重量。 最大起重量由起重机的设计结构确定,主要包括其钢丝绳、吊钩、臂架、起重机构等。其吊点必须在幅度较小的位置。 最大幅度起重量除了与起重机设计结构有关,还与其倾翻力矩有关,是一个很重要的参数。 塔式起重机的起重量是随吊钩的滑轮组数不同而不同。一般两绳是单绳起重量的一倍,四绳是两绳起重量的一倍等等。可根据需要而进行变换。 为了防止塔式起重机起重超过其最大起重量,所有塔式起重机都安装有重量限制器,有的称测力环,重量限制器内装存有多个限制开关,除了限位塔机最大额定重量外,在高速起吊和中速起吊时,也可进行重量限制,高速时吊重最轻,中速时吊重中等,低速时吊重最重。. 三、起重力矩 起重量与相应幅度的乘积为起重力矩,过去的计量单位为TM,现行的计量单位为KNM,1TM等于10KNM。 额定起重力矩量是塔式起重机工作能力的最重要参数,它是防止塔机工作时重心偏移,而发生倾翻的关键参数。由于不同的幅度的起重力矩不均衡,幅度渐大,力矩渐小,因此常以各点幅度的平均力矩作为塔机的额定力矩。 塔式起重机的起重量随着幅度的增加而相应递减,因此,在各种幅度时都有额定的起重量,不同的幅度和相应的起重量连接起来,就绘制成起重机的性能曲线图,使操作人员一看明了不同幅度下的额定起重量,防止超载。 一般塔式起重机可以安装几种不同的臂长,每一种臂长的起重臂都有其特定的起重曲线,不过差别不大。 为了防止塔机工作时超力矩而发生安全事故,所有塔机都安装了力矩限位器,其工作原理是当力矩增大时,塔尖的主肢结构会发生弹性形变而触发限位开关动作,力矩

机器学习_KDD Cup 1999 Data Data Set(知识发现和数据挖掘杯1999数据集)

KDD Cup 1999 Data Data Set(知识发现和数据挖掘 杯1999数据集) 数据摘要: This is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction with KDD-99 中文关键词: 多变量,分类,知识发现和数据挖掘,UCI, 英文关键词: Multivariate,Classification,KDD,UCI, 数据格式: TEXT 数据用途: This data set is used for classification. 数据详细介绍:

KDD Cup 1999 Data Data Set Abstract: This is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction Data Set Information: Please see task description. Relevant Papers: Salvatore J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan. Cost-based Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project. [Web Link] 数据预览:

起重机械基础常识

安全管理编号:LX-FS-A36316 起重机械基础常识 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

起重机械基础常识 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、起重机械的工作特点及其分类 起重机械是以间歇工作方式,升降物件或提升并在限定范围内运移物件的。 起重机械是现代工业生产不可缺少的设备,被广泛的应用于各种物料的起重、运输、装卸和人员输送等作业中。全国起重机械的保有量约25万台左右。全国有起重机生产厂400多家,年产量约3万余台,并以每年10%速度递增。 由于大多数起重机械活动空间大,暴露的活动零部件多,使得事故隐患面积大;作业场所常常需要多人配合,要求指挥、捆扎、驾驶等作业人员配合,存

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

机器学习在数据挖掘中的应用_梁晓音

一、引言 数据挖掘(也称为“数据库中的知识发现”)是数据库和信息决策领域最前沿的研究方向之一。数据 挖掘能够揭示隐藏的模式和关系。 从技术角度来看,数据挖掘是指从数据中提取隐含的,人们事先不知道的,但又是潜在有用的信息和知识的过程。从商业角度看,数据挖掘是按企业既定的业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的方法。MetaGroup曾对数据挖掘做出这样的评论:“全球重要的企业、组织会发现,到21世纪数据挖掘技术将 是他们商业成功与否的至关重要的影响因素。 ”数据挖掘是20世纪80年代投资人工智能研究项目失败后,人工智能转入实际应用时提出的[2]。它是一个很有应用价值的新领域,融合了数据库、人工智能、机 器学习、 统计学等多个领域的理论和技术。数据挖掘是一个复杂的过程,需要多步迭代。一般的数据挖掘过程第一步是分析数据的选择,通常使用合适的历史数据;然后,对数据进行清理和预处理,清除数据之间的差异和不一致性;接着,对数据集进行分析,得到所要的可解释模式并验证模式的一般性,这样才能达到指导商业行为或辅助科学研究的目的。数据挖掘过程可以通过不断地迭代,得到最终的有意义的知识。 基于机器学习的模式识别算法限制较少,并且 产生的模式很容易理解。 因此在数据挖掘领域,机器学习方法以其强大的处理不同类型数据的能力和商业应用的巨大潜力日益受到该领域学术界和商业界的重视。用于数据挖掘的各种机器学习算法都有各自的特点,因此了解它们的优缺点将有助于我们在特定的应用中选择合适的技术,这篇文章的目的就是试图分析在数据挖掘中各种机器学习技术的作用。 二、机器学习的概念与发展 机器学习是一种使获取知识自动化的计算方法的学习。机器学习的研究史大致经历了四个阶段: 第一个阶段,20世纪50年代的神经模拟和决策理论技术,学习系统在运行时还很少具有结构或知识。主要方法是建造神经网络和自组织学习系统,学习表现为阈值逻辑单元传送信号的反馈调整。 第二个阶段,20世纪60年代早期开始研究面向概念的学习,即符号学习。使用的工具是语义网络 或谓词逻辑。 在概念获取中,学习系统通过分析相关概念的大量正例和反例来构造概念的符号表示。 第三阶段,开始于20世纪70年代中期,研究活动日趋兴旺,各种学习方法不断推出,实验系统大量涌现,机器学习成为人工智能的一个独立研究领域。 第四阶段,从20世纪80年代中后期到现在,进入到自动化及模式识别等领域,各种学习方法开始继承,多策略学习已经使学习系统愈具应用价值,开始从实验室走向应用领域。而运用机器学习的数据挖掘在商业领域中的应用则是最好的例子。 三、机器学习方法的分类 数据挖掘中使用的机器学习技术主要有以下五种[1]。 (一)规则归纳(ruleinduction):规则归纳从训练集中产生一棵决策树或一组决策规则来进行分类。决策树可以转化成一组规则,分类规则通常用析取范式表示。规则归纳主要优点是处理大数据集的能力强,适合分类和预测型的任务,结果易于解释,技术上易于实施。 (二)神经网络(neuralnetworks):神经网络由类似人脑神经元的处理节点组成,输入节点通过隐藏节点与输出节点相连接从而组成一个多层网络结构,由相互连接的输入层、中间层、输出层组成。神经网络通过对历史样本数据进行反复的网络训练来学 机器学习在数据挖掘中的应用 梁晓音 (广西经济管理干部学院,广西南宁530007) [摘要]本文的目的是阐述数据挖掘中机器学习的作用。数据挖掘在商业领域得到了广泛的应用, 而机器学习可以进行数据分析和模式发现,从而在数据挖掘应用中扮演了一个关键的角色。了解各个机器学习技术的优缺点有助于我们在具体的应用中选择合适的方法。因此,本文对机器学习技术进行了总结和分析,并讨论了它们在数据挖掘中的优缺点。 [关键词]机器学习; 数据挖掘;任务类型计算机与信息技术2008第11期总第95期 广西质量监督导报 38

建筑起重机械安全基础知识考试题

建筑起重机械安全知识试卷 单位:姓名: 一、判断题(每题4分,共计20分。正确“√”错误“×”,并填入括号内) 1.安装、拆卸施工起重机械和整体提升脚手架、模板等自升式架设设施,应当编制拆装方案、制定安全施工措施,并由监理人员现场监督。() 2.施工现场的安全防护用具、机械设备、施工机具及配件必须由专人管理,定期进行检查、维修和保养,建立相应的资料档案,并按照国家有关规定及时报废。() 3.塔式起重机安装质量检验中保证项目有一项不合格,可以判定为合格。() 4.违反《建设工程安全生产管理条例》的规定,施工单位使用未经验收或者验收不合格的施工起重机械和整体提升脚手架、模板等自升式架设设施的,责令限期改正;逾期未改正的,责令停业整顿,并处10万元以上30万元以下的罚款;情况严重的,降低资质等级,直至吊销资质证书;造成重大安全事故,构成犯罪的,对直接责任人员,依照刑法有关规定追究刑事责任;造成损失的,依法承担赔偿责任。() 5.施工单位采购、租赁的安全防护用具、机械设备、施工机具及配件,应当在进入施工现场后进行查验其生产(制造)许可证、产品合格证。() 二、单项选择题(每题4分,共计40分) 1.出租的机械设备和施工机具及配件,应当具有()。

A.生产(制造)许可证 B.产品合格证 C.生产(制造)许可证、产品合格证 2.()应当对出租的机械设备和施工机具及配件的安全性能进行检测,在签订租赁协议时,应当出具检测合格证明。 A.出租单位 B.建设单位 C.施工单位 3.施工单位在使用施工起重机械和整体提升脚手架、模板等自升式架设设施前,应当组织有关单位进行验收,也可以委托具有相应资质的检验检测机构进行验收;使用承租的机械设备和施工机具及配件的,由施工()验收。验收合格的方可使用。 A.总承包单位和安装单位 B.总承包单位、分包单位、出租单位和安装单位共同进行 C.出租单位和安装单位 4.施工单位应当自施工起重机械和整体提升架、模板等自升式架设设施验收合格之日起()日内,向建设行政主管部门或者其他有关部门登记。登记标志应当置于或者附着于该设备的显著位置。 A.15 B.30 C.10 5.违反《建设工程安全生产管理条例》的规定,为建设工程提供机械设备和配件的单位,未按照安全施工的要求配备齐全有效的保险、限位等安全设施和装置的,责令限期改正,处合同价款()以下的罚款;造成损失的,依法承担赔偿责任。 A.3倍以上5倍 B.1倍以上3倍 C.5倍以上10倍 6.违反《建设工程安全生产管理条例》的规定,出租单位出租未经安全性能检测或者经检测不合格的机械设备和施工机具及配件的,责令停业整顿,并处()的罚款;造成损失的,依法承担赔偿责任。 A.1万元以上5万元以上 B.5万元以上10万元以上 C.10万元以上20万元以上 7.施工升降机限速器应隔()校验一次。 A.半年 B.一年 C.两年 D.不需交验

Python数据挖掘与机器学习实战 - 选题

Python数据挖掘与机器学习实战—选题大纲(一组一章,第一章除外)

或从下列选题中选择:(除第1讲) 选题名称内容结构内容要求 第1讲 机器学习与Python库(该讲不可选)解释器Python3.6与IDE:Anaconda/Pycharm 1.Python基础:列表/元组/字典/类/文件 2.numpy/scipy/matplotlib/panda 的介绍和典型使用 3.多元高斯分布 4.典型图像处理 5.scikit-learn的介绍和典型使用 6.多种数学曲线 7.多项式拟合 8.快速傅里叶变换FFT 9.奇异值分解SVD 10.Soble/Prewitt/Laplacian算子 与卷积网络 代码和案例实践 1.卷积与(指数)移动平均线 2.股票数据分析 3.实际生产问题中算法和特征的关系 4.缺失数据的处理 5.环境数据异常检测和分析 第2讲回归线性回归 1.Logistic/Softmax回归 2.广义线性回归 3.L1/L2正则化 4.Ridge与LASSO 5.Elastic Net 6.梯度下降算法:BGD与SGD 7.特征选择与过拟合 8.Softmax回归的概念源头 9.最大熵模型 10.K-L散度 代码和案例实践 1.股票数据的特征提取和应用 2.泰坦尼克号乘客缺失数据处理和存活率 预测 3.环境检测数据异常分析和预测 4.模糊数据查询和数据校正方法 5.PCA与鸢尾花数据分类 6.二手车数据特征选择与算法模型比较 7.广告投入与销售额回归分析 8.鸢尾花数据集的分类

第3讲 决策树和随机森林熵、联合熵、条件熵、KL散度、互信息 1.最大似然估计与最大熵模型 2.ID3、C4.5、CART详解 3.决策树的正则化 4.预剪枝和后剪枝 5.Bagging 6.随机森林 7.不平衡数据集的处理 8.利用随机森林做特征选择 9.使用随机森林计算样本相似度 10.异常值检测 代码和案例实践 1.随机森林与特征选择 2.决策树应用于回归 3.多标记的决策树回归 4.决策树和随机森林的可视化 5.社会学人群收入预测 6.葡萄酒数据集的决策树/随机森林分类 7.泰坦尼克乘客存活率估计 第4讲SVM 线性可分支持向量机 1.软间隔 2.损失函数的理解 3.核函数的原理和选择 4.SMO算法 5.支持向量回归SVR 6.多分类SVM 代码和案例实践: 1.原始数据和特征提取 2.调用开源库函数完成SVM 3.葡萄酒数据分类 4.数字图像的手写体识别 5.MNIST手写体识别 6.SVR用于时间序列曲线预测 7.SVM、Logistic回归、随机森林三者的 横向比较 第5讲聚类各种相似度度量及其相互关系 1.Jaccard相似度和准确率、召回率 2.Pearson相关系数与余弦相似度 3.K-means与K-Medoids及变种 4.AP算法(Sci07)/LPA算法及其应用 5.密度聚类DBSCAN/DensityPeak(Sci14) 6.谱聚类SC 7.聚类评价和结果指标 代码和案例实践: 1.K-Means++算法原理和实现 2.向量量化VQ及图像近似 3.并查集的实践应用 4.密度聚类的异常值检测 5.谱聚类用于图片分割 第6讲 隐马尔科夫模型 HMM 主题模型LDA 1.词潜入和word2vec 2.前向/后向算法 3.HMM的参数学习 4.Baum-Welch算法详解 5.Viterbi算法详解 6.隐马尔科夫模型的应用优劣比较 7.共轭先验分布 https://www.doczj.com/doc/b35292724.html,place平滑 9.Gibbs采样详解 代码和案例实践: 1.敏感话题分析 2.网络爬虫的原理和代码实现 3.LDA开源包的使用和过程分析 4.HMM用于中文分词

简单串联机器人ADAMS仿真

机械系统动力学 简化串联机器人的运动学与动力学仿真分析 学院:机械工程学院 专业:机械设计制造 及其自动化 学生姓名: 学号: 指导教师: 完成日期: 2015.01.09

摘要 在机器人研究中,串联机器人研究得较为成熟,其具有结构简单、成本低、控制简单、运动空间大等优点,已成功应用于很多领域。本文在ADAMS 中用连杆模拟两自由度的串联机器人(机械臂),对其分别进行运动学分析、动力学分析。得出该机构在给出工作条件下的位移、速度、加速度曲线和关节末端的运动轨迹。 关键词:机器人;ADAMS;曲线;轨迹 一、ADAMS软件简介 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.) (现已并入美国MSC公司)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 二、简化串联机器人的运动学仿真 (1)启动ADAMS/View。 在欢迎对话框中选择新建模型,模型取名为robot,并将单位设置为MMKS,然后单击OK。 (2)打开坐标系窗口。 按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐标值。

2020年起重机械安全常识

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年起重机械安全常识 Safety management is an important part of production management. Safety and production are in the implementation process

2020年起重机械安全常识 一、起重机械分类 1.起重机械、起重机 起重机械是被广泛地应用于各种物料的起重、运输、装卸、安装和人员输送等作业中现代工业生产不可缺少的设备。 起重机是以间歇、重复的工作方式,通过起重吊钩或其它吊具起升、下降,或升降与运移物料的机械设备。 2.起重机械分类(略) 3.起重机械的主要参数 额定起重量Gn、跨度S、幅度L、起升高度H、运行速度V、起重力矩M、轨距k、基距B、轮压p、工作级别等。 4.起重机构造标准用语 (1).钢结构:主梁、端梁(横梁)、小车架、支腿、下横梁、起重臂、平衡臂、立柱、门架、拉杆、塔身、走台和司机室等。

(2).传动机构:起升机构、运行机构、回转机构、变幅机构和顶升机构等。 (3).电气系统:手持控制器、主令控制器、导电装置、电缆卷筒、电阻箱、变频器和控制柜等。 (4).主要零部件:吊钧、抓斗、起重电磁铁、钢丝绳、环链、滑轮、卷筒、制动器、车轮和轨道等。 5.起重机安全装置 上升高度限位器、运行极限限位器、缓冲器、锚定装置、夹轨器或防风铁鞋、安全钧、防后倾装置、起重量限制器、力矩限制器和防碰撞装置等。 二.起重机械工作特点及存在危险因素 1.起重机械通常具在庞大的结构和比较复杂的机构,作业过程中常常是几个不同方向的运动同时操作,技术难度较大。 2.能吊运的重物多种多样,载荷是变化的。有的重物重达上百吨,体积大且不规则,还有散粒、热融和易燃易爆危险品等,使吊运过程复杂而危险。

机器学习和数据挖掘的联系与区别_光环大数据培训

https://www.doczj.com/doc/b35292724.html, 机器学习和数据挖掘的联系与区别_光环大数据培训 光环大数据培训机构了解到,从数据分析的角度来看,数据挖掘与机器学习有很多相似之处,但不同之处也十分明显,例如,数据挖掘并没有机器学习探索人的学习机制这一科学发现任务,数据挖掘中的数据分析是针对海量数据进行的,等等。从某种意义上说,机器学习的科学成分更重一些,而数据挖掘的技术成分更重一些。 机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。其专门研究计算机是怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。 数据挖掘是从海量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘中用到了大量的机器学习界提供的数据分析技术和数据库界提供的数据管理技术。 学习能力是智能行为的一个非常重要的特征,不具有学习能力的系统很难称之为一个真正的智能系统,而机器学习则希望(计算机)系统能够利用经验来改善自身的性能,因此该领域一直是人工智能的核心研究领域之一。在计算机系统中,“经验”通常是以数据的形式存在的,因此,机器学习不仅涉及对人的认知学习过程的探索,还涉及对数据的分析处理。实际上,机器学习已经成为计算机数据分析技术的创新源头之一。由于几乎所有的学科都要面对数据分析任务,因此机

https://www.doczj.com/doc/b35292724.html, 器学习已经开始影响到计算机科学的众多领域,甚至影响到计算机科学之外的很多学科。机器学习是数据挖掘中的一种重要工具。然而数据挖掘不仅仅要研究、拓展、应用一些机器学习方法,还要通过许多非机器学习技术解决数据仓储、大规模数据、数据噪声等实践问题。机器学习的涉及面也很宽,常用在数据挖掘上的方法通常只是“从数据学习”。然而机器学习不仅仅可以用在数据挖掘上,一些机器学习的子领域甚至与数据挖掘关系不大,如增强学习与自动控制等。所以笔者认为,数据挖掘是从目的而言的,机器学习是从方法而言的,两个领域有相当大的交集,但不能等同。 典型的数据挖掘和机器学习过程 下图是一个典型的推荐类应用,需要找到“符合条件的”潜在人员。要从用户数据中得出这张列表,首先需要挖掘出客户特征,然后选择一个合适的模型来进行预测,最后从用户数据中得出结果。 把上述例子中的用户列表获取过程进行细分,有如下几个部分。 业务理解:理解业务本身,其本质是什么?是分类问题还是回归问题?数据怎么获取?应用哪些模型才能解决? 数据理解:获取数据之后,分析数据里面有什么内容、数据是否准确,为下

起重机械基础常识

编订:__________________ 审核:__________________ 单位:__________________ 起重机械基础常识 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4154-96 起重机械基础常识 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、起重机械的工作特点及其分类 起重机械是以间歇工作方式,升降物件或提升并在限定范围内运移物件的。 起重机械是现代工业生产不可缺少的设备,被广泛的应用于各种物料的起重、运输、装卸和人员输送等作业中。全国起重机械的保有量约25万台左右。全国有起重机生产厂400多家,年产量约3万余台,并以每年10%速度递增。 由于大多数起重机械活动空间大,暴露的活动零部件多,使得事故隐患面积大;作业场所常常需要多人配合,要求指挥、捆扎、驾驶等作业人员配合,存在较大的难度。上述诸多因素的存在,决定了起重机伤害事故较多。据资料统计,我国每年起重伤害事故的死亡人数,占全部工业企业死亡总数的15%左右,

每年起重机事故的死亡人数在所有机械事故死亡人数中居首位。在各类起重机械中,塔吊事故最为突出,据笔者在劳动部职安局工作时统计,全国塔吊在安装和拆卸中,死亡10人以上的特大事故,每年都要发生3起以上。因此,起重机械安全不能不引起人们的重视。 起重机械按其功能和结构特点,可分为三类:第一类:轻小型起重设备,其特点是轻便,机构紧凑,动作简单,作业范围投影以点、线为主;第二类:起重机,其特点是可以使挂在起重吊钩或其他取物装置上的重物在空间实现垂直升降和水平运移;第三类:升降机,其特点是重物或取物装置只能沿导轨升降。这三类起重机械,又是由许多结构和工作用途不同的机械组成的。 除此以外,起重机还有多种分类方法。按取物装置和用途分类,有吊钩起重机、抓斗起重机、电磁起重机、堆垛起重机、集装箱起重机和救援起重机等;按运移方式分类,有固定式起重机、运行式起重机、

机器人动力学

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

超并行机器学习与海量数据挖掘-SJTUCS-上海交通大学

完成时间:2012.6 数据库课程设计文档 电院综合测评系统 *** ***

目录 1. 系统需求分析 (1) 1.1电院综合测评现状及此系统的意义 (1) 1.2普通用户需求 (2) 1.3管理员需求 (2) 2. 系统结构设计 (3) 2.1 https://www.doczj.com/doc/b35292724.html,开发环境简述 (3) 2.2 E/R模型设计 (4) 2.3数据库模式 (5) 2.3.1用户信息:Student表 (5) 2.3.2项目信息:Item表 (5) 2.3.3项目参与信息:Participate 表 (6) 2.3.4项目冲突规则:Item_Rule表 (6) 2.3.5 Send_Message表 (6) 2.3.6 Recv_Message表 (7) 3. 图形用户界面设计 (8) 3.1登陆、登出界面及基本信息 (8) 3.2站内信的收发 (8) 3.3素拓项目信息 (11) 3.3.1普通用户 (11) 3.3.2管理员 (12) 3.4用户权限信息 (14) 4. 事务流程 (15) 4.1 L两类用户的公共部分 (15) 4.1.1个人信息 (15) 4.1.2站内信 (15) 4.2普通用户部分 (15) 4.3管理员部分 (16) 5. 测试数据 (17)

6. 参考资料 (18)

1.系统需求分析 1.1电院综合测评现状及此系统的意义 在当前上海交通大学电子信息与电气工程学院的素质综合测评体系中,学生最终的综合测评分数包含以下四个部分:学业成绩、素质拓展测评成绩、成果奖励成绩和违反校纪校规处罚,详细计算规则可参见《学生综合测评工作手册》。其中学业成绩可以直接从学校教务处的网站上获得,并不存在太多麻烦。而另外三个部分(在此我们将其合称为素拓部分)由于项目繁杂众多,每年在统计时耗时、耗力。目前电院在进行素拓部分分数统计时采用的方法相当笨拙,其流程大致如下: 1、每学期开学初汇总上学期所有学生的素拓项目 2、由各位思政老师和团委老师上传所有学生所参加过的项目以及对应的成绩至FTP 3、每个学生从FTP上寻找和自己相关的素拓项目,汇总后报告各自班长 4、每个班班长汇总各自班级的情况后在统一交给学院 5、学院得到所有学生的素拓分数后发放确认表格,由各个同学签名确认 如此流程存以下重大缺陷: 1、每个同学必须如海底捞针一般从近百个excel文件中寻找和自己相关的项目,效率极低。 2、从同学上报班长到最终确认政绩的过程缺乏监督,事实上虚报素拓项目完全无法被察觉, 例如每学期虚报参加社团者不计其数。 3、分数有改动时不得不上传带有版本号的不同表格文件,各种带有版本号的文件导致FTP上 的内容非常混乱,增加同学寻找有效信息的难度。 4、缺乏隐私保护,每个人的成绩暴露在所有同学的视线中(也许我们需要感谢这一缺陷使得 我们可以轻松拿到大量真实数据用于本系统测试)。 目前每个学期的素拓分数统计大约耗时3周左右,且经常出现项目遗漏之后无法弥补的悲剧。如此低效笨拙的做法在交大电院持续了那么多年,实在让人难以想象,这与国际一流学校的风范相去甚远。因此我们所设计的电院综合测评系统立志于让每个同学和老师高效完整每学期初的综合测评工作,更重要的是使整个流程规范化,弥补当前综合测评工作中可能存在的一些漏洞。 我们的整个系统的规则基于《电院本科生综合测评工作条例》和《学生综合测评工作手册》,在此不做赘述。 第1页

起重机械基础知识

起重机械基础知识 第一节起重机的分类、主要参数和组成 一、起重机的分类 (一)定义: 起重机——以间歇、重复方式工作,挂在吊钩或其它取物装置上的重物在一定的空间范围内实现垂直升降和水平移动。 (二)起重机又可分为: 1.桥架型:①桥式起重机;②门式起重机;③装卸桥;④架桥机; 2.绳索型:①缆索起重机;②门式缆索起重机; 3.臂架型:①门座起重机;②半门座;③塔式;④铁路起重机;⑤流动式; ⑥浮式;⑦甲板;⑧桅杆;⑨悬臂;

二、起重机械的主要参数 (一)起重量G 起重量G(过去常用字母Q表示),是指被起升重物的质量,单位为千克(kg)或吨(t)。一般分为额定起重量、最大起重量、总起重量、有效起重量等。1.额定起重量G n 额定起重量,是指起重机能吊起的重物或物料连同可分吊具或属具(如抓斗、电磁吸盘、平衡梁等)质量的总和。对于幅度可变的起重机,其额定起重量是随幅度变化的。 其名义额定起重量,是指最小幅度时,起重机安全工作条件下允许提升的最大额定起重量,也称最大起重量G max。 2.总起重量G t 总起重量,是指起重机能吊起的重物或物料,连同可分吊具和长期固定在起重机上的吊具或属具(包括吊钩、滑轮组、起重钢丝绳以及在臂架或起重小车以下的其他起吊物)的质量总和。 3.有效起重量G p 有效起重量,是指起重机能吊起的重物或物料的净质量。如带有可分吊具抓斗的起重机,允许抓斗抓取物料的质量就是有效起重量,抓斗与物料的质量之和则是额定起重量。 (二)跨度S 桥架型起重机运行轨道轴线之间的水平距离称为跨度,用字线S表示,单位为米(m)。 (三)轨距k 对于小车,为小车轨道中心线之间的距离;

周志华:数据挖掘与机器学习

机器学习与数据挖掘 周志华 南京大学计算机软件新技术国家重点实验室,南京210093 “机器学习”是人工智能的核心研究领域之一,其最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能,因为众所周知,没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”[1]。事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。 “数据挖掘”和“知识发现”通常被相提并论,并在许多场合被认为是可以相互替代的术语。对数据挖掘有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”[2]。其实顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。大体上看,数据挖掘可以视为 机器学习和数据库的交叉,它主要利用机器 学习界提供的技术来分析海量数据,利用数 据库界提供的技术来管理海量数据。 因为机器学习和数据挖掘有密切的联 系,受主编之邀,本文把它们放在一起做一 个粗浅的介绍。 1 无处不在 随着计算机技术的飞速发展,人类收集数据、存储数据的能力得到了极大的提高,无论是科学研究还是社会生活的各个领域中都积累了大量的数据,对这些数据进行分析以发掘数据中蕴含的有用信息,成为几乎所有领域的共同需求。正是在这样的大趋势下,机器学习和数据挖掘技术的作用日渐重要,受到了广泛的关注。 例如,网络安全是计算机界的一个热门研究领域, 特别是在入侵检测方面,不仅有很多理论成果,还出现 了不少实用系统。那么,人们如何进行入侵检测呢?首 先,人们可以通过检查服务器日志等手段来收集大量的 网络访问数据,这些数据中不仅包含正常访问模式还包 含入侵模式。然后,人们就可以利用这些数据建立一个 可以很好地把正常访问模式和入侵模式分开的模型。这 样,在今后接收到一个新的访问模式时,就可以利用这 个模型来判断这个模式是正常模式还是入侵模式,甚至 判断出具体是何种类型的入侵。显然,这里的关键问题是如何利用以往的网络访问数据来建立可以对今后的访问模式进行分类的模型,而这正是机器学习

相关主题
文本预览
相关文档 最新文档