当前位置:文档之家› 半导体制造技术总结

半导体制造技术总结

半导体制造技术总结
半导体制造技术总结

第一章

2、列出20世纪上半叶对半导体产业发展做出贡献的4种不同产业。P2

答:真空管电子学、无线电通信、机械制表机及固体物理。

3、什么时间、什么地点、由谁发明了固体晶体管?P3

答:1947年12月16日在贝尔电话实验室由威廉·肖克利、约翰·巴丁和沃尔特·布拉顿发明了固体晶体管。

5、列出5个集成时代,指出每个时代的时间段,并给出每个时代每个芯片上的元件数。P4

6、什么是硅片?什么是衬底?什么是芯片?

答:芯片也称为管芯(单数和复数芯片或集成电路),硅圆片通常被称为衬底

8、列出集成电路制造的5个重要步骤,简要描述每个步骤。P4

10、列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势。P8

11、什么是芯片的关键尺寸?这种尺寸为何重要?P9

13、什么是摩尔定律?它预测了什么?这个定律正确吗?P10

14、自1947年以来靠什么因素使芯片价格降低?给出这种变化的两个原因。

16、描述硅片技师和设备技师的职责。P16

第三章

11.解释pn结反偏时发生的情况。P45

答:导致通过二极管的电流很小,甚至没有电流。

12.解释pn结正偏时发生的情况。P45

答:将一正偏施加于pn结,电路中n区电子从偏压电源负极被排斥。多余的电子从负极注入到充满空穴的p区,使n区中留下电子的空穴。同时,p区的空穴从偏压电源正极被排斥。由偏压电源正极提供的空穴中和由偏压电源负极提供的电子。空穴和电子在结区复合以及克服势垒电压大大的减小了阻止电流的行为。只要偏压对二极管能维持一个固定的空穴和电子注入,电流就将持续的通过电路。

13.双极晶体管有多少个电极、结和类型?电极的名称分别是什么?类型名称分别是什么?P46

答:有三电极和两个pn结、两种类型。电极名称:发射极、基极、集电极。类型名称:pnp、npn.

16.BJT是什么类型的放大器器件?它是怎么根据能量要求影响它的应用的?P47

答:驱动电流的电流放大器件。发射极和集电极都是n型的重掺杂,比如砷或磷。基极是p 型杂质硼的轻掺杂。基极载流子减少,基极吸引的电流将明显地比集电极吸引的电流小。这种差别说明了晶体管从输入到输出电流的增益。晶体管能线性地将小的输入信号放大几百倍来驱动输出器件。

18.双极技术有什么显著特征?双极技术的最大缺陷是什么?P48

答:高速、耐久性、功率控制能力。缺陷:功耗高。

19.场效应晶体管(FET)有什么优点?P49

答:利于提高集成度和节省电能。

22.FET的最大优势是什么?P49

答:低电压和低功耗。

25.FET的两种基本类型是什么?他们之间的主要区别是什么?P50

答:结型(JFET)和金属-氧化物型(MOSFET)半导体。区别是:MOSFET作为场效应晶体管输入端的栅极由一层薄介质与晶体管的其他两极绝缘。JFET的栅极实际上同晶体管其他电极形成物理的pn结。

26.MOSFET有哪两种类型?它们怎么区分?P50

答:nMOS(n沟道)和pMOS(p沟道)。每种类型可由各自器件的多数载流子来区分。

第四章

1.列举得到半导体级硅的三个步骤。半导体级硅有多纯?P64

4.描述非晶材料。为什么这种硅不能用于硅片?P65

9.为什么要用单晶进行硅片制造?P67

14.什么是CZ单晶生长法?P68

22.为什么要用区熔法生长硅晶体?P71

23.描述区熔法。P71

25.给出更大直径硅片的三大好处。P72

26.什么是晶体缺陷?P73

37.在直径为200mm及以上硅片中切片是怎么进行的?P77

41.为什么要对硅片表面进行化学机械平坦化?P78

43.列举硅片的7种质量要求。P79

第五章

1.什么是物质的四种形态?试分别描述之。P87

6.描述三种温标,哪一种是科学工作中最常用的温标?P89

8.给出真空的定义。什么是最常用的真空单位,它是怎么定义的?P91

9.给出冷凝和蒸发的定义。吸收和吸附之间有什么不同?P91-92

11.给出升华和凝华的定义。P92

13.什么是表面张力?P93

14.给出材料的热膨胀系数P94。

20.什么是酸?列出在硅片厂中常用的三种酸。P95

21.什么是碱?列出在硅片厂中常用的三种碱。P96

23.什么是溶剂?列出在硅片厂中常用的三种溶剂。P97

24.描述在硅片厂中使用的去离子水的概念。P97

31.什么是处理特殊气体所面临的最大挑战?P99

38.描述三种特殊气体并分别举例。P101

第六章

4.说明五类净化间沾污。P107

6.解释半导体制造中可以接受的颗粒尺寸的粗略规则。P108

9.什么是MIC?P109

13.解释自然氧化层。识别由自然氧化层引起的三种问题。P110

15.给出在硅片制造中由ESD引起的三种问题。P111

16.列举硅片制造厂房中7种沾污源。P112

30.列举并解释ESD的三种控制方法。P117

34.描述反渗透(RO)过滤。什么是超过滤?P119

39.列举并讨论四类过滤器。P121

42.描述工艺气体的过滤。P121

49.描述微环境,解释为何这种环境在净化间内改善了沾污控制。P125

53.描述RCA清洗工艺。P126

61.列出典型的硅片湿法清洗顺序。什么是清洗槽?P127

第七章

1.什么是测量学?集成电路制造中测量学的目的是什么?P140

2.缺陷的定义。硅片缺陷密度是怎样定义的?P140

6.半导体质量测量的定义。列出在集成电路制造中12种不同的质量测量。陈述使用不同质量测量的工艺。P142

10.解释四探针法,并给出测方块电阻四探针法的优点。P144-145

12.解释等值线图。P145

13.解释椭偏仪的基本原理。用椭偏仪测薄膜厚度有哪些优点?P145-146

17.用X射线怎样测薄膜厚度?XRF是什么的缩写。什么是全反射XRF?P147

24.什么是亮场探测?什么是暗场探测?P151

28.解释什么是每步每片上的颗粒数(PWP)。P153

29.哪些是硅片关键尺寸的主要测量工具。P154

30.解释SEM的主要操作。P154

33.什么是套准精度?陈述并解释测量套准精度的主要技术。P156

36.描述二次离子质谱仪(SMIS)。P160

38.解释什么是原子加力显微镜。P162

41.解释透射电子能显微镜。P163

43.描述聚焦离子束加工并解释它的好处。P165

第八章

1.什么是工艺腔?它的五项功能是什么?P171

4.半导体制造业中的真空由有什么优点?P173

7.什么是平均自由程?为什么它很重要?P173

12.描述冷凝泵的原理,并解释其过程。P176

16.列出气流控制中4个基本的对工艺腔的要求。P178

19.质量流量计的原理是什么?P178

23.什么是等离子体?它对工艺腔有什么益处?P181

27.为什么潮湿是工艺腔的一大问题.P183

28.列出减少设备维修中的沾污的必要步骤。P184

第九章

1.列出芯片厂中6个不同的生产区域并对每一个区域做简单的描述。P188-189

3.举出在高温设备中进行的5步工艺。P189

4.光刻的目的是什么?P189

11.举出薄膜区用到的4种不同的设备和工艺。P191

13.列出典型的CMOS工艺的14个主要生产步骤。P192

17.离子注入后进行退火工艺的原因是什么?P194

19.什么是浅槽隔离?它取代了什么工艺?P194

25.轻掺杂漏(LDD)注入是如何减少沟道漏电流效应的?P197

26.解释侧墙的目的。P198

29.什么是局部互连?P200

31.什么是通孔?什么是钨塞?P201

第十章

1.生长氧化层与淀积氧化层间的区别是什么?P210

3.热预算的定义,解释为什么其不受欢迎。P211

11.列出热氧化物在硅片制造的6种用途,并给出各种用途的目的。不懂这题。

14.如果热生长氧化层厚度为20000

A,那么硅消耗多少?920

A

17.举出氧化工艺中掺氯的两个优点。P217

24.解释晶体晶向对氧化物生长的影响。P218

27.LOCOS是什么,热氧化中如何使用?鸟嘴效应是什么,为什么它不受欢迎?P220 28.解释浅槽隔离(STI)。P220

32.什么是热壁炉?P222

33.列出卧式炉和立式炉的五个性能因素,判断哪种炉体是最适合的。P223

47.什么是快速热处理(RTP)?相比于传统炉其6大优点是什么?P228

第十一章

1.什么是多层金属化?它对芯片加工来说为什么是必需的?P240

3.解释ILD层的作用。在芯片中,ILD-1层所在的位置是哪里?P241

4.什么是薄膜?列举并描述可接受的薄膜的8个特征。P242

5.什么是深度比?为什么高深度比对ULSI器件很重要?P243

6.列举并描述薄膜生长的三个阶段。P244

7.列举淀积的5种主要技术。P245

8.什么是CVD?P246

11.识别并描述CVD反应中的8个步骤。P247

20.为什么LPCVD较APCVD更普遍?描述LPCVD的工艺过程。P253

27.什么是PECVD?PECVD和LPCVD的主要差别是什么?P257

40.什么是外延?解释自掺杂和外扩散。P267

41.列举并讨论外延的三种方法。P268

第十二章

9.列出并讨论引入铜金属化的5大优点。P283

17.描述钨塞填充,并讨论它是怎样被用于多层金属化的?P289

18.为什么蒸发作为金属淀积系统被取代?P290

30.在高级IC中,什么是产生钨填充的典型方法?

32.解释铜电镀的基本过程。P299

35.列出双大马士革金属化过程的10个步骤。P302

第十三章

1.什么是光刻?P310

2.描述投影掩膜版和掩膜版的区别。P311

4,定义分辨率。P312

5.什么是套准精度?它对掩膜版的套准容差有什么作用?P313

6.讨论工艺宽容度。P314

7.解释负性和正性光刻的区别。P314

8.描述亮场掩膜版。P315

10.列出光刻的8个步骤,并对每一步做出简要解释。P316

14.HMDS是什么?起到什么作用?P317

17.给出硅片制造中光刻胶的两种目的。P322

28.列出并描述I线光刻胶的4种成分。P325

29.负胶的两大缺点是什么?P326

34.给出I线正胶具有良好分辨率的原因。P327

35.为什么I线光刻胶不能用在深紫外波长?P328

42.列出并描述旋转涂胶的4个基本步骤。P330

45.描述边圈去除。P333

46.陈述软烘的4个原因。P333

第十四章

3.步进光刻机的三个基本目标是什么?P342

7.列出并解释两种形式的光波干涉。什么是滤波器?P344

8.什么是电磁波谱,什么是UV范围?P345

9.列出并描述光刻中使用的两种UV曝光光源。P346

13.哪种激光器用做248nm的光源?193nm的光源是什么?P348

14.什么是空间想干?为什么在光刻中控制它?P348

24.什么是数值孔径?陈述它的公式,包括近似公式。P353

26.列出并解释硅片表面光反射引起的最主要的两个问题。P354

27.什么是抗反射涂层,它是怎样减小驻波的?P354

28.陈述分辨率公式。影响光刻分辨率的三个参数是什么?P358

30.计算扫描光刻机的分辨率,假设波长是248nm,NA是0.65,k是0.6。P358 31.给出焦深和焦面的定义。写出计算焦深的公式。P359

35.解释接触光刻机。它使用掩膜还是投影掩膜?P360

36.解释接近光刻机是怎样工作的。它要解决什么问题?P361

37.解释扫描投影光刻机是怎样工作的。扫描投影光刻机努力解决什么问题?P361 38.解释分步重复光刻机的基本功能。P363

39.光刻中采用步进扫描技术获得了什么好处?P364

第十五章

1.解释光刻胶显影,其目的是什么?P387第一段第一句

2.为什么要对化学放大深紫外光刻胶进行后烘?简述去保护作用。P385

3.为什么温度均匀性对后烘很重要?P385

.5。简述负胶显影。负胶用于亚微米图形的主要问题是什么?P386

6.为什么正胶是普遍使用的光刻胶?P88

9.最常用的正胶是指哪些光刻胶?P388

12.对化学放大深紫外光刻胶而言,PHS与显影液之间是否发生了化学反应?P389 13.列举两种光刻胶显影方法。P389

14.解释连续喷雾显影。P389

15.描述旋覆浸没显影。P390

17.解释为什么要进行坚膜。P391

19.为什么要进行显影后检查?P392

21.列举出下一代光刻技术中4种正在研究的光刻技术。P393

第十六章

1.定义刻蚀,刻蚀的目的是什么?P404

2.刻蚀工艺有哪两种类型?简要描述各类刻蚀工艺。P405

3.列出按资料分类的三种主要干法蚀刻。P405

4.解释有图形和无图形刻蚀的区别。P405

5.列举9个重要的刻蚀参数。P406

7.解释负载效应以及它与刻蚀速率的关系。P406

10.什么是方向性?为什么在刻蚀中需要方向性?P407?(这个没找到确切的答案)12.定义选择比。干法刻蚀有高的或低的选择比?高选择比意味着什么?描述并解释选择比公式。P409

13.什么是刻蚀均匀性?获得均匀性刻蚀的难点是什么?解释ARDE并讨论它与刻蚀均匀性的关系。ARDE的另一个名字是什么?P409~410

14.讨论刻蚀残留物,他们为什么产生以及要怎样去除?P410

16.什么刻蚀中的等离子体诱导损伤,以及这些损伤带来什么问题?P411

18.干法刻蚀的目的是什么?列举干法刻蚀同湿法刻蚀相比具有的优点。干法刻蚀的不足之处是什么?P411

19.列举在干法刻蚀中发生刻蚀反应的三种方法。P412

20.解释发生刻蚀反应的化学机理和物理机理。P412

25.描述圆桶式等离子体刻蚀机。P414

26.描述平板反应器。P415

29.解释离子束铣。他是用什么材料?P417

33.描述电子回旋共振。P419

37.什么是终点检测?为什么在干法刻蚀中它是必需的?最常用的终点检测类型是什么?P422

十七章

1、什么是掺杂?P442

3、简要描述热扩散。P443

4、简要描述离子注入。P443

5、请列举用于硅片制造的5种常用杂质。

8、什么是结深?P444

10、列举并解释扩散的三个步骤。P445

14、为什么杂质需要激活?P446

15、什么是杂质的固溶极限?P446

16、解释横向扩散以及不希望有横自扩散的原因。P447

21、给出离子注入机的概况、P448

22、说明亚0.25微米工艺中掺杂的两个主要目标。P448

23、列举离子注入优于扩散的7点。P449

24、离子注入的主要缺点是什么?如何克服?P450

27、什么是射程?解释能量与射程之间的关系。P450

28、如果电荷数为1的正离子在电势差200keV的电场中运动,它的能量是多少?P450

29、列举离子注入机的4种类型,并简要描述。P451

32、描述注入过程中的两种主要能量损失机制。P451

34、列举离子注入设备的5个主要子系统。P453

35、离子源的目的是什么?最常用的离子源材料是什么?0N P453

39、质量分析器磁铁的作用是什么?描述质量分析器的功能。P455

40、加速管是怎样增加粒子束能量的?P456

45、解释离子束扩散和空间电荷中和。P458

46、形成中性离子束陷阱的原因是什么?P458

47、列举并简要解释4种扫描系统。P459

50、讨论硅片充电、二次电子喷淋和等离子电子喷淋。P460

53、退火的目是什么?高温炉退火和RTA 哪一个更优越?P463

55、描述沟道效应。列举并简要解释控制沟道效应的三种机制P464。

十八章

41、描述表面形貌,较高的芯片封装密度会引起表面形貌的何种变化? 478

3、列举和论述三种传统的平坦化方法。480

5、描述化学机械平坦化,CMP 是在恩怨实现的平坦化的?482

4、什么是平坦度?如果um SH um SH post pre 1,10==,那么DP 是多少?483

5、解释WIWNU 和WTWNU 之间的差别。484

6、列举并解释CMP 的9个优点。484

7、列举并解释CMP 的4个缺点。484

8、叙述用于解释CMP 平坦化表面方式的两种机理484

2、解释金属抛光的原理。485

36、定义磨料。为什么磨料对CMP 很重要?487

22、描述抛光垫。488

23、解释表面平滑。修正的目的是什么?488~~489

54、CMP 中为什么需要终点检测?491

11、列举并描述在CMP 中用的两种终点检测类型。 电机电流终点检测,光学终点监测

36、CMP 清洗的终点是什么?493

40、列举并简单描述硅片制造中用到CMP 的6个例子。495

十九章

1、定义硅片测试。硅片测试的目的是什么? 506

2、列举并描述IC 生产过程中的5种不同电学测试。 507

3、列出硅片制造过程中完成的两种硅片级测试。 507

6、在线参数测试的另一个名称是什么?在线参数测试是直流测试还是交流测试? 509

7、列举并解释5个进行在线参数测试的理由。 509

48、什么是划片道监控?509

49、列举并解释在线参数测试中要做的5种不同测试。510

30、解释硅片级可靠性。给出一个硅片级可靠性测试的例子。512

16、列举在线参数测试的4个主要子系统。512

31、列举并解释硅片挑选测试的目标。515

17、列举并描述硅片挑选测试中的三种典型电学测试。516 51、列出影响硅片挑选测试的4个要素。519

41、列举并描述三种成品率模型。523

17-607宿舍终结版

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

半导体器件物理_复习重点

第一章 PN结 1.1 PN结是怎么形成的? 耗尽区:正因为空间电荷区内不存在任何可动的电荷,所以该区也称为耗尽区。 空间电荷边缘存在多子浓度梯度,多数载流子便受到了一个扩散力。在热平衡状态下,电场力与扩散力相互平衡。 p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn 结不加电压下呈电中性。 1.2 PN结的能带图(平衡和偏压) 无外加偏压,处于热平衡状态下,费米能级处处相等且恒定不变。 1.3 内建电势差计算 N区导带电子试图进入p区导带时遇到了一个势垒,这个势垒称为内建电势差。

1.4 空间电荷区的宽度计算 n d p a x N x N = 1.5 PN 结电容的计算 第二章 PN 结二极管 2.1理想PN 结电流模型是什么? 势垒维持了热平衡。 反偏:n 区相对于p 区电势为正,所以n 区内的费米能级低于p 区内的费米能级,势垒变得更高,阻止了电子与空穴的流动,因此pn 结上基本没有电流流动。 正偏:p 区相对于n 区电势为正,所以p 区内的费米能级低于n 区内的费米能级,势垒变得更低,电场变低了,所以电子与空穴不能分别滞留在n 区与p 区,所以pn 结内就形成了一股由n 区到p 区的电子和p

区到n 区的空穴。电荷的流动在pn 结内形成了一股电流。 过剩少子电子:正偏电压降低了势垒,这样就使得n 区内的多子可以穿过耗尽区而注入到p 区内,注入的电子增加了p 区少子电子的浓度。 2.2 少数载流子分布(边界条件和近似分布) 2.3 理想PN 结电流 ?? ????-??? ??=1exp kT eV J J a s ?? ? ? ? ?+=+= 0020 11p p d n n a i n p n p n p s D N D N en L n eD L p eD J ττ 2.4 PN 结二极管的等效电路(扩散电阻和扩散电容的概念)? 扩散电阻:在二极管外加直流正偏电压,再在直流上加一个小的低频正弦电压,则直流之上就产生了个叠加小信号正弦电流,正弦电压与正弦电流就产生了个增量电阻,即扩散电阻。 扩散电容:在直流电压上加一个很小的交流电压,随着外加正偏电压的改变,穿过空间电荷区注入到n 区内的空穴数量也发生了变化。P 区内的少子电子浓度也经历了同样的过程,n 区内的空穴与p 区内的电子充放电过程产生了电容,即扩散电容。

郑州大学半导体集成电路复习总结

1.基本概念: 集成电路:是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体有源器件、电阻、电容等元件及它们之间的连接导线全部“集成”在一块半导体单晶片上,封装在一个外壳内,执行特定电路或系统功能的电路。集成度:每块集成电路芯片中包含的元器件数目。 多项目晶圆技术:多项目晶圆就是将多个使用相同工艺的集成电路设计放在同一晶圆片上流片,制造完成后,每个设计可以得到数十片芯片样品,这一数量对于原型设计阶段的实验、测试已经足够。而该次制造费用就由所有参加MPW的项目按照芯片面积分摊,成本仅为单独进行原型制造成本的5%-10%,极大地降低了产品开发风险、培养集成电路设计人才的门槛和中小集成电路设计企业在起步时的门槛。 无生产线集成电路设计: 代工厂:加工厂的铸造车间,无自己产品。优良的加工技术(包括设计和制造)及优质的服务为客户提供加工服务。 2.微电子的战略地位:对人类社会的巨大作用 3.集成电路分类: 按器件结构类型分类:①双极集成电路②金属-氧化物-半导体(MOS)集成电路 ③双极-MOS(BiMOS)集成电路 按集成度分类:①小规模集成电路②中规模集成电路③大规模集成电路 ④超大规模集成电路⑤特大规模集成电路⑥巨大规模集成电路按使用的基片材料分类:①单片集成电路②混合集成电路 按电路的功能结构分类:①数字集成电路②模拟集成电路③数模混合集成电路按应用领域分类:①标准通用集成电路②专用集成电路 4.集成电路按规模划分经历了哪几代?遵循什么定律? 小规模集成(SSI)→中规模集成(MSI)→大规模集成(LSI)→超大规模集成电路(VLSI) →特大规模集成电路(ULSI) → GSI(巨大规模集成) →SoC(系统芯片)。 摩尔定律:集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小根号2倍。 5.IC(集成电路)、VLSI(超大规模集成电路)、ULSI(特大规模集成电路) 6.高K介质: 问题:90 nm工艺之前,晶体管之间的电流泄露问题并不是很严重,因为晶体管之间有较长的间距。但随着特征尺寸减小,不同晶体管间距变得很短,电流泄露现象变得异常严重,为了抵消泄露电流,芯片不得不要求更大的供电量,造成的直接后果就是芯片功耗增加。无论英特尔还是AMD(超微半导体),90纳米工艺制造的产品都没有在功耗方面表现出应有的优势,而按照惯例,每次新工艺都会让同型芯片的功耗降低30%左右。 解决:采用高K值的氧化物材料来制造晶体管的栅极,英特尔称之为“高K门电介

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料

半导体材料 应用物理1001 20102444 周辉 半导体材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度 范围内随温度升高而增加电荷载流子的浓度,电阻率下降。由化合物构成的半导 体材料,通常是指无机化合物半导体材料。比起元素半导体材料来它的品种更多, 应用面更广。 半导体材料结构特征主要表现在化学键上。因为化合物至少由两个元素构 成,由于它们彼此间的原子结构不同,价电子必然向其中一种元素靠近,而远离 另一种元素,这样在共价键中就有了离子性。这种离子性会影响到材料的熔点、 带隙宽度、迁移率、晶体结构等。 化合物半导体的组成规律一般服从元素周期表排列的法则。对已知的化合物 半导体材料,其组成元素在同一族内垂直变换,其结果是随着元素的金属性增大 而其带隙变小,直到成为导体。反之,随着非金属性增加而其带隙变大,直至成 为绝缘体。 类别按其构成元素的数目可分为二元、三元、四元化合物半导体材料。它 们本身还可按组成元素在元素周期表中的位置分为各族化合物,如Ⅲ—V族,I —Ⅲ—Ⅵ族等。下面介绍二元化合物,其中主要的类别为Ⅲ—v族化合物半导体 材料,Ⅱ—Ⅵ族化合物半导体材料,Ⅳ—Ⅳ族化合物半导体材料。 Ⅳ—Ⅵ族化合物半导体材料。已发现具有半导体性质的有格式,GeSe,GeTe, SnO ,SnS,SnSe,SnTe,Pb0,PbS,PbSe,PbTe,其中PbO,PbS,PbSe,PbTe 2 已获重要用途。

V—Ⅵ族化合物半导体材料。已发现具有半导体性质的有Bi 2O 3 ,Bi 2 S 3 ,Bi 2 Se 3 , Bi 2Te 3 ,Sb 2 O 3 ,Sb 2 S 3 ,Sb 2 Te 3 、As 2 O 3 ,As 2 S 3 ,其中Bi 2 Te 3 ,Bi 2 Se 3 等已获实际应用。 I—Ⅵ族化合物具有半导体性质的有Cu 2 O,Cu 2 S,Ag 2 S,Ag 2 Se,Ag 2 Te等,其 中Cu 20,Cu 2 S已获应用。 三元化合物种类较多,如I—Ⅲ—Ⅵ、I—v—Ⅵ、Ⅱ—Ⅲ—Ⅵ、Ⅱ—Ⅳ—V 族等。多数具有闪锌矿、纤锌矿或黄铜矿型晶体结构,黄铜矿型结构的三元化合 物多数具有直接禁带。比较重要的三元化合物半导体有CuInSe 2,AgGaSe 2 , CuGaSe 2,ZnSiP 2 ,CdSiP 2 ,ZnGeP 2 ,CdGaS 4 ,CdlnS 4 ,ZnlnS 4 和磁性半导体。后者 的结构为AB 2X 4 (A—Mn,Co,Fe,Ni;B—Ga,In;X—S,Se)。 四元化合物研究甚少,已知有Cu 2FeSnS 4 ,Cu 2 FeSnSe 4 ,Cu 2 FeGeS 4 等。 应用化合物及其固溶体的品种繁多,性能各异,给应用扩大了选择。在光电子方面,所有的发光二极管、激光二极管都是用化合物半导体制成的,已获工业应用的有GaAs,GaP,GaAlAs,GaAsP,InGaAsP等。用作光敏元件、光探测器、光调制器的有InAsP,CdS,CdSe,CdTe,GaAs等。一些宽禁带半导体(SiC,ZnSe等)、三元化合物具有光电子应用的潜力。GaAs是制作超高速集成电路的最主要的材料。微波器件的制作是使用GaAs,InP,GaAlAs等;红外器件则用GaAs,GaAlAs,CdTe,HgCdTe,PbSnTe等。太阳电池是使用CdS,CdTe,CulnSe2,GaAs,GaAlAs等。最早的实用“半导体”是「电晶体/ 二极体」。 一、在无线电收音机及电视机中,作为“讯号放大器用。 二、近来发展「太阳能」,也用在「光电池」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。 其中在半导体材料中硅材料应用最广,所以一般都用硅材料来集成电路,因为硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期: ?

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

新型半导体材料GaN简介

新型半导体材料GaN GaN的发展背景 GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。 在宽禁带半导体材料中,氮化镓由于受到缺乏合适的单晶衬底材料、位错密度大等问题的困扰,发展较为缓慢,但进入90年代后,随着材料生长和器件工艺水平的不断发展,GaN半导体及器件的发展十分迅速,目前已经成为宽禁带半导体材料中耀眼的新星。 GaN的特性 具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。 GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN 具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。在室温下,GaN 不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n 型,最好的样品的电子浓度约为4×1016/cm3。一般情况下所制备的P型样品,都是高补偿的。 很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v·s和μn=1500cm2/v·s,相应的载流子浓度为n=4×1016/cm3和n=8×1015/cm3。未掺杂载流子浓度可控制在

半导体材料发展史

1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。 在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。 前言 自从有人类以来,已经过了上百万年的岁月。社会的进步可以用当时人类使用的器物来代表,从远古的石器时代、到铜器,再进步到铁器时代。现今,以硅为原料的电子元件产值,则超过了以钢为原料的产值,人类的历史因而正式进入了一个新的时代,也就是硅的时代。硅所代表的正是半导体元件,包括记忆元件、微处理机、逻辑元件、光电元件与侦测器等等在内,举凡电视、电话、电脑、电冰箱、汽车,这些半导体元件无时无刻都在为我们服务。 硅是地壳中最常见的元素,许多石头的主要成分都是二氧化硅,然而,经过数百道制程做出的积体电路,其价值可达上万美金;把石头变成硅晶片的过程是一项点石成金的成就,也是近代科学的奇蹟! 在日本,有人把半导体比喻为工业社会的稻米,是近代社会一日不可或缺的。在国防上,惟有扎实的电子工业基础,才有强大的国防能力,1991年的波斯湾战争中,美国已经把新一代电子武器发挥得淋漓尽致。从1970年代以来,美国与日本间发生多次贸易摩擦,但最后在许多项目美国都妥协了,但是为了半导体,双方均不肯轻易让步,最后两国政府慎重其事地签订了协议,足证对此事的重视程度,这是因为半导体工业发展的成败,关系着国家的命脉,不可不慎。在台湾,半导体工业是新竹科学园区的主要支柱,半导体公司也是最赚钱的企业,台湾如果要成为明日的科技硅岛,半导体工业是我们必经的途径。

半导体材料介绍论文

半导体材料介绍 摘要:本文主要介绍半导体材料的特征、分类、制备工艺以及半导体材料的一些参数。 半导体在我们的日常生活中应用很广泛,半导体材料的一些结构和参数决定了 它的特性。以二氧化钛为例,它就是一种半导体材料,其结构和性能决定了它 在降解有机污染物方面的应用,人们现在研究了有关它的性质,并将进一步研 究提高它的光催化效果。 关键词:半导体材料导电能力载流子电阻率电子空穴 正文: 半导体材料是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。 半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类晶体缺陷。位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。晶体缺陷会影响晶体管的特性甚至使其失效。晶体管的工作温度高温限决定于禁带宽度的大小。禁带

半导体材料的历史现状及研究进展(精)

半导体材料的历史现状及研究进展(精)

半导体材料的研究进展 摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。 关键词:半导体材料、性能、种类、应用概况、发展趋势 一、半导体材料的发展历程 半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。 新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通

半导体材料发展情况

1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ - Si)单晶的直 径和减小微缺陷的密度仍是今后CZ-Si 发展的总趋势。目前直径为8 英寸(200mm )的Si 单晶已实现大规模工业生产,基于直径为12英寸(300mm )硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm , 0.18阿工艺的硅ULSI生产线已经投入生产,300mm , 0.13阿工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S 的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI 材料,包括智能剥离(Smart cut )和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI 材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm 左右将是硅MOS 集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2 自身性质的限制。尽管人们正在积极寻找高K 介电绝缘材料(如用Si3N4等来替代SiO2 ),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI 的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA 生物计算等之外,还把目光放在以GaAs、InP 为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi 合金材料等,这也是目前半导体材料研发的重点。 2、GaAs 和InP 单晶材料

相关主题
文本预览
相关文档 最新文档