当前位置:文档之家› 移动通信天线测量场地自由空间电压驻波比法、外推法

移动通信天线测量场地自由空间电压驻波比法、外推法

移动通信天线测量场地自由空间电压驻波比法、外推法
移动通信天线测量场地自由空间电压驻波比法、外推法

驻波测量线的调整与电压驻波比测量

实验一驻波测量线的调整 一、实验目的 1、熟悉测量线的使用及探针的调谐。 2、了解波到波导波长的测量方法。 二、实验原理 1、微波测量系统的组成 微波测量一般都必须在一个测试系统上进行。测试系统包括微波信号源,若干波导元件和指示仪表三部分。图1是小功率微波测试系统组成的典型例子。 图1 小功率波导测试系统示意图 进行微波测量,首先必须正确连接与调整微波测试系统。信号源通常位于左侧,待测元件接在右侧,以便于操作。连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源和输入线路,以免干扰。如果连接不当,将会影响测量精度,产生误差。 微波信号源的工作状态有连续波、方波调制和锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。隔离器起去耦作用,即防止反射波返回信号源影响其输出功率和频率的稳定。可变衰减器用来控制进入测试系统的功率电平。频率计用来测量信号源的频率。驻波测量线用来测量波导中驻波的分布。波导的输出功率是通过检波器进行检波送往指示器。

若信号为连续波,指示器用光点检流计或直流微安表。若信号输出是调制波,检波得到的低频信号可通过高灵敏度的选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。后一种测量方法的测量精度较高,姑经常采用调制波作被测信号,测试系统的组成应当根据波测对象作灵活变动。 系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。信号源的调整包括振谐频率、功率电平及调谐方式等。本实验讨论驻波测量线的调整和晶体检波器的校准。 2、测量线的调整及波长测量 (1)驻波测量线的调整 驻波测量线是微波系统的一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。 测量线通常由一端开槽传输线,探头(耦合探针,探针的调谐腔体和输出指示)、传动装置三部分组成,由于耦合探针深入传输线而引起不均匀性,其作用相当于在线上并联一个导纳,从而影响系统的工作状态(详见第二部分二)。为了减小影响,测试前必须仔细调整测量线。 实验中测量线的调整一般包括选择合适的探针穿深度,调谐探头和晶体检波特性。 探针电路的调谐方法:先使探针的穿深度适当,通常取~,然后测量线终端接匹配负载,移动探针至测量线中间部分,调节探头活塞,直至输出指示最大。 (2)波长测量 测量波长常见的方法有谐振法和驻波分析法。前者用谐振式波长计(为使用方便,直接以频率刻度,故也称直读式频率计)测量。后者是用驻波测量线测量,当测量线终端短路时,传输线上形成纯驻线,移动测量线探针,测出两个相临驻波最小点之间的距离,即可求得波导波长。 在传输电磁波的同轴系统中,按上述方法测出的波导波长就是工作波长,即λg=λ;而在波导系统中,测量线册出的波长是波导波长λg,根据波导波长和工作波长的关系式:

实验五天线的输入阻抗与驻波比测量

实验五天线的输入阻抗与驻波比测量 一、实验目的 1.了解单极子的阻抗特性,知道单极子阻抗的测量方法。 2.了解半波振子的阻抗特性,知道半波振子阻抗与驻波比的测量方法。 3.了解全波振子的阻抗特性,知道全波振子阻抗与驻波比的测量方法。 4.了解偶极子的阻抗特性,知道偶极子阻抗与驻波比的测量方法。 二、实验器材 PNA3621及其全套附件,作地用的铝板一块,待测单极子3个,分别为Φ1,Φ3,Φ9,长度相同。短路器一只,待测半波振子天线一个,待测全波振子天线一个,待测偶极子天线一个。 三、实验步骤 1.仪器按测回损连接,按【执行】键校开路; 2.接上短路器,按【执行】键校短路; 3.拔下短路器,插上待测振子即可测出输入阻抗轨迹。 4.拔下短路器,接上待测半波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.184m,再将光标上移到【矢量】处,按【执行】键。 5.拔下短路器,接上待测全波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.133m,再将光标上移到【矢量】处,按【执行】键。 6.拔下短路器,接上待测偶极子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.074m,再将光标上移到【矢量】处,按【执行】键。 四、实验记录

单极子?3: 单极子?2: 单极子?1: 偶极子: 半波振子: 全波振子: 五、实验仿真 以下为实验仿真及其结果: 六、实验扩展分析 单极子天线是在偶极子天线的基础上发展而来的。最初偶极子天线有两个臂,每个臂长四分之一波长,方向图类似面包圈;研究人员利用镜像原理,在单臂下面加一块金属板,变得到了单极子天线。单极子天线很容易做成超宽带。至于其他方面的电性能,基本与偶极子天线相似。 上图左边为单极子,右边为偶极子。虚线根据地面作为等势面镜像而来,单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。因此可以理解为:上半个偶极子+对称面作为接地=单极子。由于单极子接地面就是偶极子的对称面,因此单极子馈电部分输入端的缝隙宽度只有偶极子的一半,根据电压等于电场的线积分,这导致输入电压只有偶极子的一半。又因为对称性,单极子和偶极子的电流大小相同,因此单极子的输入阻抗是偶极子的一半。同理,辐射电阻或辐射功率也是偶极子的一半。 由于单极子只辐射上半空间,而偶极子辐射整个空间,因此单极子的方向性是偶极子的

卫星天线安装图解

卫星天线安装图解 天线的安装: 安装前的准备: 1.按说明书的地基施工图做好天线地基。 2.安装工具。包括:活动扳手(大18寸*2、小4寸*2或钳子)、专用改锥、剪子、水平仪、防水胶布等。 3.按照说明书清点卫星天线的另件数是否正确。 4.请准备12寸--14寸带AV输入的彩色或黑白电视机一台,视音频线(AV线)一套,一根3米左右的和一根30米左右的同轴电缆,一条临时的220V电源及插座。 安装步骤: 第一步:注意安装的基座立柱必须保证水平和垂直,可使用水平尺等进行调整。 第二步:安装天线的锅体四脚支撑。注意螺杆、螺母的正反方向。不要旋紧螺丝。 第三步:安装天线的方向轴。方向轴与天线的四脚支撑进行连接。注意方向轴的方向,使天线高频头支撑杆,中间的那只,保持在锅体下方即可。旋紧与之连接的固定螺丝。 第四步:把天线抬起,安装到天线基座的立柱上。 第五步:安装高频头支撑杆。不要把螺丝拧死。 第六步:把高频头置于高频头固定盘上。(可能需要专用螺丝刀,拆开高频头的保护罩) 第七步:使用馈线(同轴电缆)连接高频头的高频输出端至接收机的高频输入端。 第八步:上好其他部分的固定螺丝。注意都不要拧死。 第九步:使用AV线(视音频线)连接卫星接收机的视频输出到电视机的视频输入。 至此,天线的安装已经完成。 寻星指南: 调试前准备:1.安装工具。2.调试器材。3.连接线材。4.寻星参数。 寻星时间:根据你所在的地点和接收卫星的位置计算出当地的寻星时间。这对于卫星覆盖边缘地区、小天线尤为重要。 天线方向的调试:粗调:根据事先算出的仰角和方位角,将天线的这两个角度分别调到这两个数值上,使之对准所要接收的卫星,直至接收到电视信号。细调:使所收的信号最佳。根据现场的条件,可以有多种简易而有效的调整方法。 第一步:检查连接好的线路。 第二步:用量角器调整好天线仰角。 仰角直接用量角器就可以量 先将直尺最低端固定在天线最低端边沿上,另一端固定在天线最高端边沿上,注意直尺一定要通过天线中心,找准直径,不能倾斜,这是关键。直尺顶端留出20㎝以供固定量角器。在量角器中心钻一小孔,用小钉将带有重锤的线穿过量角器中心孔,将量角器一同

天线驻波比测试方法

天线xx测试方法 SX-400驻波比功率计是日本第一电波工业株式会社的“钻石天线”系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天线馈线与电台不匹配引起的反射功率及驻波比,此外在单边带通信中本功率计还可作为峰值包络功率监视器。本仪表作为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现场人员正确使用,现将使用方法和注意事项介绍如下。 1仪表表头、开关、端口功能 仪表表头、开关、端口位置见图1 ①表头: 用于指示发射功率、反射功率、驻波比及单边带应用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第 1、2道刻度为驻波比刻度值,第一道刻度右侧标有“H”,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“L”,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5W 档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、20W、5W。 ③FUNCTION(测量功能选择开关 置于“POWER”时,进行发射功率(FWD)、反射功率(REF)测量。'置于“CAL”时,进行驻波比(SWR)测量前的校准。

置于“SWR”时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“”处。⑤POWER(功率测量选择开关 置于“FWD”时,进行电台发射功率测量。 置于“REF”时,进行反射波功率测量。 置于“OFF”时,停止对电台各种功率的测量。 ⑥AVG、PEPMONI(平均值或峰值包络功率测量选择开关)测发射功率、反射波功率、驻波比时,该开关应弹起,呈“■”状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEPMONI)监视器时,该开关应按下,呈“━”状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω)端口(或50Ω阻性的标准负债)与该端口相连。 ⑩DC138V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“+”,黑线接电源“-”,主要是用于夜间的野外场合。测试方法 2.1连接方法(参见图2)

电压驻波比

电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1, 如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。 如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 VSWR不是1时,比较VSWR的值没有意义 正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。 VSWR都=1不等于都是好天线 影响天线效果的最重要因素:谐振 让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。 我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。

什么是天线的驻波比

什么是天线的驻波比? 只有阻抗完全匹配,才能达到最大功率传输。这在高频更重要!发射机、传输电缆(馈线)、天线阻抗都关系到功率的传输。驻波比就是表示馈线与天线匹配情形。 不匹配时,发射机发射的电波将有一部分反射回来,在馈线中产生反射波,反射波到达发射机,最终产生为热量消耗掉。接收时,也会因为不匹配,造成接收信号不好。 如下图,前进波(发射波)与反射波以相反方向进行。 完全匹配,将不产生反射波,这样,在馈线里各点的电压振幅是恒定的,如下图中左部分(a),不匹配时,在馈线里产生下图右方的电压波形,这驻留在馈线里的电压波形就叫做驻波。 驻波比(SWR)的S值的计算公式为下图: 当然还有其它的驻波比计算方法,不过计算结果是一样的。 驻波比越高,表示阻抗越不匹配,业余玩家,做到驻波比小于1.5就算可以了。 最后提醒一点,天线的好坏不能单看驻波比,现在大家如此迷信驻波比的原因很简单,就是因为驻波表好便宜、好买。不要因为天线驻波比很低就觉得一切OK,多研究天线的其它特性(如方向性)才是真正的乐趣。 电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。测量一下天线系统的驻波比是否接近1:1,如果接近1:1,当然好。但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。

而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此产品VSWR表也是按50欧姆设计标度的。 如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 VSWR不是1时,比较VSWR的值没有意义 天线VSWR=1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效地输送到天线上,匹配的情况只有这一种。 而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,天线容性失谐,天线谐振但是馈电点不对,等等。在阻抗园图上,每一个VSWR数值都是一个园,拥有无穷多个点。也就是说,VSWR数值相同时,天线系统的状态有很多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意义。 正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。 VSWR都=1不等于都是好天线 一些国外杂志文章在介绍天线时经常给出VSWR的曲线。有时会因此产生一种错觉,只要VSWR=1,总会是好天线。其实,VSWR=1只能说明发射机的能量可以有效地传输到天线系统。但是这些能量是否能有效地辐射到空间,那是另一个问题。一副按理论长度作制作的偶极天线,和一副长度只有1/20的缩短型天线,只要采取适当措施,它们都可能做到VSWR=1,但发射效果肯定大相径庭,不能同日而语。做为极端例子,一个50欧姆的电阻,它的VSWR十分理想地等于1,但是它的发射效率是0。 影响天线效果的最重要因素:谐振 天线系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就不是纯电阻);第二,选择适当的馈电点。 让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。 我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。 天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。 所以,在天线匹配需要做到的两点中,谐振是最关键的因素。 在早期的发信机中,天线电路只用串联电感、电容的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合确定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就足以好好工作了。 因此在没有条件做到VSWR绝对为1时,电台天线最重要的调整是使整个天线电路与工作频率谐

卫星天线的调试策略和技巧

卫星天线的调试策略和 技巧 标准化管理部编码-[99968T-6889628-J68568-1689N]

浅谈地面卫星天线的调试方法和技巧 ——普陀区广电台张皓摘要:本文阐述了调试地面卫星天线中需要注意的各种要素、原则、方法和以及调试过程中的注意事项。 关键词:卫星天线搜星要素调整方法注意事项 随着卫星转发的广播电视节目和数据不断增多,各电视台下行接收设施也越来越多,而且由于各种原因导致传输原节目的卫星轨道经常变化,因此地面卫星接收站也需要不断调整天线方向来对准卫星,以保证正常收视。 一、地面站搜星要素 搜索卫星一般要注意四个要素:仰角、方位角、极化和焦距。 仰角:指卫星地面站的天线主瓣波束轴线对准卫星的连线与其在地平面的投影夹角,常用EL表示。 方位角:指当以地理正北为零度,按顺时针方向参考时,天线波束主瓣轴瞄准卫星的连线的投影线与正北方向线的夹角,常用AZ来表示。 极化:指电磁波在传播过程中的电场矢量方向和幅度随时间变化的特性,一般包括左旋、右旋圆极化及水平、垂直线极化四种极化方式,我国卫星接收信号通常采用水平、垂直线极化波。地卫站天线的极化方式一定要与所接收的卫星下行信号的极化方式一致即极化匹配,才能保证接收质量达到规定的标准,否则将影响信号的正常接收及质量。 焦距是指卫星接收天线对接收信号反射后信号汇聚最强的位置点。 二、常用计算公式与调星原则 地面站方位角、仰角是卫星接收天线指向的两个重要数据,馈源极化角ρ、焦距f是卫星接收天线调整中另外两个不容忽视的参数。四个参数可由以下卫星天线定位经验计算公式获得,实际应用中我们一般以Az的大小与正负来确定方位角。

实验六天线的方向性与驻波比测量

实验六天线的方向性与驻波比测量 一、实验目的 1.了解八木天线的阻抗特性,知道八木天线驻波比的测量方法。 2.加深对方向图的理解,了解方向图的测试方法。 3.了解两天线法测增益的原理,知道测试方法。 二、实验器材 1、PNA3621及其成套附件 2、偶极子天线两根 3、待测八木天线一个 4、短路器一只 5、半波振子和全波振子各一个。 三、实验步骤 1、仪器进行校准。 2、插损和增益测量。 3、接上待测八木天线,按【菜单】键将光标移到【驻波】处,再按【执行】键,用驻波测量,打出测试曲线。 4、设置参考方位,控制器置手动(MAN),接通电源;按控制器右转(或左)按键,将天线转到底使其限位停下;左右微动使得转台停在指示灯亮的方位上,以

这点为参考方位。此点习惯上为-90°(或270°);将待测天线的-90°(或270°,即天线讯号的最小值处)方向,对准发射天线并固定之。 5、校最大值,控制器置手动(MAN),左右转动以便找到最大值。找到最大值后,按下仪器执行键。即完成了校最大值步骤,此时屏幕右下角显示测试频率值。 6、测试,按控制器右转(或左)键将天线转到底使其限位停下,然后再按一次仪器执行键,仪器进入测试状态,画面转为直角坐标;再按入控制器自动(AUTO)键使天线按270°→ 0°→90°→180°方向旋转;过270°后仪器即进入记录状态,这样记的目的是为了得到完整的主瓣与尾瓣。 四、实验记录 1、偶极子天线的插损及增益: 2、全波振子方向图:

3、半波振子方向图: 4、八木天线方向图:

5、八木天线驻波比图: 五、实验分析 对于天线增益:天线增益是指:在输入功率相等的条件下,实际天线与理想

驻波比告警及分级接收告警的原因及常规处理办法

驻波比告警及分级接收告警的原因及常规处理办法 外接天馈设备的驻波比升高,会造成基站的告警。检查时可查看以下几个方面: 1.天线与馈线的接头处是否密封好,有无进水现象。 2.可检查馈线是否有损伤及扭曲。 3.测试天线的驻波看是否正常。 驻波告警定位方法 1、驻波告警1(VSWR1) 1)检查CDU有故障 利用测试手机测试基站收发信号功能是否正常。 若收发信信号功能正常,利用CDU强制复位功能来确定CDU是否误告警。如果CDU复位后故障不重现, 那么说明CDU有误告警,更换CDU。否则,CDU没有误告警,此时可通过“置换”等方法来确定是否CDU 有故 障。若CDU没有故障,说明天馈系统有故障,转第(2)步。 若如果收发信号不正常或信号不通,那么说明天馈系统+CDU的上下行通道可能有问题,在第一步中通过“置换”法确认CDU没有问题后转第(2)步。 2)检查天馈系统是否故障。 可以通过测试(室外)天馈系统的驻波比来检查(室外)天馈系统有无故障。在与CDU 模块TX/RX ANT 端口相连接的1/4"跳线接头处,测试天馈系统的驻波比,同时晃动1/4"跳线和机柜顶1/2"跳线,观察仪器显示的驻波比数值是否变化很大。如果驻波比数值变化很大,那么说明电缆接触不良。如果驻波比大于1.5,那么可判断天馈系统有故障,按“步步为营”等方法处理。 !!当有塔放时,必须先切断塔放馈电,防止短路现象和其它损坏测试仪表的现象发生,再测试CDU TX/RX ANT端口驻波是否严重超标。 3)上述步骤一般能定位CDU 过驻波告警1(VSWR1)故障原因;当上述步骤不能定位CDU 过驻波告警1 (VSWR1)故障原因时,按CDU驻波告警处理功能不稳定或CDU TX/RX ANT接头与1/4"跳线接头匹配不良处 理。前者更换CDU,后者更换CDU和1/4"跳线。 4)若TRX上报驻波比告警,则需要首先检查TRX发射端口(TX)到CDU的连线是否正常及接头是否拧紧,同 时可以通过更换TRX来检查是否是TRX误告警。 2、驻波告警2(VSWR2) 1)当CDU 发生过驻波告警2(VSWR2)时, CDU会上报告警给后台。, 当该告警持续一段时间(一分钟)后, CDU将向后台上报驻波严重告警。此时操作维护单元(TMU)在接收到驻波严重告警后,将自动向TRX 发命 令关掉功放。 2)定位告警故障原因,参见过驻波告警1(VSWR1)问题定位的一般方法。 分集接收告警的故障分析与处理 在GSM基站维护中,分集接收丢失是一种出现较为频繁的故障,是影响网络指标的一个重要因素。而许多维护人员并不是很认真的去思考这一问题,只是简单的将TRU复位,有的甚至去更换天线做一些无用功。产生分集接收丢失时,一个或多个TRU在50分钟内至少有12db的差异,由此接收机的灵敏度会减少

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

RFID天线调试总结

RFID 天线调试总结 一. R FID 天线工作原理 RFID 天线不是传统意义上的天线,传统天线是通过向空中辐射电磁波来传输电磁信号,天线工作于远场区,为了能把电磁信号辐射到空中,天线的长度需和工作的波长相比拟。RFID 天线的工作距离远小于传统天线,传统天线的工作距离远大于波长,例如手机天线需要接收来自几百米甚至几十公里以外的基站信号,收音机天线需要接收来自几十甚至几百公里以外的发射塔的信号。RFID 天线工作距离远小于工作波长,工作于近场耦合区。例如ISO14443-A/B 的工作距离只有几个厘米,远小于22.12m 的工作波长,通过电磁耦合进行电磁能量的传输,RFID 天线可以看作是一个耦合线圈。RFID 天线是利用安培定律:电流流经线圈,在线圈周围产生磁场,再利用电磁感应定律:时变磁场穿过闭合空间产生感应电压,让标签得电开始工作。标签和读卡器也通过该电磁场来进行信息交换。 二. R FID 天线等效电路 RFID 天线可以用如图1所示的等效电路表示。线圈电感为Lant ,Rs_ant 为线圈的损耗电阻,Cant 为线圈之间和连接器之间的寄生电容。 图1 天线等效电路 要使得天线工作于13.56MHz ,那么可以在天线外部并联或串联一个电容,将电容和天线线圈组成一个LC 谐振电路,调整该并联或串联的电容大小,使得谐振频率为13.56MHz 。那么此时,读写器可通过此谐振电路将能量传输至射频卡。由汤姆逊公式: (1 2f π= 可知,天线的工作频率(谐振频率)和Lant 、C 有关。 三. 天线调试 读写卡模块天线原始匹配电路如图2所示。

图2 天线匹配电路 该天线匹配电路采用串联匹配的形式,由于读卡芯片支持双天线,且为了增强抗干扰能力,匹配电路采用此平衡电路。电容C1~C6是匹配电路用于调整输入阻抗和工作频率的,电阻R1,R2是调整天线Q值的,在此,天线Q值确定,所以不用调整该电阻值。 读写卡模块样机制作出来未调节天线匹配电路时,用公司门禁卡(S50卡,后面测试均使用该卡测试)测试读卡距离仅为3.6cm左右,远远达不到要求。通过用网络分析仪测量天线,Smith圆图如图3所示: 图3 未调电容前的天线Smith图 由图可知,此时的谐振点偏低,那么需要将谐振点调高,即需要将电容调小。对应图2中,需要将C2,C3并联后的值,以及C4,C5并联后的值调小,调试过程中,发现将C3,C5的值调为36pF时,用公司门禁卡(S50卡)测试读卡距离,发现有5cm左右,用网络分析仪测量天线,Smith圆图如图4所示:

驻波比的测量 微波原理

电子信息工程系实验报告课程名称:微波原理 实验项目名称:驻波比的测量实验时间:2010-5-27 班级:通信072 姓名:学号:710705229 实验目的: 掌握测量驻波比的原理和常用方法 【实验内容】 在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。 【实验框图与仪器】 网络分析仪信号源被测件频谱仪 b. c. 图1 驻波比测量系统图 【实验原理】 测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。通过驻波测量可以测出阻抗、波长、相位和Q值等其它参量。 测量电压驻波系数:

可直接由测量线探针分别处于波腹及波节位置时的电流表读出Imax 和Imin ,求出驻波比。 若驻波腹点和节点处电表读数分别为m ax I ,m in I 则电压驻波系数ρ: min max min max I I E E == ρ (1-2) 当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。 节点偏移法测量驻波比的测试系统如图5示。 测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12 1 -= λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。由所得实验曲线求得最大偏移量?,按下式求出驻波比 ) sin(1)sin( 1 1πλπρ?-?+= (1-18) 当?很小时,可近似为1 21λπρ? +≈ (1-19) 中等驻波比测量(6≤ρ),可采用直接测量沿线驻波最大点和最小点场强的直接法来测量。为了提高 精确度,可以测量多个最大点和最小点,然后按下式求得驻波比 其中m ax I 和m in I 为指示器上对应的最大值和最小值(直线律检波)或其方根值(平方律检波)。 2、等指示度法(大驻波比 5>ρ) 当被测器件的驻波系数大于5时,驻波腹点和节点的电平相差很大,如果在最小点检波晶体的输出能使仪表有足够的指示读数,则在最大点上检波晶体的特性从平方律转向直线律,因而无法在同一情况下测得最大点和最小点,按直接法求取大驻波系数会带来较大的误差,因此采用等指示度法,也就是通过测量驻波图形中波节点附近场的分布规律的间接方法,求出驻波系数,如图6。 ??? ? ?????? ??-= g g n W W k λπλπρsin cos 2/2 (1.2.4) 式中 min min I kI k 最小点读数测量点读数= n 为晶体检波律,一般n=2,' h h l l W -==2d ,g λ为测量线上的 波长即波导波长 3、 功率衰减法 方法是:改变测量电路中可变衰减器的衰减量,使探针位于驻波腹点和节点时指示电表的读数相同, 图5 节点偏移法测量驻波比的测试系统

天线驻波比测试方法

天线驻波比测试方法 SX-400驻波比功率计是日本第一电波工业株式会社的“ 钻石天线” 系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天 线馈线与电台不匹配引起的反射功率及驻波比,此外在单边 带通信中本功率计还可作为峰值包络功率监视器。本仪表作 为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现 场人员正确使用,现将使用方法和注意事项介绍如下。 1 仪表表头、开关、端口功能 仪表表头、开关、端口位置见图 1 ①表头:用于指示发射功率、反射功率、驻波比及单边带应 用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第 1、 2道刻度为驻波比刻度值,第一道刻度右侧标有“ H” ,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“ L” ,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5 W档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、 20W、 5W。 ③FUNCTION(测量功能选择开关 置于“ POWER” 时,进行发射功率(FWD)、反射功率(REF)测量。' 置于“ CAL” 时,进行驻波比(SWR)测量前的校准。 置于“ SWR” 时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“ ” 处。

⑤POWER(功率测量选择开关 置于“ FWD” 时,进行电台发射功率测量。 置于“ REF” 时,进行反射波功率测量。 置于“ OFF” 时,停止对电台各种功率的测量。 ⑥AVG、PEP MONI(平均值或峰值包络功率测量选择开关) 测发射功率、反射波功率、驻波比时,该开关应弹起,呈“ ■” 状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEP MONI)监视器时,该开关应按下,呈“ ━” 状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指 示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω 同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω )端口(或50Ω 阻性的标准 负债)与该端口相连。 ⑩DC13 8V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“ +” ,黑线接电源“ -” ,主要是用于夜间的野外场合。

天线及其测量方法

现代微波与天线测量技术
第 6 讲:无源天线及其测量技术
彭宏利
博士
2008.11
微波与射频研究中心 上海交通大学-电信学院-电子工程系

第 8 节:无源天线及其测量技术
8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 能的影响 8.8. 8.9. 8.10. 8.11. 天线概述; 天线主要性能指标; Helical 外置天线; PIFA 内置天线; Monopole 内置天线; PIFA 和 Monopole 天线比较; 天线性能与环境: 其它部件对手机天线性 天线测量条件和测量参数; 天线方向图测量技术; 天线增益测量技术; 天线极化参数测量
第 1/ 39 页

8.1. 天线概述
8.1.1. 天线的定义
在无线电发射和接收系统中,用来发射或接收电磁波的元件,被称为天线。
8.1.2. 天线的作用
天线的作用是转换电磁波的型态:
? ? ? ? 发射天线将电路传输结构中的导引波转换成空间中的辐射波; 接收天线将空间中的辐射波转换成电路传输结构中的导引波; 接收和发射天线是互易的。 导引波(Guided wave) :电磁波被局限在一般电路中,沿传输线往特定的方向前进, 分析参数为电压和电流。 ? 辐射波(Radiation wave) :电磁波可以往空间任意方向传播,分析参数为电场和磁场。
8.1.3. 天线工作机理
第 2/ 39 页

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。 如果两平行导线的距离很近,则两导线所产生的感应电动势几乎可以抵消,辐射很微弱。如果 两导线张开,则由于两导线的电流方向相同,两导线所产生的感应电动势方向相同,因而辐射 较强。 当导线的长度l远小于波长时,导线的电流很小,辐射很微弱。当导线的长度可与波长相 比拟时,导线上的电流就大大增加,能形成较强的辐射。通常将能产生显著辐射的直导线称为 振子。
8.1.4. 天线分类 基站天线:
第 3/ 39 页

已交!3-1 微波系统中电压驻波比的测量第9周三 5-8节

3-1 微波系统中电压驻波比的测量 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波不同. 从图3-1-1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者. 与无线电波相比,微波有下述几个主要特点. 图3-1-1 电磁波的分类 1.波长短(1m ~1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用. 2.频率高:微波的电磁振荡周期(10-9~10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替. 另外,微波在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替. 3.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内. 人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟、原子钟. 4.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯、宇宙通讯和射电天文学的研究和发展提供了广阔的前景. 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同. 微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量. 微波实验是近代物理实验的重要组成部分. 国外发达国家的微波中继通信在长途通信网中所占的比例高达50%以上. 据统计美国为66%,日本为50%,法国为54%. 我国自1956年从东德引进第一套微波通信设备以来,经过仿制和自发研制过程,已经取得了很大的成就,在1976年的唐山大地震中,在京津之 λ/m 3 6 109 1012 1015 1018 10-9 10-11 10-6 10-3 100 103 106 f /Hz 广播 电视 红外 可见光 紫外 电波 无线电波 光波 X 射线 微波

天馈测试方法

天馈测试方法 1、测试目的: 通过测试,掌握天线口功率、馈线驻波比和有源设备工作状态,判断天馈系统当前可能存在的问题。 2、测试内容: BTS输出功率测试、平层主干节点测试、有源设备测试、天线口功率测试。 3、测试设备: Site master S331D驻波仪、Spectrum Master MS2711D频谱仪Nokia 系列手机、衰减器、跳线等。 4、测试人员及时间安排: 每组天馈测试配备工程师3名,测试时间定为1-2天。 5、测试方法及规范: 1)BTS输出功率测试 ○1.首先测试BTS输出功率,检查BTS工作状态是否正常,输出功率和方案设计功率是否一致。 ○2.测试点选择:为了尽量不影响原BTS工作,若BTS后级有大功率器件,则测试点选择在距离BTS最近的大功率器件输出端;若后级无大功率器件,则应通知机房将该BTS功率降至最低,得到降低功率确认后,断开BTS与天馈系统的连接并测试功率;将测试值与原方案对比,若测试值与原方案不一致,则先判断链路连接上是否存在问题,若链路连接有问题,应现场将其恢复,因此产生的材料费用另外结算。 ○3.若连接无问题且测试功率值偏低,要求机房将功率抬升至方案设计值。 ○4.若功率发生波动或波形异常,要求进行载频检查。 2)平层主干节点测试 ○1.对所有楼层和电梯进行故障点定位驻波测试。 ○2.进入平层的主干节点每层都要测量下行输出功率,检查平层整体通断情况,检查实际馈入平层的总功率和设计馈入平层的总功率的差值。

○3.详细记录测试数据,若发现主干节点功率或驻波故障,通知维护人员进行排查与整改。 3)有源设备测试 ○1.每台有源设备均需测试。 ○2.测试时波形截图必须保留。 ○3.若有源设备工作状态不正常(无输出、输出功率低、输出功率不稳、波形异常),交由原厂家/代维公司解决,该设备所带天馈的功率工作暂停;或采用杭州移动指定的同类设备进行替换。 ○4.测试数据记录表格见附件。 4)天线口功率测试 ○1.每层每付天线均需测试。 ○2.天线口功率用专用测试手机测试,若天线明装,手机离天线1米左右处测试并记录其电平值;若天线暗装,则假定天线离天花板15厘米,手机离天花板85厘米进行测试;场强值取距天线相应距离最强值;通过场强值定性判断该天线是否存在、功率是否偏弱。 ○3.根据天线口设计功率估算手机接收功率。 Rxlev(接收值)=Tx(设计功率)-32.4dB(1米处)-天花板材质 天花板材质损耗按以下经验估算: 石膏板:1-3dB 木板:2-5dB 金属板:7-15dB ○4.若步骤2中实测值与步骤3中估算值相差较大,则应使用频谱仪实测该天线输出口功率;若某平层多付天线功率的实测值与估算值相差太大,则至少应选取其中一付用频谱仪进行实测; ○5.选取不同材质的天花板的楼层,用频谱仪实测其中一付天线的输出口功率;

SiteMaster驻波比测试方法

两种测量方式的目的是不同的,第一种是测试GSM频段内那个频点范围存在驻波过大问题,而第二种测试的目的是在已知天馈部分存在问题情况下找出具体的故障点。这两种方法是相辅相成的。一般首先测试频段内是否存在驻波偏大的问题,如果没有,标明天馈驻波指标合格,如果存在某一频点范围内驻波偏大,则利用第二种方法找出具体的故障点。 测试步骤如下: 步骤1:选择主菜单中OPT选项。 步骤2:按B1和UP/DOWN选择选择要测试的项目(SWR,RL,CL),按ENTER确认。 步骤3:按B5选择计量单位(METRIC或ENGLISH) 步骤4:按B8调整显示对比度。其他选项说明在功能篇中已有叙述。 步骤5:选择主菜单中FREQ,则出现下级菜单;按F1,可以用数字键输入扫描起始频率或用上/下键改变其值。按F2,输入扫描截止频率,按ENTER键确定。 步骤6:按START CAL 键对系统进行校正,系统会提示在CAL A和CAL B之间选择,选择相应频率段按ENTER开始校准。(用短路器、开路器以及匹配负载进行校准); 步骤7:通过测试电缆连接要测试的设备。 步骤8:可以通过按AUTO SCALE 键,自动调整显示比例;或通过选择主菜单下SCALE,手动输入TOP,BOTTOM和LIMIT值,改变显示比例。 步骤9:按FREQ菜单下的MKRS键,打开一个MKRS,选择EDIT ,用上/下键改变频率值,读取相应SWR值,或按MORE 键,选择PEAK查看SWR最大值。假如所测驻波比大于1。5,那么就要用故障定位功能(DTF),选择主菜单中DIST项,设置D1,D2值,然后选择MKRS下一个MRKS(确定已打开),再按PEAK键,系统会显示驻波比最大值所在的位置。 本章提供一个有关电缆和天线分析仪测量的说明,包括传输线扫描基本原理 和传输线扫描测量的过程,当Site Master处于频率模式或DTF模式下时,这 些基本原理和过程是适用的。 传输线扫描基本原理 在无线电通信中,发射和接收天线是通过一条发射传输线而连接到无线电设备 上的。这个发射传输线通常是一条同轴电缆或波导。这种连接系统被称为一个 天馈线系统。图4-1 显示一个典型的天馈线系统的举例。

相关主题
文本预览
相关文档 最新文档