当前位置:文档之家› 纤维增强复合材料

纤维增强复合材料

纤维增强复合材料
纤维增强复合材料

纤维增强复合材料

一、概况

在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。

二、结构

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。

碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

用途

碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最

高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。

由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。因为航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤。所以,在航空航天工业中争相采用先进复合材料。有一种垂直起落战斗机,它所用的碳纤维复合材料已占全机重量的1/4,占机翼重量的1/3。据报道,美国航天飞机上3只火箭推进器的关键部件以及先进的MX导弹发射管等,都是用先进的碳纤维复合材料制成的。

现在的F1(世界一级方程锦标赛)赛车,车身大部分结构都用碳纤维材料。顶级跑车的一大卖点也是周身使用碳纤维,用以提高气动性和结构强度碳纤维可加工成织物、毡、席、带、纸及其他材料。传统使用中碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。

三、优势

1、高强度(是钢铁的5倍)

2、出色的耐热性(可以耐受2000℃以上的高温)

3、出色的抗热冲击性

4、低热膨胀系数(变形量小)

5、热容量小(节能)

6、比重小(钢的1/5)

7、优秀的抗腐蚀与辐射性能

(完整word版)纤维增强复合材料

纤维增强复合材料由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在l0μm以下,缺陷较少又小,断裂应变不大于百分之三,是脆性材料,容易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度和模量要低得多,但可经受较大的应变,往往具有粘弹性和弹塑性,是韧性材料。 纤维增强复合材料,由纤维的长短可分为短纤维增强复合材料、长纤维复合材料和杂乱短纤维增强复合材料。纤维增强复合材料由于纤维和基体的不同,品种很多,如碳纤维增强环氧、硼纤维增强环氧、Kevlar纤维增强环氧、Kevlar 纤维增强橡胶、玻璃纤维增强塑料、硼纤维增强铝、石墨纤维增强铝、碳纤维增强陶瓷、碳纤维增强碳和玻璃纤维增强水泥等。(1新型纺织材料及应用宗亚宁主编中国纺织出版社) 纤维增强复合材料的性能体现在以下方面: 比强度高比刚度大,成型工艺好,材料性能可以设计,抗疲劳性能好。破损安全性能好。多数增强纤维拉伸时的断裂应变很小、叠层复合材料的层间剪切强度和层间拉伸强度很低、影响复合材料性能的因素很多,会引起复合材料性能的较大变化、用硼纤维、碳纤维和碳化硅纤维等高性能纤维制成的树脂基复合材料,虽然某些性能很好,但价格昂贵、纤维增强复合材料与传统的金属材料相比,具有较高的强度和模量,较低的密度、纤维增强复合材料还具有独特的高阻尼性能,因而能较好地吸收振动能量,同时减少对相邻结构件的影响。 从本世纪40年代起,复合材料的发展已经历了整整半个世纪。随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭与办公用品等等各部门。复合材料在建筑上可作为结构材料、装饰材料、功能材料以及用来制造各种卫生洁具和水箱等。 纤维增强复合材料由增强材料和基体材料构成,每部分都有各自的作用,影响复合材料的性能。 作为增强材料的纤维是组成复合材料的主要成分。在纤维增强复合材料中占有相当的体积分数,同时是结构复合材料承受载荷的主要部分。增强纤维的类型、数量和取向对纤维增强复合材料的性能十分重要,它主要影响以下的方面:(1)密度;

天然纤维非织造物增强复合材料概述

2007年第29卷第1期中国麻业科学PLANTFIBERSCIENCESINCHINA45文章编号:1673—7636(2007)01—0045—04 天然纤维非织造物增强复合材料概述 兰红艳,靳向煜 (东华大学非织造材料与工程系,上海.200051) 摘要:本文阐述了天然纤维复合材料的现状及发展趋势,说明了麻纤维在复合材料应用领域有着广阔的发展前景。 关键词:天然纤维;非织造;增强;复合材料 中图分类号:TSl02.2+2文献标志码:B 1天然纤维增强复合材料简介 材料是国民经济和社会发展的基础和先导,与能源、信息并列为现代高科技的三大支柱。随着世界经济的快速发展和人类生活水平的提高,以及健康意识和消费意识的增强与成熟,人们对材料及其产品的需求日益增长,且越来越认识到环境问题的重要性,环境材料已成为国际高科技新材料研究中的一个新领域。各国在研究具有净化环境、防止污染、替代有害物质、减少废弃物、资源再利用等方面做了大量工作,并取得了重大进展¨1。目前,各个行业都致力于传统材料向环境材料的过渡或转型,绿色工程已经以其不可阻挡之势迅猛发展起来。在环境材料中,天然纤维以其资源丰富、可再生且能自然降解的优势占据了重要地位,并且扮演越来越重要的角色。 复合材料是适应现代科学技术发展而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料,通过各种工艺组合而成。复合材料的各个组成材料在性能上起协同作用,得到单一材料无法比拟的综合性能。它具有刚度大、强度高、质量轻等特点,可根据使用条件进行设计与制造,以满足各种特殊用途,从而极大地提高了工程结构的性能陋】。天然纤维复合材料由天然纤维和基体组成。纤维作为增强体分散在基体中,起最主要的承载作用。目前已经把麻、竹纤维大量用作木材、玻璃纤维的替代品来增强聚合物基体,与合成纤维相比,天然纤维具有价廉质轻、比强度和比模量高等优良特性,最为关键的是天然纤维属可再生资源,可自然降解,不会对环境构成负担。以天然纤维为增强体的复合材料同样具有优良的性能,随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭办公用品等各个部f-jb】。 在众多的天然纤维中麻类纤维的强度最好,而且麻类植物易种植,收获期短,产量高。尤其在石油资源日益短缺、木材资源日益受到保护的21世纪,麻类纤维的优良特性正好满足人们追求自然、绿色、环保的要求。麻纤维与玻璃纤维、碳纤维相比具有以下特点:①单纤维粗细不均匀,支数和纤维根数在长度方向上不确定;②纤维有很多支叉;③纤维是亲水性的,自然状态下吸收大量水分。用天然植物纤维作为复合材料的增强体,首先需要解决的是亲水性强的纤维与亲油性强的基体之间的匹配问题;其次是天然纤维如何在基体中均匀分散的问题。近几年来,把天然纤维作为复合材料增强体使用的研究主要集中在以下几个方面;①纤维的表面处理机理和处理工艺的研究;②与天然纤维匹配的基体树脂的研究;③天然纤维增强体的制备方法和工艺研究;④天然纤维复合材料成型工艺的研究。其中,麻纤维的表面改性和增强体的制备是其中较为基础的两个环节H】。 麻纤维非织造布结构中,纤维束缠结,而且彼此之间存在较大的摩擦力.通过针刺工艺可以 收稿日期:2006—09—20 作者简介:兰红艳(1977一).女。在读硕士研究生。

纤维增强复合材料嵌入式加固技术

?综 述? 纤维增强复合材料嵌入式加固技术 3 岳清瑞 李庆伟 杨勇新 (国家工业建筑诊断与改造工程技术研究中心 北京 100088) 摘 要:纤维增强复合材料嵌入式加固方法近几年来在国外得到了广泛的研究与应用。介绍了此项技术的研究、应用状况,并详细阐述了嵌入式加固方法的特点、施工方法以及施工中需要注意的问题。嵌入式加固方法施工方便快捷、防火性能好、能防止人为或环境因素的破坏,是一种有效的加固方法,值得在我国进行研究、推广和应用。 关键词:纤维增强复合材料 嵌入式(NS M ) 加固 结构 施工步骤 工程应用 TECHNIQUE OF STRUCTURES STRENGTHENE D WITH NEAR SURFACE MOUNTE D FRP Y ue Qingrui Li Qing wei Y ang Y ongxin (National Engineering Research Center of Industrial Building Diagnosis and Rehabilitation Beijing 100088)Abstract :T echnique of structures strengthened with near surface m ounted (NS M )FRP has been studied and applied widely in abroad recent years.This paper introduces the research and applications of this technology ,discusses the characters of this technique ,construction process ,and s ome problems that merit attention in field application.NS M method is convenient and can prevent structures from fire or destruction of other factors.NS M method is effective and w orthy of being researched and applied in our country. K eyw ords :FRP near surface m ounted (NS M ) strengthening structures construction process field application 3国家863计划项目(编号2001AA336010)、2003年科研院所技术开发研究专项资金项目(编号2003EG 213003)资助。 第一作者:岳清瑞 男 1962年1月出生 教授级高级工程师收稿日期:2003-09-20 我国有大量的建筑物因种种原因需要维修加固,因此,探寻更为有效的加固方法成为土木工程界 的研究热点。近几年来,嵌入式(Near Surface M ount 2ed ,简称NS M )加固方法在国外得到了广泛的研究和 应用。所谓嵌入式加固方法是将加固材料放入结构表面预先开好的槽中,并向槽中注入粘结材料使之形成整体,以此来改善结构性能的方法。在20世纪40年代末瑞典的Asplund [1] 曾用此项技术加固瑞典 一座桥梁。他把钢筋置于在混凝土结构表面所开的槽中,在槽中灌入水泥浆,然后用喷浆混凝土覆盖进行表面处理。然而,由于水泥浆的粘结性能不是很好,所以加固部分与原结构的粘结效果不太好,从而影响了加固效果。正是由于材料的限制,使得这项技术在当时没有推广。随着材料产业日新月异的发展,新型材料不断出现,嵌入式方法也逐渐发展起来。20世纪60年代,研究人员开始在槽中注入环氧树脂来粘结钢筋,然而钢筋的易锈蚀性使得表面需要较厚的保护层 [2] 。当FRP 材料出现后,嵌入式 加固方法才真正显示出了其优良的加固效果。研究 人员开始采用FRP 筋或板带代替钢筋应用于嵌入式加固方法中,与钢筋相比,其优势不言自明:FRP 材料轻质高强,施工方便,省时省力;耐腐蚀,不象钢筋那样需要较厚的保护层;形状、规格可以根据实际工程的要求定做。 嵌入式加固方法近年来在国外工程中得到较多的应用,尤其是在混凝土结构加固工程中的应用尤其广泛。Hakan Nordin [2] 于1999年秋天用嵌入式方法加固了瑞典一座桥梁的桥板,材料为CFRP 板带(规格为35mm ×5mm ),工程开槽尺寸为40mm ×8mm ,加固效果令人十分满意。Alkhrdaji [3] 等人在 1998年对美国正在使用中的J -857桥梁进行加固, 其中有3块混凝土实心板是用嵌入式方法加固,应用CFRP 砂磨筋,直径约11mm ,开槽的尺寸为:长约6m ,宽约14mm ,深约19mm 。施工完毕后,经试验测 1 Industrial C onstruction V ol 134,N o 14,2004 工业建筑 2004年第34卷第4期

纤维增强复合材料筋蠕变性能试验方法

附录A纤维增强复合材料筋蠕变性能试验方法 A.1.1 1 范围 本试验方法适用于测定结构用纤维增强复合材料筋的蠕变性能,包括应变-时间关系,荷载水平-蠕变断裂时间曲线和蠕变断裂应力。 A.1.2 2 仪器 A.1.3 2.1 试验机 蠕变试验机或试验装置,应满足以下要求: ——试样的最大拉伸荷载应在试验机加载能力的15%-85%之间。 ——试验机夹具之间的最小长度应符合试件的基本要求。 ——能够提供稳定的恒定荷载。 A.1.4 2.2 应变测试装置 用于测量筋材伸长的引伸计或应变片应该能够记录在计测范围内的所有变化。 A.1.5 2.3 数据采集系统 系统应能以最小速率为每秒记录两次连续记录荷载、应变和位移。荷载、应变和位移的分辨率分别应不大于100N、10×10-6和0.001mm。 A.1.6 3 试件制备 A.1.7 3.1 试件选择 蠕变试验每组3个试件,其他试件选择要求与拉伸试验一致。 A.1.8 3.2 原始标距的标记和测量 引伸计或应变片应安装在试件的中部,距锚固端至少8倍试件计算直径。 A.1.9 4 试验条件 试验条件与拉伸试验一致。 A.1.10 5 试验方法 蠕变试验的开始时间以试验荷载达到既定蠕变试验恒定荷载的时刻计算。蠕变试验荷载应取试件极限荷载的0.2到0.8倍,在荷载达到既定荷载前发生破坏的试件为无效时间,若连续3个试件出现该情况,则应考虑降低恒定荷载。为了最终形成蠕变断裂应力预测曲线,蠕变断裂试验应至少包含3种不同的恒定荷载水平的试验组,蠕变断裂时间应分布在1~10小时,10~100小时和100~1000小时,且应包含至少1个在1000h内不发生破坏的试验组。

天然纤维增强复合材料吸声性能研究

天然纤维增强复合材料吸声性能研究 A coustical Studies of N atural Fiber Reinforced Com posites 罗业,李岩 (同济大学航空航天与力学学院,上海200092) LU O Ye,LI Yan (School of Aerospace Eng ineer ing and Applied M echanics, T ongji U niv ersity,Shang hai200092,China) 摘要:采用热压成型法制备天然纤维增强复合材料层合板和蜂窝夹芯结构,利用双传声器阻抗管进行吸声性能测试,并与合成纤维增强复合材料层合板和蜂窝夹芯结构进行对比。结果表明:与合成纤维增强复合材料层合板相比,天然纤维增强复合材料层合板虽然具有更优异的吸声性能,但是仍不能满足吸声材料的要求,需通过材料设计进一步提高这种材料的吸声性能。而天然纤维增强蜂窝夹芯结构具有优异的吸声性能,吸声系数峰值高达014,可以被用作吸声材料。 关键词:天然纤维;吸声系数;表面阻抗;阻抗匹配 中图分类号:T B332文献标识码:A文章编号:1001-4381(2010)04-0051-04 Abstract:T he natur al fiber reinforced co mposite lam inates and ho neycomb sandw ich str uctures w ere prepared by hot press.Acoustic properties w er e tested w ith the aid of tw o-micropho ne impedance tube and co mpared w ith synthetic fiber reinforced co mposite counterparts.T he results show ed that natural fiber reinforced composites laminates had better acoustic pr operties than their synthetic counterparts, but still failed to reach the requir em ents as acoustic mater ials.Proper materials desig n is needed to further improve the aco ustic pro perties of natur al fiber r einfor ced composite laminates.While,natural fiber based honeycomb sandw ich str uctures had go od acoustical pro perties,w ith its peak sound absorp-tion coefficient appr oaching0.4,and thus co uld be used as acoustic materials. Key words:natur al fiber;sound absor ption coefficient;surface impedance;impedance matching 噪声污染已成为当代世界性的问题,同水污染和大气污染一起被列为全球三大污染[1]。随着工业、农业、交通运输业的发展,噪声污染日趋严重,已经成为越来越严重的社会问题。而噪声对人们的休息、学习和工作的影响以及对身心健康的危害,日益为人们所认识和关注。为此,各行各业在住宅、学校、工厂、交通工具以及城市环境等方面都建立起噪声的限制标准,而噪声控制技术也随之得到了飞速的发展。 噪声的控制分为三种途径[2]:在声源处降低噪声幅值;在声波传播途径中阻隔、吸收声能;在声音接收点采取保护措施,减少噪声影响。而实际应用中,最有效的噪声控制就是通过吸声材料来达到降噪的效果。 天然纤维由于比强度高、比模量高、价格低廉、可回收、可降解、可再生、绿色环保等特性而作为增强体在复合材料中得到广泛应用[3]。其织物、非织造布作为吸声材料也备受科学家和研究者的青睐[4-8],M ul-l er和Krobjlow ski通过Alpha-cabin和双传声器阻抗管研究了棉制绒头织物的吸声性能,发现了其优良的吸声性能[4];Parikh等[5]发现天然纤维针织毡能够有效降低汽车内噪音;张辉等[8]选用大麻、涤纶和棉纱线织造了不同规格的织物,分析了织物紧度、组织和化学试剂对大麻织物吸声系数的影响。而对于天然纤维增强复合材料的吸声性能却报道较少。 本工作着眼于绿色环保吸声材料的研制,以天然纤维增强复合材料层合板和蜂窝夹芯结构为对象,研究了其吸声性能,并和传统的合成纤维增强复合材料层合板和蜂窝夹芯结构进行比较,分析了其在吸声降噪领域的应用前景。 1实验 1.1实验材料 选用江西井竹麻业有限公司生产的平纹编织苎麻布,浙江宏成纺织整理有限公司生产的平纹编织黄麻布,常州天马集团公司生产的平纹编织玻璃纤维布以及上海怡昌碳纤维材料有限公司生产的平纹编织炭纤

纤维增强复合材料(FRP) 在工程结构加固中的应用

纤维增强复合材料(FRP)在工程结构加固中的应用 肖萍 (福建信息职业技术学院福州,350019) 摘要:介绍FRP这种新型高性能复合材料的种类、性能特点及对钢筋混凝土构件的加固方式,并 介绍了FRP复合材料在土木工程不同领域的应用发展,展望了FRP复合材料在今后土木工程领域的广 阔发展前景。 关键词: FRP 复合材料;材料性能;钢筋混凝土构;修复加固 随着社会科学技术的进步,土木工程结构学科的发展,在很大程度上得益于性质优异的新材料、新技术的应用和发展,而纤维增强复合材料(fiber reinforced polymer 简称FRP)以其优异的力学性能及适应现代工程结构向大跨、高耸、重载、轻质发展的需求,正被越来越广泛地应用于桥梁工程、各类民用建筑、海洋工程、地下工程中,受到结构工程界广泛关注。 1 FRP复合材料的种类 FRP复合材料是由纤维材料与基体材料按一定地比例混合,经过特别的模具挤压、拉拔而形成的高性能型材料。目前工程结构中常用的FRP主材主要有碳纤维(CGRP)、玻璃纤维(GFRP)、及芳纶纤维(AFRP),这些材料性能如表1所示,其材料形式主要有片材(纤维布和板)、棒材(筋材和索材)及型材(格栅型、工字型、蜂窝型等)。 1.1 在FRP片材中,纤维布是目前应用最为广泛的形式,它由连续的长纤维编织而成,通常是单向纤维布,使用前布浸润树脂,在采用FRP布加固时布的形状可以根据被加固结构的外形随意调整,加上它本身没有刚度,运输方便,较适用于梁与柱的抗剪、抗弯加固,柱与节点的抗震加固。但由于FRP布的厚度较薄,需多层粘贴才能满足要求,所以施工工艺较繁杂,操作较为困难。而FRP板则可以承受纤维方向上的拉和压,所以FRP板较适用于梁板柱的抗弯加固和抗剪加固。1.2 在FRP棒材中,FRP筋是采用单向成型工艺,将单向长纤维与树脂混合为棒材;而FRP索是将连续的长纤维单向编织,再用少量树脂浸润固化或不用树脂固化而制成的索状FRP制品。FRP 筋和FRP索可以在钢筋混凝土代替钢筋和预应力筋,特别是FRP筋用作预应力筋时,它的高强度、低弹性模量和抗腐蚀性对结构都十分有力。同时它们还可用于大跨度支撑结构、张拉结构和悬挑结构,且一般可节约劳动力和大量后期的维护费用。但工程造价一般高于采用钢筋的方案。 1.3 在FRP型材中,FRP格栅型材可代替钢筋网或钢筋笼,直接用作结构中作为楼面或夹心板等构件,同时FRP其他型材也可用于管道、桩基等尺寸较大或形状复杂的结构构件中。 2 FRP复合材料的基本力学性能和特点: 2.1 抗拉强度高,FRP的抗拉强度均明显高于钢筋,与高强钢丝抗拉强度差不多,一般是钢筋的两倍甚至达十倍。但FRP材料在达到抗拉强度前,几乎没有塑性变形产生,受拉时应力-应变呈线弹性上升直至脆断,因此FRP复合材料在与混凝土结构共同作用的过程中,往往不是由于FRP 材料被拉断破坏,而是由于FRP-混凝土界面强度不足导致混凝土结构界面被剥离破坏,所以,FRP-混凝土界面粘结性能问题成为今后工程应用的一个重点和难点。 2.2 FRP复合材料热膨胀系数与混凝土相近,这样当环境温度发生变化时,FRP与混凝土协调工作,两者间不会产生大的温度应力。 2.3 与钢材相比,大部分FRP产品弹性模量小。约为普通钢筋的25%~75%。因此,FRP结构的设计通常由变形控制。 2.4 FRP的抗剪强度低,其强度仅为抗拉强度的5%~20%,这使得FRP构件在连接过程中需要研制专门的锚具、夹具。也使得FRP构件的适度成为研究突出的问题。

长玻纤增强PET复合材料的力学性能研究_姜润喜

长玻纤增强PET复合材料的力学性能研究y 姜润喜1,周洪梅2,韩克清2,王 恒1,余木火2 (1.中国石化仪征化纤股份有限公司技术中心,江苏仪征211900; 2.东华大学纤维材料国家重点实验室,上海200051) 摘要:采用自制的浸润装置,以PET浸渍长波纤,经切粒后得到长度为6mm的长纤维增强PET预浸料切片,经一定温度热处理,可得到长纤增强PET复合材料。研究了注塑样条中玻纤含量对其力学性能及玻纤长度分布的影响,并采用SE M观察了长玻纤增强PE T注塑样条的断面形貌。结果表明,复合材料力学性能随玻璃纤维含量的提高均有不同程度的提高,当玻纤的质量分数在40%~50%时,力学性能基本达到最佳,且由本方法制备的长玻纤增强PET复合材料的力学性能已达到并超过了国外同类产品的水平。 关键词:长玻璃纤维;PE T复合材料;力学性能 中图分类号:TQ323 4+1 文献标识码:A 文章编号:1005-5770(2005)07-0017-03 S tudy on Mechanical Properties of Long Glass Fiber Reinforced PET Composite JIANG Run-xi1,ZHOU Hong-mei2,HAN Ke-qing2,W ANG Heng1,YU Mu-huo2 (1.Technical Center of Yizheng Chemical Fibre Co ,Ltd ,SINOPEC,Yizheng211900,China; 2.State Key Lab of Chemical Fibers and Polymer Materials,Donghua Universi ty,Shanghai200051,China) Abstract:Long glass fibre reinforced PE T composites(LGF/PE T)produced by a ne w melt impregnation pro-cess were injection molded to testing bars,in which long glass fibers were impregnated with PE T by a sel-f made im-pregnator,and the impre gnated fibers were pelleted into LGF/PE T flake materials with a length of6mm The effect of the glass fibre content in the testing bar on the mechanical properties and the glass fibre length distribution were studied,and SE M was used to investigating the section surface of the testing bars The results showed that the me-chanical properties of LGF/PE T composites increased with the increase of the glass fibre content,and the mechan-i cal properties were the best when the mass fraction of glass fibre was between40%to50%,the mechanical proper-ties of the LGF/PET composites produced by the ne w melt impregnation method had attained to and e xceeded those of the sa me products from other countries Keywords:Long Glass Fiber;PE T Composite;Mechanical Properties 随着纤维增强复合材料的发展,热塑性复合材料由于具有较高的环境稳定性、高冲击强度、可回收性等优点受到日益广泛的关注,其中短纤增强热塑性复合材料已商品化且应用十分广泛。但目前商品化的短纤增强复合材料在抗冲击性能等方面仍显不足,因此复合材料的应用范围受到一定的限制。而长玻纤增强复合材料的出现,不仅可以提高玻纤含量,而且可以使复合材料的性能得到大幅提高。但传统的制备长玻纤增强热塑性复合材料的工艺[1,2],如熔融浸渍法、悬浮液浸渍法、溶液浸渍法、流态化床浸渍法等以及一些新型的生产方法,如反应注射拉挤成型法等[3],都存在一些缺点。本文针对传统热塑性复合材料生产工艺的缺陷,采用新的熔融浸渍法制备了长玻纤增强PE T复合材料,对注塑样品的力学性能及界面性能进行了研究。 1 实验部分 1 1 长玻纤增强PET切片的制备 采用自制的长玻璃纤维浸润装置,以PE T树脂浸渍长玻璃纤维,经切粒后得到长度为6mm的长玻璃纤维增强PE T预浸料切片,然后在一定温度下热处理。 1 2 长玻纤增强PET切片的注塑成型 将上述热处理的切片按表1的工艺条件注塑成型,注塑后的样条置于干燥器中待用。 17 第33卷第7期2005年7月 塑料工业 C HINA PLASTICS INDUS TRY y 作者简介:姜润喜,男,1956年生,高级工程师,从事聚酯改性结构性能研究和分析检测技术与管理工作,已在发表论文20余篇。wangheng1211@163 com

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

纤维增强聚丙烯复合材料应用

纤维增强聚丙烯复合材料及其在汽车中的应用 玻璃纤维毡增强热塑性片材(Glass Mat Reinforced Thermoplastics,简称GMT)作为先期研发应用成功的一种热塑性复合材料,曾对汽车工业采用新材料产生了积极而又深远的影响,至今仍方兴未艾。近年来,车用纤维增强聚丙烯复合材料的研究和应用又有了新的发展——自增强聚丙烯(SR-PP)和长玻纤增强聚丙烯(LGFPP)的开发应用成功使其成为汽车工业中的新宠。1 N# H* U$ H9 Z 在汽车塑料件所用塑料材料中,聚丙烯是用量最大、发展最快的塑料品种,其原因不仅是由于聚丙烯材料本身具有密度小、成本低、产量大、性价比高、化学稳定性好、易于加工成型和可回收利用等突出特点,而且还因为该种材料可通过共聚、共混、填充增强等方法得到改性,因而可适合不同的汽车零件的使用性能要求。 目前可用于汽车零部件的聚丙烯材料已有多个牌号的品种,可分别作为汽车保险杠、仪表板、方向盘、车门护板、发动机冷却风扇以及车身暖风组件等多种零部件的材料。尽管如此,为了提供高性能品种以满足高品质汽车在美观、舒适、安全、防腐以及轻量化方面提出的更高要求,人们仍然在不断地进行着聚丙烯材料的改性和应用方面的研究。自增强聚丙烯复合材料8 N" g: f: K+ E- N% T0 o/ d 自增强聚丙烯复合材料(Self-Reinforced Polypropylene Composite,简称SR-PP)是一种由高定向性的聚丙烯纤维和各向同性的聚丙烯基材组成的100%聚丙烯片材。SR-PP是继GMT之后国外最新开发应用的一种热塑性复合材料,它由英国Leads大学研制成功。2002年初,Amoco纤维有限公司在德国Gronau建立了第一条年产5000t SR-PP的生产线,其生产的产品目前主要用作车底遮护板。 自增强聚丙烯片材加工制备工艺的要素可概述为:将高模量的聚丙烯带排列起来,在适宜的温度和压力条件下,使每条带的薄层表皮熔融在一起,在冷却过程中,这种熔融的材料凝固或重结晶,从而粘合成为一个整体结构。由于生成的热压实片材由同一种聚合物材料所组成,再加上物相之间分子的连续性,使片材中纤维/基材间有着优异的粘合性。此外,由于每条定向带表面膜层的熔融效应,从而克服了GMT材料中增强玻璃纤维需要浸润处理的问题。自增强聚丙烯片材热压实制备工艺如图1所示。 国外有关专家在对自增强聚丙烯复合材料的性能进行研究后指出,SR-PP片材的刚性和强度与GMT材料很接近(弹性模量均在5GPa左右),但较GMT材料轻20%~30%。此外,与随意纤维方向排布的GMT片材和NMT(天然纤维增强聚丙烯)片材不同的是,SR-PP片材生产中使用的编织纤维结构使整个零件具有均匀一致的机械性能,可将加工零件的厚度进一步减薄20%~30%,这样就可以使成品的总重量减轻50%左右。表1列出了SR-PP、GMT和均聚PP三种材料的性能对比。

玻纤增强复合材料

玻纤增强ABS复合材料 金敏善,李贺,曲凤书,鲁建春 中国石油吉林石化公司研究院,吉林,132021, Email: sunnyjin327@https://www.doczj.com/doc/b44791078.html, 关键词:苯乙烯-丙烯腈-丁二烯三元共聚物玻璃纤维玻纤增强复合材料ABS是一种以聚丁二烯链为骨架的苯乙烯和丙烯腈的接枝共聚物与苯乙烯、丙烯腈共聚物共混而成的多相聚合物。ABS以其突出的综合性能如:良好的耐化学腐蚀性和加工流动性以及较高的表面硬度、耐热性、韧性、抗冲击性能和刚性已被广泛地用于制作各种机械、仪器设备的零部件,及电器、仪表的外壳上,但是,ABS较大的成型收缩率给其制品的加工和后组装带来了一定的难度。 玻纤增强复合材料,是以聚合物为基体,以玻纤为增强材料而制成的复合材料。它综合了塑料基体和玻纤的综合性能,已成为一种具有优越性能和广泛用途的工程材料。玻纤增强的复合材料还可以按纤维的长度分类,分为长纤维复合材料和短纤维复合材料。玻璃纤维按化学组分可分为无碱铝硼硅酸盐(简称无碱纤维)和有碱无硼硅酸盐(简称中碱纤维)。玻纤增强塑料具有比强度高、耐腐蚀、隔热、成型收缩率小等优点,此外利用玻纤增强可以使塑料材料的拉伸性能大幅度地提高[1~6]。本文以通用ABS树脂为基体,利用短切玻璃纤维(事先用硅烷偶联剂进行表面处理)对其进行共混改性,并对复合材料的各项性能与玻纤的含量,玻纤的长径比及螺杆挤出温度的关系进行较详细的研究和讨论。 ABS/玻纤复合材料的弯曲性能随高模量玻纤含量的增加而明显提高,而ABS/玻纤复合材料的缺口冲击性能随玻纤含量的增加而迅速降低。这是由于,随着玻纤含量的增加复合材料的缺陷也增多,从而导致材料的应力集中点大大增加,另一方面,当受到外力冲击时裂纹可以沿着玻纤迅速扩大,所以随着玻纤含量的增加复合材料的缺口冲击性能显著降低。此外,随着玻纤含量的增加,材料中能够吸收大量冲击能的橡胶粒子浓度也相对降低,所以材料的缺口冲击性能进一步降低(Fig.1.)。当玻纤含量达到30%时,复合材料的熔融指数由空白ABS 树脂的18(g/10min)下降到10(g/10min)以下(Fig.2.)。这是由于随着玻纤含量的增加,玻纤与玻纤之间,玻纤与高聚物分子之间,以及玻纤之间的高聚物分子之间的内摩擦阻力变大,导致聚合物的分子链之间的相对运动困难,所以在同

玻璃纤维增强复合材料筋高温耐碱性试验方法(标准状态:现行)

I C S83.120 Q23 中华人民共和国国家标准 G B/T34551 2017玻璃纤维增强复合材料筋高温耐碱性 试验方法 T e s tm e t h o d f o r a l k a l i r e s i s t a n c e o f g l a s s f i b e r r e i n f o r c e d p o l y m e r b a r s i nh i g h t e m p e r a t u r e c o n d i t i o n 2017-10-14发布2018-09-01实施中华人民共和国国家质量监督检验检疫总局

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由中国建筑材料联合会提出三 本标准由全国纤维增强塑料标准化技术委员会(S A C/T C39)归口三 本标准负责起草单位:深圳市海川实业股份有限公司二中建八局第一建设有限公司三 本标准参加起草单位:中国建筑第八工程局有限公司二郑州大学二贵州省交通规划勘察设计研究院股份有限公司二深圳市路桥建设集团有限公司二南京锋晖复合材料有限公司二深圳海川新材料科技股份有限公司二广东亚太新材料科技有限公司三 本标准主要起草人:李明二王桂玲二于科二马明磊二葛振刚二赵军二龙万学二王媛二沈锋二朱增余二罗国伟三

玻璃纤维增强复合材料筋高温耐碱性 试验方法 1范围 本标准规定了玻璃纤维增强复合材料筋高温耐碱性试验的术语和定义二试验原理二试样二试验仪器二试验条件二试验步骤二计算以及试验报告等三 本标准适用于不持荷碱液浸泡状态和持荷碱液浸泡状态的高温耐碱性试验,其他纤维增强筋的高温耐碱性试验也可参照使用三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B/T1446纤维增强塑料性能试验方法总则 G B/T30022纤维增强复合材料筋基本力学性能试验方法 3术语和定义 下列术语和定义适用于本文件三 3.1 拉伸力保留率t e n s i l e c a p a c i t y r e t e n t i o n 试样经碱溶液浸泡后和浸泡前的最大拉伸力的比值,用百分数表示三 4试验原理 玻璃纤维增强复合材料筋试样在不持荷或持荷状态下浸泡在规定条件的碱性溶液中,经过规定时间测试试样的外观二质量和最大拉伸力的变化三 5试样 5.1试样外观 表面平整二色泽均匀,无气泡和纤维裸露三 5.2试样尺寸 试样尺寸按G B/T30022规定,试样切割部位宜采用与筋材相同的基体树脂封边,也可以采用环氧树脂或石蜡封边,仲裁试验应采用与筋材相同的基体树脂封边三 5.3数量 试样数量应满足浸泡时间的要求,每组有效试样数量不少于5根三

长玻纤增强热塑性塑料

长波纤增强热塑性塑料—LFT 摘要:简述了长玻纤增强热塑性塑料复合材料的性质及其应用,详细介绍了用于“一步法”、“两步法”注射成型长玻纤增强热塑性塑料复合材料的原理、设备及其发展历程与最新进展。 关键词:长玻纤增强热塑性塑料注射成型 一、LFT材料的性质与用途 长玻纤增强材料指的是用长度在5 mm以上的玻纤增强的复合材料(LFT),具有良好的成型加工性能,可通过注塑、模压、挤出等多种工艺成型,成型时模塑料的成模流动性好,可在较低的压力下成型,可成型形状复杂的制品,制品的表观质量亦优于GMT ,同时,LFT 的成本比GMT 有较大的优势。LFT中的玻纤长度较长,而且纤维长度分布更好,与GMT相比具有以下优良的性能[1]:(1)制品的力学性能高,特别是冲击强度提高显著;(2)制品刚度与质量比高,变形小,特别有利于LFT在汽车中的应用;(3)制品韧性提高;(4)制品抗蠕变性能好,尺寸稳定;(5)材料耐疲劳性能优良;(6)材料加工性能好,可用于成型形状、结构复杂的制品, GMT只能用于模压成型,因而LFT设计自由度比GMT更高;(7)可回收利用。 LFT可取代热固性的SMC、BMC及一些工程塑料在汽车及其它车辆制造、建筑、电气、包装、仓储设备、化工等领域获得广泛的应用[2]。目前,LFT 已成为热塑性复合材料领域研究开发的重要方向,已开发成功并具有实用价值的浸渍技术包括:粉体浸渍、熔融浸渍、混纤纱技术等[3~5],其中直接挤出混炼技术(在线混炼) 已在汽车零部件制造中获得应用,连续玻璃纤维粗纱连续进入特殊设计的挤出机,与已经熔融的热塑性树脂混合,在挤出机螺杆的剪切作用下,连续玻璃纤维切断成一定的长度并与树脂混合均匀,通过控制螺杆的剪切作用,抑制对脆性纤维的损伤,以保持较长的纤维长度。混合均匀的长纤维增强热塑性复合材料可挤出形成坯料,在保温的状态下经切割后置于模具中压缩模塑,亦可直接挤入注塑机的储料缸中进行注塑成型。 市场的巨大需求及加工水平的提高推动了LFT材料成型方法及设备的发展,其成型工艺及成型设备得到了飞速发展,尤其是在线配混注射成型技术越来越受到人们的关注,具有广阔的应用前景。本文主要介绍了LFT的注射成型技术生产工艺。 二、LFT材料注射成型方法 目前用于LFT注射成型的方法主要有两种,一种是LFT料粒法,也称“两步法”;另一种是在注塑生产线上配混连续玻纤、塑料及添加剂后直接成型为制品,省去造粒的中间环节,也称“一步法”。由于纤维增强塑料熔体粘度高,加工困难。传统加工过程会造成长玻纤的过度折断、对设备磨损严重等问题,常规的短切玻纤增强塑料的制备方法及设备不适宜于LFT材料[6],需要相应的成型设备及工艺与之配套。 1、“两步法”注射成型 在“两步法”成型工艺中,首先采用特殊方法加工制得LFT料粒(料粒中玻纤长度大于5 mm) 。早期主要采用电缆包覆法、粉末浸渍法等制得LFT料粒。近年来国际上普遍采用一种新的工艺[7] ,即使玻纤无捻粗纱通过特殊模头,同时向模头供入热塑性塑料,在模头中无捻粗纱被强制散开,受到塑料熔体的浸渍,使每根纤维都被树脂包覆,冷却后切成较长的料粒(10~25 mm) ,使玻纤的长度得到保证。 经过造粒制得LFT料粒后,可采用传统的注射成型热塑性塑料类似的方法制得LFT制品。为了进一步提高玻纤与塑料熔体的混合效果,减少加工过程对玻纤的破坏,通常需要对常规注射成型设备进行改造,如通过减小螺杆长径比、减小压缩比、增大喷嘴及流道尺寸等来优化设备。 美国专利5773042A[8]阐述了一种通过对塑料熔体额外施加压力来提高玻纤在熔体中分散

纤维增强复合材料在土木工程中的应用

纤维增强复合材料在土木工程中的应用 摘要 纤维增强复合材料是一种新型材料,具有强度高、质量轻等诸多优势,且具有良好的耐腐蚀性和耐疲劳性。纤维增强复合材料能实现对钢筋腐蚀的有效处理,且能实现混凝土结构耐久性能的大幅度提高。本文简述了纤维增强聚合物筋混凝土梁正截面抗烈度计算以及承载力计算,浅析了纤维增强复合材料的耐久性特点,探究了纤维增强复合材料在土木工程中的应用,以期为纤维增强复合材料的应用提供借鉴。 关键词:纤维增强复合材料;土木工程;混凝土 引言:在混凝土结构中,呈碱性的混凝土在诸多侵蚀因素的不良影响下,其钢筋保护会逐渐丧失,进而导致大幅度混凝土结构的耐久性。同时,混凝土内部钢筋锈蚀会严重损害混凝土结构质量。因此,在土木工程中,采取有效技术措施和方法加强对钢筋的有效保护,并切实保障混凝土结构的耐久性和质量具有至关重要的意义。纤维增强复合材料具有较强的抗裂度和承载力,且具有显著的耐久性优势,在土木工程中得到了日渐广泛的应用。 第一章:纤维增强聚合物筋混凝土梁正截面抗裂度计算 1、纤维增强聚合物混凝土梁正截面抗裂度计算方法 纤维增强聚合物筋混凝土梁正截面在濒临开裂状态时,可采用下式对开裂弯矩进行计算: s t c f cr W f M M M =+= (1) 在上式中,f M 表示纤维增强聚合物筋所承受的实际弯矩;c M 表示的是混凝土所承受的实际弯矩;t f 表示的是混凝土所呈现的峰值实际拉应力;s W 表示的是对混凝土梁相应受拉区域所具备的塑性变形产生的影响进行综合考虑的纤维增强聚合物筋混凝土梁正截面所呈现的弹塑性实际抵抗矩[1]。 当对塑性系数m γ进行采用来对混凝土梁受拉区域所具备的弹塑性具体发展程度进行反映时,其截面应力大体上呈现出线性分布的状态,其受拉边缘部位所具备的实际应力用t m f γ表示[2]。可采用下式对开裂弯矩进行计算: t t m t m cr y I f W f M 00γγ== (2) 在上式中,m γ表示的是混凝土梁截面所具备的抵抗矩实际塑性系数;0W 表示的是对纤维增强聚合物筋进行混凝土转换折算,转换折算之后混凝土梁截面对受力区域边缘产生的实际弹性抵抗矩;0I 表示的是混凝土梁换算截面具备的实际

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

相关主题
文本预览
相关文档 最新文档