当前位置:文档之家› 17种稀土元素

17种稀土元素

17种稀土元素
17种稀土元素

17种稀土元素的应用领域

稀土的分类

1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。

2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。

镧(La)【lán】:

镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。

铈(Ce)【shì】:

1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。2,目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。3,硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。

镨(Pr)【pǔ】:

1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

钕(Nd)【nǚ】:

钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

钐(Sm)【shān】:

钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。

铕(Eu)【yǒu】:

氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。

铒(Er)【ěr】

氧化铒主要用作钇铁柘榴石掺入剂和核反应堆的控制材料。也可用于制造特种发光玻璃和吸收红外线的玻璃。还用作玻璃着色剂,使玻璃呈玫瑰红色。仅有Er2O3一种稳定的化合物。是体心立方和单斜两种结构的粉状物。Er2O3磁矩也较大,为9.5M.B.。其他性质及制备方法同于镧系元素。制做粉红色玻璃。

钆(Gd)【gá】:

1,其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。2,其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。3,在钆镓石榴石中的钆对于

磁泡记忆存储器是理想的单基片。4,在无Camot循环限制时,可用作固态磁致冷介质。5,用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。6,用作钐钴磁体的添加剂,以保证性能不随温度而变化。另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。

铽(Tb)【tè】:

1,荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。2,磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。3,磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节机翼调节器等领域。

镝(Dy)[dī]:

1,作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。2,镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。3,镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。4,镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。5,用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。6,由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。7,Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。

钇(Y)【yǐ】

钇金属主要用作钇铁柘榴石添加剂和核反应堆控制材料,也用于制造特种发光玻璃和吸收红外线的玻璃,还用作玻璃着色剂。由硝酸铒或硫酸铒溶液与碱反应后,经分离、灼烧而得。仅有Er2O3一种稳定的化合物。是体心立方和单斜两种结构的粉状物。Er2O3磁矩也较大,为9.5M.B.。其他性质及制备方法同于镧系元素。制做粉红色玻璃。

氧化钇可制特种玻璃及陶瓷,并用作催化剂。主要用作制造微波用磁性材料和军工用重

要材料(单晶;钇铁柘榴石、钇铝柘榴石等复合氧化物),也用作光学玻璃、陶瓷材料添加剂、大屏幕电视用高亮度荧光粉和其他显像管涂料。还用于制造薄膜电容器和特种耐火材料,以及高压水银灯、激光、储存元件等的磁泡材料。

钬(Ho)【huǒ】

钬Ho是稀土元素,目前钬的主要用途有:

(1)、用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。

(2)、钬可以用作钇铁或钇铝石榴石的添加剂;

(3)、掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。中国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。

(4)、在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。

(5)、另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。

铥(Tm)【diū】

镱(Yb)【yì】

金属镱为银灰色,有延展性,质地较软,室温下镱能被空气和水缓慢氧化。与钐和铕相类似样,镱属于变价稀土,除通常呈正三价外,也可以呈正二价状态。由于这种变价特性,制备金属镱不宜用电解法,而采用还原蒸馏法进行制备和提纯。通常以金属镧为还原剂,利用镱

金属高蒸汽压和镧金属低蒸气压的差别进行还原蒸馏。也可以采用铥镱镥富集物为原料,以金属镧为还原剂,在>1100℃和<0.133Pa的高温真空条件下,通过还原-蒸馏的方法直接提取金属镱。象钐和铕一样,镱也可采用湿法还原进行分离和提纯。通常采用铥镱镥富集物为原料,溶解后将镱还原成二价状态,造成显著的性质差异后将其与其它三价稀土进行分离。制取高纯氧化镱通常采用萃取色层法或离子交换法。

镱作为重稀土元素,由于可利用的资源有限,产品价格昂贵,限制了其用途研究。随着光纤通讯和激光等高新技术的出现,镱才逐渐找到大显身手的应用舞台。

最近用途

近年来,镱在光纤通讯和激光技术两大领域崭露头角并得到迅速发展。

随着“信息高速公路”的建设发展,计算机网络和长距离光纤传输系统对光通讯用的光纤材料性能要求越来越高。镱离子由于拥有优异的光谱特性,可以象铒和铥一样,被用作光通讯的光纤放大材料。尽管稀土元素铒至今仍是制备光纤放大器的主角,但传统的掺铒石英光纤增益带宽较小(30nm),已难以满足高速大容量信息传输的要求。而Yb3+离子在980nm 附近具有远大于Er3+离子的吸收截面,通过Yb3+的敏化作用和铒镱的能量传递,可使1530nm光得到大大加强,从而大大提高光的放大效率。

近年来,铒镱共掺的磷酸盐玻璃受到越来越多研究者的青睐。磷酸盐和氟磷酸盐玻璃具有较好的化学稳定性和热稳定性,并具有较宽的红外透过性能和大的非均匀展宽特性,是宽带高增益掺铒放大光纤玻璃的理想材料。若在其中引入Yb3+离子,制成铒镱共掺光纤,就可大大改善光纤放大性能。中国研制的高浓度铒镱共掺磷酸盐光纤(纤芯直径7μm、数值孔径为0.2)适用于全波放大器。利用980nm半导体激光器,在1.5μm的通信窗口对小信号实现了3.8dB的净增益,单位长度增益达2.5dB/cm,比目前商用石英放大器高出两个数量级。

掺Yb3+光纤放大器可以实现功率放大和小信号放大,因而可用于光纤传感器、自由空间激光通信和超短脉冲放大等领域。

中国目前已建成世界上单信道容量最大、速率最快的光传输系统,拥有世界上最宽的信息高速公路。掺镱和其它稀土的光纤放大及激光材料在其中均发挥了关键性巨大的作用。

镱的光谱特性还被用作优质激光材料,既被用作激光晶体,也被用作激光玻璃、和光纤激光器。

掺镱激光晶体作为高功率激光材料已形成一个庞大的系列,包括有掺镱钇铝石榴石(Yb:YAG)、掺镱钆镓石榴石(Yb:GGG)、掺镱氟磷酸钙(Yb:FAP)、掺镱氟磷酸锶(Yb:S-FAP)、掺镱钒酸钇(Yb:YV04)、掺镱硼酸盐和硅酸盐等。

半导体激光器(LD)是固体激光器的一种新型泵浦源。Yb:YAG具有许多特点适合高功率LD泵浦,已成为大功率LD泵浦用激光材料。Yb:S-FAP晶体将来有可能用作实现激光核聚变的激光材料,引起人们的关注。在可调谐激光晶体中,有掺铬镱钬钇铝镓石榴石(Cr,Yb,Ho:YAGG),其波长在2.84~3.05μm之间连续可调。据统计,世界上用的导弹红外寻弹头大部分是采用3-5μm的中波红外探测器,因此研制Cr,Yb,Ho:YSGG激光器,可对中红外制导武器对抗提供有效干扰,具有重要的军事意义。

目前中国在掺镱激光晶体(Yb:YAG、Yb:FAP、Yb:SFAP等)方面,已取得一系列具有国际先进水平的创新性成果,解决了晶体的生长以及激光快速、脉冲、连续、可调节输出等多项关键技术,研究成果已在国防、工业和科学工程等方面获得实际应用,掺镱晶体产品已出口美国、日本等多个国家与地区。

镱激光材料的另一个大类是激光玻璃。已开发出锗碲酸盐、硅铌酸盐、硼酸盐和磷酸盐等多种高发射截面的激光玻璃。由于玻璃易成型可以制成大尺寸,并具有高光透和高均匀性

等特点,可制成大功率激光器。过去人们熟悉的稀土激光玻璃主要是钕玻璃,它已有40多年的发展历史,制作和应用技术成熟,一直是大功率激光装置的首选材料,已被用于核聚变实验装置和激光武器等方面。中国建成的由激光钕玻璃为主要激光介质的神光1号和神光2号大功率激光装置,已达到世界先进水平。但激光钕玻璃如今却遇到了激光镱玻璃的有力挑战。

近年来的大量研究表明,激光镱玻璃的许多性能超过了钕玻璃。由于掺镱发光只有两个能级,储能效率高,在相同增益时镱玻璃储能效率比钕玻璃高16倍,荧光寿命也是钕玻璃的3倍,同时还具有掺杂浓度高、吸收带宽、可直接用半导体泵浦等优点,非常适用于大功率激光器使用。但镱激光玻璃的实用还往往要借助于钕的协助,如采用Nd3+作为敏化剂才能使镱激光玻璃在室温下运转,并在1 06μm波长处实现激光发射。所以说,镱和钕在激光玻璃方面既是竞争对手,同时又是相互协作的伙伴。

通过调节玻璃成分,可以提高镱激光玻璃的诸多发光性能。以发展高功率激光器为主要方向,用镱激光玻璃制造的激光器越来越广泛地应用于现代工业、农业、医学、科学研究和军事方面。

军事用途

将核聚变产生的能量作为能源一直是人们期待的目标,实现受控核聚变将是人类解决能源问题的重要手段。掺镱激光玻璃以其优异的激光性能正在成为21世纪实现惯性约束核聚变(ICF)升级换代首选材料。

激光武器是利用激光束的巨大能量,对目标进行打击破坏,可以产生上亿度的高温,以光的速度直接攻击,可以指那打那,具有极大的杀伤力,尤其适用于现代战争的防空武器系统。掺镱激光玻璃的优异性能已使它成为制造高功率和高性能激光武器的重要基础材料。

光纤激光器是当今迅猛发展起来的一项新技术,也属于激光玻璃应用范畴。光纤激光器就是用光纤作激光介质的激光器,是光纤与激光技术相结合的产物,是在掺饵光纤放大器(EDFA)技术基础上发展起来的激光新技术。光纤激光器以半导体激光二极管作为泵源,以光纤作为波导和增益介质,同时采用光栅光纤、偶合器等光学元件组合而成。它无需光路机械调整,机构紧凑便于集成。与传统固体激光器和半导体激光器相比,具有光束质量高、稳定性好、抗环境干扰性强、免调节、免维护、结构小巧等技术和性能优势。由于掺杂的离子主要是Nd+3、Yb+3、Er+3、Tm+3、Ho+3,都是以稀土光纤作为增益介质,所以目前开发出来的光纤激光器也可称作是稀土光纤激光器。

激光用途

高功率掺镱双包层光纤激光是近年国际上固体激光技术中的一个热点领域。它具有光束质量好、结构紧凑、转换效率高等优点,在工业加工等领域中有广泛的应用前景。双包层掺镱光纤适合于半导体激光器泵浦,具有耦合效率高和激光输出功率高等特点,是掺镱光纤的主要发展方向。目前中国的双包层掺镱光纤技术与国外先进水平已不相上下。中国研制的掺镱光纤、双包层掺镱光纤以及铒镱共掺光纤在性能和可靠性方面均已达到国外同类产品先进水平,具有成本优势,并拥有多项产品和方法的核心专利技术。

世界著名的德国IPG激光公司日前宣布,他们新近推出的掺镱光纤激光器系统,具有非常优异的光束特性,有大于50,000小时的泵浦寿命,中心发射波长为1070nm-1080nm,输出功率可高达到20KW,已被应用于精细焊接、切割和岩石钻探等方面。

激光材料是发展激光技术的核心和基础。在激光界历来有“一代材料,一代器件”的说法。必须先拥有性能优异的激光材料,综合其它相关技术,才能开发出先进实用的激光器件。掺镱激光晶体和激光玻璃作为固体激光材料的生力军正在推进光纤通讯和激光技术的创新发

展,尤其是在高功率核聚变激光器、高能量拍瓦(PW,即1015W)激光器、高能量武器激光器等尖端激光技术方面将作出重要贡献。

另外,据某些文章介绍,镱还被用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂和光学玻璃添加剂等。需要指出的是,镱(Ytterbium)和钇(Yttrium)同属稀土元素,虽然英文名称和元素符号差别明显,但汉语拼音却音节相同,在某些汉语译文引用中有时误把钇当作镱,这时就需要我们追寻原文并结合元素符号来加以确认。

镥(Lu)【lǔ】

镥为银白色金属,是稀土元素中最硬和最致密的金属;熔点1663°C,沸点3395°C,密度9.8404。镥在空气中比较稳定;氧化镥为无色晶体,溶于酸生成相应的无色盐。镥主要用于研究工作,其它用途很少。质软。溶于稀酸,能与水缓慢作用。盐类无色,氧化物白色。天然存在的同位素有:175Lu和半衰期为2.1×1010年的β发射体176Lu。自然界储量极少,价格较贵,由氟化镥LuF3·2H2O用钙还原而制得,用于原子能工业

钪(Sc)【kàng】

钪钠灯,可以用来给千家万户带来光明。这是一种金属卤化物电光源:在灯泡中充入碘化钠和碘化钪,同时加入钪和钠箔,在高压放电时,钪离子和钠离子分别发出他们的特征发射波长的光,钠的谱线为589.0和589.6nm两条著名的黄色光线,而钪的谱线为361.3~424.7nm的一系列近紫外和蓝色光发射,因为互为补色,产生的总体光色就是白色光。正是由于钪钠灯具有发光效率高、光色好、节电、使用寿命长和破雾能力强等特点,使其可广泛用于电视摄像和广场、体育馆、马路照明,被称为第三代光源。在中国这种灯还是作为新技术被逐渐推广的,而在一些发达国家,这种灯早在80年代初就被广泛使用了。

太阳能光电池,可以将撒落地面的光明收集起来,变成推动人类社会的电力。在金属-绝缘体-半导体硅光电池和太阳能电池中,钪是最好的阻挡金属。

γ射线源,这个法宝自己就能大放光明,不过这种光亮我们肉眼接收不到,是高能的光子流。我们平常从矿物中提炼出来的是45Sc,这是钪的唯一一种天然同位素,每一个45Sc 的原子核中有21个质子和24个中子。倘若我们像把猴子放到太上老君的炼丹炉中炼上七七四十九天一样将钪放在核反应堆中,让他吸收中子辐射,原子核中多一个中子的46Sc就诞生了。46Sc这种人工放射性同位素可以当作γ射线源或者示踪原子,还可以用来对恶性肿瘤进行放射治疗。还有像钇镓钪石榴石激光器,氟化钪玻璃红外光导纤维,电视机上钪涂层的阴极射线管之类的用途简直不知凡几,看来钪生来就和光明有缘呢。

钷(Pm)【pǒ】

(1)可作热源。为真空探测和人造卫星提供辅助能量。

(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。

微量元素检查

微量元素检查 微量元素是什么 人体由60多种元素所组成。根据元素在人体内的含量不同,可分为宏量元素和微量元素两大类。凡是占人体总重量的0.01%以上的元素,如钙、磷、镁、钠等,称为宏量元素;凡是占人体总重量的0.01%以下的元素,如铁、锌、铜、碘、硒、锰等,称为微量元素。 微量元素在人体内的含量真是微乎其微,如锌只占人体总重量的百万分之三十三,铁也只有百万分之六十。虽然钙是宏量元素,但因为钙的代谢障碍在婴幼儿期的宝宝中较常见,所以,在目前的微量元素检测项目中,钙也是其中必查的一项。 宝宝微量元素检查 一般微量元素主要检查:钙、铁、锌、铜、镁和血铅。 当爸妈拿到孩子的微量元素检验报告,一般都会关注两组值,一组是宝宝体内某项微量元素的含量,另一组是该微量元素的正常参考值范围。爸妈不仅需要关注宝宝的检测数值是否在正常值以内,更要关注它们是不是在正常值中间的位置,这样才能很好地满足宝宝快速成长的需要。 1、钙:钙在血液中的分布只占1%,在骨骼中则占99%。当人体钙不足时,骨骼中的钙就会转移到血液中,保持血液中的钙浓度稳定。因此,如果爸妈看到宝宝血中钙的值正常,可能并不代表孩子体内不缺钙。爸妈还要注意观察宝宝有没有多汗、夜惊、烦躁、肋骨外翻等表现,同时,还需要检查骨密度、碱性磷酸酶以及25羟维生素D等其他指标,来综合判定。 2、铁:关注宝宝体内铁的数值时,因为宝宝处于快速生长期,需要大量的铁来造血、运送氧气,所以当铁的数值低于正常值的中值时,宝宝可能也会出现一些症状,尤其是在6个月2岁大时最多见,包括脸色苍白疲乏、头晕、食欲不振、口炎、注意力不集中等。在发生贫血以前,铁减少就可能已经对机体的多项功能造成影响了。 3、锌:锌参与构成体内200多种含锌酶,影响核酸、蛋白质、糖和骨钙的代谢,起着促进人体生长发育和组织修复、维持正常味觉等重要作用。宝宝如果锌摄入不足会发生锌缺乏症,而锌摄入过多也可引起中毒。在大量出汗时很容易丢失锌,腹泻会妨碍锌的吸收,发热、生长发育时锌的需要量会增加。因此,锌的数值也应在正常值范围的中间以上,才能很好地满足宝宝的需要。 4、铜:铜是参与造血和骨骼发育的元素,一般很少出现缺乏。即使缺乏,大多也是由于食物过于单一而出现的,所以,只要注意让宝宝多吃橙、红、黄色的食物即可。不过,当铜的数值过高时,也会影响钙铁锌的吸收。因此,一般在正常值中间就好。 5、铅:铅是一种有毒的重金属,能引起人体神经系统的损害,使宝宝表现出暴躁易怒、注意力不集中等症状,干扰宝宝的骨骼和造血系统,严重时甚至还会影响宝宝的肾脏和心脏,使智力下降。宝宝铁不足时,可使铅进入体内的速度提升4—6倍。一般月龄越小的宝宝,体内的铅含量应该越低。铅的正常值是0—100ug/L,但一般宝宝的这项检查值最好不要超过

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

微量元素检测的临床意义(简)

微量元素检测的临床意义 微量元素在人体中起着极其重要的作用,与人的生存和健康息息相关,它们的摄入过量或缺乏都会不同程度地引起人体生理的异常或发生疾病。通过对微量元素的测验,可以预知身体状况,是经济、科学的健康检测方法之一。钙、铁、锌、镁、铜、铅和镉七种元素在人体中尤其重要的微量元素,应该定期检验血中的这些微量元素。 以下几类人群应定期进行微量元素检测: 第一类人群是少年儿童。因快速生长发育,消耗较大,补充不足,饮食结构不合理,厌食、偏食、易生病等原因,易缺乏微量元素。 第二类人群是孕妇及哺乳期妇女。因胎儿快速生长发育,消耗量较大,孕妇由于妊娠反应也往往会导致摄入不足等原因,易缺乏微量元素。 第三类人群是免疫力低下者及中老年人。因免疫力低下、胃肠吸收功能下降,且易患慢性消耗性疾病等原因,易缺乏微量元素。 第四类人群是有害的微量元素铅、镉等摄入过多,造成中毒性损害。 微量元素的缺乏对儿童的生长发育影响尤为重要,微量元素检测对指导营养、预防疾病发生起着重要的作用。合理的营养是儿童身体素质和健康的重要因素。据文献报道反复呼吸道感染、佝偻病、身材矮小患儿出现多种微量元素失调,如果能把微量元素检测纳入常规体检,对那些缺乏微量元素的儿童也可以做到早发现、早预防、早治疗。 儿童如果出现厌食、挑食、生长发育迟缓、反复感冒、口腔溃疡、贫血、佝偻病、身材矮小等症状时,都可能与某种微量元素缺乏或失调有关。微量元素的不平衡,可以致机体的免疫功能的障碍,易致一些感染性疾病的发生,发生呼吸道感染、支气管炎、肺炎、肠炎等。 肃州区新城区社区卫生服务中心检验科应用国际公认的火焰原子吸收光谱法和石墨炉原子吸收光谱法,开展儿童微量元素检测,仅仅通过在孩子手指上取一滴血,就可以检测出孩子身体内的铜、铁、锌、钙、镁、铅、镉等微量元素的准确含量,帮助家长准确地掌握孩子的身体情况,及时地采取食补或药补,确保孩子健康成长。

稀土的性质及用途

立志当早,存高远 稀土的性质及用途 稀土元素系典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。稀土元素的电子层结构和核结构决定了稀土元素及其化合物的性质,而稀土的许多独特性质,又决定着它们的应用。有关稀土的结构与性质的关系示于下表。经历了60 多年的开发,因提取工艺复杂,产品价格昂贵,发展速度缓慢,消费量也不大。20 世纪50 年代以后,稀土分离技术得到了迅速的发展,近代的离子交换法、溶剂萃取法取代了经典的分级结晶、分步沉淀法,并在工业生产中获得各种较纯的单一稀土产品,从而为稀土的应用奠定了基础。近十年,稀土广泛用于冶金、石油化工、玻璃陶瓷、新材料领域。 在冶金工业方面:稀土金属或氧化物、硅化物加入钢中,能起到精练、脱硫、中和低熔点有害质的作用,并可以改善钢的加工性能;稀土铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机,柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面:用稀土制成的分子筛催化剂,具有活性高、选择性好,抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气特比镍铝催化剂大1.5 倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面:稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广

各种稀土元素的应用领域

各种稀土元素的应用领域 镧(La):镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce):1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。2,目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。3,硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr):1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉

混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。 钕(Nd):钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

地球化学-稀土元素标准化计算

表中数据为辉长岩、沂南花岗岩7件样品的REE组成(ppm) 1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明; 2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明; ,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。

解答: 1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1 表1-1

表1-2 图1-1 通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,

但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。 2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3: 表1-3 由上表中的Eu/Eu*值可知的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu 为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。可以推测这样品为同源岩浆所形成,主要是形成时间不同导致Eu异常不同和岩性的不同。 3,根据课件可查出REE在CPX、PL、OL等矿物和熔体间的分配系数,如下表1-4:

血清微量元素的测定及临床意义

血清微量元素的测定及临床意义 一、血清铁(Fe2+)测定及意义 铁在体内分布很广。几乎所有组织均有铁,以肝、脾为最高,大部分铁与蛋白质结合的形式存在,亦是铁的贮存形式和运输形式;极小部分以二价或三价离子状态存在。铁是制造血红蛋白和肌红蛋白重要原料,血清铁可以反映体内铁的含量。 1.正常参考值 13.4~32μmol/L 2.临床意义 (1)血清铁降低 ①缺铁性贫血,血清铁明显减少。 ②铁供应不足,如儿童发育生长期,妇女妊娠期需要铁量增加,而供应不足可引起缺 铁性贫血,血清铁降低。 ③某些疾病,如细菌性感染等,病人铁的吸收降低,可引起血清铁减少。 (2)血清铁增高 ①溶血性贫血,血清铁升高。 ②再生障碍性贫血,由于铁利用减少,但铁的吸收量多于正常人,使血清铁增加。 ③反复输血者,血清铁可增高。 ④肝炎,由于肝细胞损害,细胞内铁释出,而致血清铁增高。急性黄疸性肝炎比无黄 疸型明显,当黄疸消退时血清铁大多恢复正常;慢性活动性肝炎亦有血清铁增高; 而阻塞性黄疸时血清铁不升高,或有降低,且随阻塞加重,血清铁更趋降低。故血清铁测定有鉴别肝细胞性和阻塞性黄疸的意义。

3.注意事项 (1) 标本不能溶血,标本应及时分离血清。 (2) 所有试管等都应避免铁污染。 二、血清铜(Cu2+)测定及意义 1.正常参考值 15.74~22μmol/L 2.临床意义 铜在体内含量虽少,但极重要,它关系到铁的代谢和铁的吸收;铜亦是很多酶的重要组成成分,如单胺氧化酶、超过氧化物歧化酶等;铜对中枢神经系统也有重要作用。体内铜分布于肝、脾、肺、肌肉、骨骼等组织。肝脏是含铜量最高的器管,自小肠上部吸收的铜主要与蛋白质结合运至肝脏,一部分组成血浆铜蓝蛋白移入血液。血清铜约有95%与血浆铜蓝蛋白相结合,血清铜与血浆铜蓝蛋白常平行增减。 (1)血清铜增高 ①胆汁郁滞,不论肝内或肝外胆汁郁滞都可有血清铜和血浆铜蓝白增高,因为肝内铜 随胆汁排入肠道,当胆汁瘀滞反流必有血清铜的升高。利用铁/铜的比值可鉴别黄疸,若血清Fe2+/Ca2+比值>l多见于病毒性肝炎,若Fe2+/Ca2+比值

稀土的分类及其用途

稀土的分类及其用途 2009年09月28日 09点34分06秒 【概述】 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(RareEarth)。简称稀土(RE或R)。 韩国并不是主要的稀土使用国,目前我国出口的稀土数量达到每年5万吨(合法出口),主要的应用大国为日本,欧洲和北美。与此同时稀土在我国的应用也在积极开展,目前占到7万吨。我国每年稀土实际的矿产的实际投入量大约为15万吨,这个数字近年来没有明显变化。尽管如此,稀土的数量仍然不能满足目前全球在汽车,电子等行业用量的要求。特别是稀土在抛光,催化,磁性材料方面的增长也是非常突出。然而稀土的应用也存在着参差不齐的问题,一些元素,例如:Sm,Gd,Ho,Er等就没有得到充分的应用而大量荒弃,非常可惜。 【稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rareearthmetals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE 表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【17种稀土元素名称的由来及用途】 稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。 这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 镧(La)"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。

地球化学-稀土元素标准化计算

表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(ppm) 1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明; 2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明; ,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。

解答: 1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1 表1-1 表1-2

图1-1 通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。济南辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。 2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3: 表1-3 由上表中的Eu/Eu*值可知山东济南的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。可以推测这样品为同源岩浆所形成,主要是形成

稀土元素及用途

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

17种稀土元素名称的由来及用途(图文)

17种稀土元素名称的由来及用途 2010年03月22日 13:30 在海湾战争中,加入稀土元素镧的夜视仪成为美军坦克压倒性优势的来源。上图为氯化镧粉末。(资料图) 镧(La)

“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。(资料图) 铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。

(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨钕合金(资料图)

稀土矿用途及分类

稀土矿的用途和分类 稀土的分类 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 铥的主要用途有以下几个方面: (1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X 射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。 (2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。 (3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),

达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。 (4)铥还可在新型照明光源金属卤素灯做添加剂。 (5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。 镱(Yb)年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊 特必(Ytterby)命名为镱(Ytterbium)。 镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

稀土元素分配型式及地球化学参数的计算

一、实习目的 由于稀土元素的原子结构、原子半径、离子半径及化合价的相似性,导致它们在自然界中常常紧密共生在一起。因镧系收缩的缘故,使得稀土元素的离子半径从La→Lu逐渐减小,于是在岩浆过程中,这些元素在固相和液相间的分配呈现出明显的规律性变化。Ce和Eu在自然界具有变价(Ce4+、Eu2+)的特征,Ce 和Eu的相对富集与亏损程度往往反映了特殊的地质背景。 本次实习要求掌握稀土元素的计算和作图方法,理解稀土元素的富集程度、分馏程度的地质意义,掌握Eu的亏损与富集的地质背景。 二、实习内容 某地区的岩浆岩种类极为发育(表1—1和表1—2),请画出各岩类的稀土配分曲线图、结合稀土元素参数进行地质过程分析。两种方法所得到的稀土元素参数 表1—1 岩浆岩稀土元素成分表(×10-6) 注:1-橄榄苏长岩,2-钾长花岗岩,3-H型花岗岩,4-A型花岗岩,5-石英闪长岩(M型花岗岩)。稀土元素由某单位等离子光谱方法分析。 表1—2 岩浆岩稀土元素成分表(×10-6) 注:表中数据由中子活化方法分析

一、基本原理 稀土元素通常指的是镧系元素的(La 、Ce 、Pr 、Nd 、Pm 、Sm 、Eu 、Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,其中Pm 在自然界无天然同位素),由于稀土元素的原子结构、原子半径、离子半径(RE 3+变化于0.86?—1.14?)及化合价的相似性使得它们在自然界往往紧密共生。因镧系收缩造成稀土元素的离子半径从La →Lu 逐渐减小,Ce 和Eu 在自然界具有变价(Ce 4+、Eu 2+)的特征,以及介质(岩石、土壤、矿物等)的不同而引起稀土元素在自然界的分离。 为便于研究稀土元素在某介质中的分配型式,必须排除“偶数规则”的影响,最常用的方法是利用球粒陨石丰度值对稀土元素进行标准化。 这里向大家推荐W.V .Boynton(1984)提出的球粒陨石丰度值(×10-6): La 0.31;Ce 0.808;Pr 0.122;Nd 0.6;Sm 0.195;Eu 0.0735;Gd 0.259;Tb 0.047;Dy 0.322;Ho 0.0718;Er 0.21;Tm 0.0324;Yb 0.209;Lu 0.0322。 1.计算球粒陨石标准化有关的稀土元素地球化学参数 N RE RE RE = 式中 RE ——某稀土元素的丰度; RE N ——某稀土元素轻球粒陨石标准化以后的丰度; RE 0——某稀土元素的球粒陨石丰度值。 )Pr (La 2 1Ce *Ce Ce Ce N N N N +==δN N N Pr La 2Ce += 式中:Ce δ——铈异常系数; Ce*——铈的理想值。 )Gd (Sm 2 1Eu *Eu Eu Eu N N N N +==δN N N Gd Sm 2Eu += Eu δ——铕异常系数;Eu*——铕的理想值。

金川镍矿含矿岩体的稀土元素及微量元素地球化学特征

卷(V olum e )23,期(N um ber )1,总(Total )91矿 物岩 石   页(Pages )61-64,2003,3,(M ar ,2003) J M I N ERAL PETROL 金川镍矿含矿岩体的稀土元素及 微量元素地球化学特征 邓津辉1, 史基安1, 王 琪1, 高野穆一郎2 1.中国科学院兰州地质研究所,甘肃兰州 730000; 2.日本东京大学,东京 153-8902 【摘 要】 通过对采自金川镍矿I 矿区露天矿的第二期侵入岩体中。样品的稀土元素、微量元素进行全岩等离子质谱(I CP 2M S )测定发现第二期侵入的岩体具有明显的轻稀土元素富集和无明显铕异常的特征,是上地幔低比例平衡部分熔融和分离结晶共同作用的产物。岩体中镍黄铁矿、磁黄铁矿、黄铁矿成条带状出现,表明其形成时低氧逸度的成岩环境。 【关键词】 金川镍矿;稀土元素;微量元素;平衡部分熔融;分离结晶中图分类号:P 618.63 文献标识码:A 文章编号:1001-6872(2003)01-0061-04 收稿日期:2002-03-17; 改回日期:2002-09-07 基金项目:气体地球化学国家重点室主任基金资助(ZRJJ -03)作者简介:邓津辉,男,27岁,硕士研究生,矿物学、岩石学、矿床学专业,研究方向:矿床及地球化学1 金川铜镍硫化物(含铂族)矿床处于龙首山地 区,该区岩浆活动以花岗岩类为主,分布面积大,多呈岩基出现。镁铁质2超镁铁质岩主要发育于中、新元古代,以岩墙状、脉状及岩株状断续散布于龙首山地区,构成一个重要的镁铁质2超镁铁质岩带,是金川矿床赋存岩体。 龙首山在成岩成矿前经历了强烈的造山运动,表现出强塑性压扁、透入性流劈理、流褶皱的特征。金川超镁铁质岩体形成于长城纪晚期(1508M a ±31M a )(汤中立等,1992),是上地幔部分熔融上侵到地壳浅部的侵入岩体,其形成时的地质背景亦应该是地幔上拱、地壳变薄的拉张环境。龙首山地区加里东期及其以后的构造运动,使金川岩体从较深的形成部位(约深10km ),推移上升到地表[1]。 金川镍矿I 矿区含矿岩体出露地表长1500m ,西部最大宽度达320m ,向东逐渐变窄,宽仅20余米。岩体和星点状贫矿体主要发育于西部,海绵状富矿体发育于岩体的近底部。此区岩体至少经历四期侵入形成,是一复式侵入体。第一期侵入主要发育于该区岩体的南西侧,第二期直接伏于第一期侵入相之下,第三期侵入相分布于岩体的下侧部,第四期侵入相贯入第三期侵入相中。 许多学者在金川矿床的基本地质特征方面进行了较好的研究[1~4],为研究本区提供很多可靠详实的资料。但在稀土元素、微量元素方面论述甚少。在金川镍矿岩体稀土元素和微量元素组成特征进行研究,进而探讨金川镍矿含矿岩体的成因和成岩环境重点。

微量元素检查血检和发检的区别

微量元素分析仪血检和发检的区别 微量元素分析仪的检测样本有许多种,之中争议颇大的是发检和血液。现在医院、机构不同,微量元素的检测方法也可能不同。通常来说,用静脉血检测是最准确的。而用头发检测微量元素的方法受外环境因素的干扰太多,结果准确性较差。 微量元素分析仪只是一种检测工具,它的义务是描述体内微量元素含量现状,发现人体微量元素缺陷,要保持身体健康,要做到检测与预防病重,儿童则要做到营养均衡,理的膳食结构是保证孩子健康成长的关键,想要孩子健康成长,最好培养孩子不挑食的饮食习惯。 微量元素分析仪的头发检测,头发中微量元素的含量易受到头发清洁程度、发质以及个体生长发育程度和环境污染等多种因素的影响,不能够很好地反映出自身微量元素的营养状况。所以,一般不提倡给孩子做头发检测。另外从医院的角度讲,发检要考虑到头发的清洁、溶解等,操作非常复杂,且头发溶解用到的试剂具有一定的危险性。 血液检测是一种比较科学的方法,在孩子手指上取一滴血,利用原子吸收光谱法即可准确检测血中微量元素的含量。需要注意的是,检测微量元素时最好空腹,因为餐后经胃肠消化吸收的各种营养(包括微量元素)集中进入血液,此时检测到的微量元素水平并不能真实反映身体的储存情况。空腹3小时~4小时后,血液中的各种成分比较稳定,这时所测的各种数值可以较真实地反映身体状况。 儿童微量元素检测仪只是一种检测工具,它的义务是描述体内微量元素含量现状,发现人体微量元素缺陷,要保持身体健康,要做到检测与预防病重,儿童要做到营养均衡,理的膳食结构是保证孩子健康成长的关键,想要孩子健康成长,最好培养孩子不挑食的饮食习惯。 海力孚是多年的微量元素分析仪生产厂家,公司仪器共有五款,分别是:六元素LT-I普及型、标准型和推车型以及八元素LT-I标准型和推车型五款,统一型号为LT-I,下设五款产品,均无单独字母型号。其中六元素检测仪可精确检测铅、锌、铁、钙、镁、铜六种微量元素,八元素微量元素检测仪可检测铅、锌、铁、钙、镁、铜、镉、锰八种。 海力孚微量元素分析仪为电化学法,准确的测量、先进的专利技术及优质的服务是海力孚仪器的三大突出特色,对于五款不同规格的仪器,客户在选购时可根据自己的需求来进行选购,包括三个方面:①检测的元素类型上,有六元素和八元素之分,建议医院选择八元素,以免给实际的检测带来不便;②是否需要移动上,推车型便于移动,与微机设计成一体,适合有特殊需要的机构;③仪器的价格上,检测的元素种类越多,配置越高,其价格也就越高。因此,仪器哪个型号更好永远是跟用户的需要挂钩的,用户可依据上述的三个方面来选择。

稀土元素在金属材料中的作用与机理

稀土元素在金属材料中的作用与机理 【摘要】稀土元素作为一种重要的新能源技术材料,在当今的研究开发中有着十分重要的意义,尤其是在建筑、工业、金属材料的运用中有着非常重要的作用。通过稀土元素技术的综合应用,并充分考虑在当前社会环境中的整体模式,稀土元素成为一种战略元素,既是高新技术的生长点,也是新材料的宝库,在工业生产中发挥着越来越大的作用。本文将围绕稀土元素的整体概念进行分析,并概述稀土元素在金属材料中的作用,从多方面考究稀土元素在金属材料中的机理,更好的发挥稀土元素的整体效能。 【关键词】稀土元素金属材料作用机理 稀土元素在当前新能源技术的发展中有着重要的作用,尤其是在金属材料的运用中能有效降低硫含量,并且能彻底改变杂物形态。在稀土元素的整体作用分析中,通过技术的改进措施,充分发挥稀土元素在金属材料中的净化作用、吸收作用等,形成整体的机理及功能运用模式。因此,要整体分析稀土元素与金属材料的融合性,在整个技术运用的过程中,通过对稀土元素在金属材料中的机理的全面分析,尤其是突出在化学效应、作用发挥等多方面的整体机能,更好的推动稀土元素的作用。在实际的操作过程中突出稀土元素的化学原理,构建更为有效的稀土元素运用机制,形成高标准的机理效能,充分发挥在金属材料中的作用。 1 简述稀土材料的整体概念 1.1 概念分析 稀土是历史遗留下来的名称。稀土元素(Rare Earth Element)是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,很稀少,因而得名为稀土(Rare Earth,简称RE或R)。稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。稀土元素的共性是:①它们的原子结构相似;②离子半径相近(REE3+离子半径1.06×1010m~0.84×1010m,Y3+为0.89×1010m);③它们在自然界密切共生。 1.2 特性分析 稀土元素是周期表中IIIB族钇、钪和镧系元素之总称。其中钷是人造放射性元素。他们都是很活泼的金属,性质极为相似,常见化合价+3,其水合离子大多有颜色,易形成稳定的配化合物。溶剂萃取和离子交换是目前分离稀土的较好方法。镧、铈、镨、钕等轻稀土金属,由于熔点较低,在电解过程可呈熔融状态在阴极上析出,故一般均采用电解法制取。可用氯化物和氟化物两种盐系,前者以稀土氯化物为原料加入电解槽,后者则以氧化物的形式加入。

稀土金属主要用途

十七种稀土用途一览 1 镧用于合金材料和农用薄膜 2 铈大量应用于汽车玻璃 3 镨广泛应用于陶瓷颜料 4 钕广泛用于航空航天材料 5 钷为卫星提供辅助能量 6 钐应用于原子能反应堆 7 铕制造镜片和液晶显示屏 8 钆用于医疗核磁共振成像 9 铽用于飞机机翼调节器 10 铒军事上用于激光测距仪 11 镝用于电影、印刷等照明光源12 钬用于制作光通讯器件 13 铥用于临床诊断和治疗肿瘤 14 镱电脑记忆元件添加剂 15 镥用于能源电池技术 16 钇制造电线和飞机受力构件 17 钪常用于制造合金 1 . 镧(La) “镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。 铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。(资料图) 2. 铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。 (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 3. 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个

稀土元素的发现、种类和用途

稀土元素的发现、种类和用途稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 1.稀土种类 镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)共15种元素。 与镧系的15个元素密切相关的:钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 2.稀土分类 (1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆 (2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组: (1)除钪之外(有的将钪划归稀散元素) (2)轻稀土组:为镧、铈、镨、钕、钷; (3)中稀土组:钐、铕、钆、铽、镝; (4)重稀土组:钬、铒、铥、镱、镥、钇。

相关主题
文本预览
相关文档 最新文档