当前位置:文档之家› 高中数学完整讲义——不等式-恒成立与有解问题

高中数学完整讲义——不等式-恒成立与有解问题

高中数学完整讲义——不等式-恒成立与有解问题
高中数学完整讲义——不等式-恒成立与有解问题

高中数学讲义

【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是 _ .

【例2】 若不等式1

21x a x

+-+≥对一切非零实数x 均成立,则实数a 的最大值是_________.

【例3】 设函数2()1f x x =-,对任意23x ??∈+∞????

,,

24()(1)4()x f m f x f x f m m ??

--+ ???

≤恒成立,则实数m 的取值范围是 .

典例分析

恒成立与有解问题

高中数学讲义 【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( )

A .0a >

B .18a >-

C .1

8

a > D .0a <

【例5】 已知不等式

()11112

log 112

2123

a a n n n +++

>-+++对于一切大于1的自然数n 都成立,

试求实数a 的取值范围.

【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______.

【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( )

A .0a ≤

B .4a <-

C .40a -<<

D .40a -<≤

高中数学讲义

【例8】若对于x∈R,不等式2230

mx mx

++>恒成立,求实数m的取值范围.

【例9】不等式210

x ax

++≥对一切

1

2

x

??

∈ ?

??

,成立,则a的最小值为()

A.0 B.2

- C.

5

2

- D.3-

【例10】不等式2

|3||1|3

x x a a

+---

≤对任意实数x恒成立,则实数a的取值范围为()A.(][)

14

-∞-+∞

,,B.(][)

25

-∞-+∞

,,

C.[12]

,D.(][)

12

-∞∞

,,

【例11】对任意[11]

a∈-,,函数2

()(4)42

f x x a x a

=+-+-的值恒大于零,则x的取值范围为.

高中数学讲义 【例12】 若不等式lg 21lg()

ax

a x <+在[1,2]x ∈时恒成立,试求a 的取值范围.

【例13】 若(]1x ∈-∞-,,()21390x x a a ++->恒成立,求实数a 的取值范围.

【例14】 设()222f x x ax =-+,当[)1x ∈-+∞,时,都有()f x a ≥恒成立,求a 的取值范围.

【例15】 设对所有实数x ,不等式()()2

22

222

4112log 2log log 014a a a

x x a

a a ++++>+恒成立,求a 的取值

范围.

高中数学讲义

【例16】已知不等式22

412

ax x x a

+---

≥对任意实数恒成立,求实数a的取值范围.

【例17】已知关于x的不等式20

x x t

++>对x∈R恒成立,则t的取值范围是.

【例18】如果|1||9|

x x a

+++>对任意实数x恒成立,则a的取值范围是()

A.{|8}

a a< B.{|8}

a a> C.{|8}

a a≥ D.{|8}

a a≤

【例19】在R上定义运算?:)

1(y

x

y

x-

=

?.若不等式1

)

(

)

(<

+

?

-a

x

a

x对任意实数x成立,则()

A.1

1<

<

-a B.2

0<

C.

2

3

2

1

<

<

-a D.

2

1

2

3

<

<

-a

高中数学讲义 【例20】 设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ?,求实数a 的取值范围.

【例21】 如果关于x 的不等式23

208

kx kx +-<对一切实数x 都成立,则k 的取值范围

是 .

【例22】 已知函数()1)f x x g x =+,若不等式(3)(392)0x x x f m f ?+--<对任意x ∈R 恒成

立,求实数m 的取值范围.

高中数学讲义

【例23】已知集合()

{}

121212

|00

D x x x x x x k

=>>+=

,,,(其中k为正常数).

⑴设

12

u x x

=,求u的取值范围;

⑵求证:当1

k≥时不等式

2

12

12

112

2

k

x x

x x k

??????

---

??? ?

??

????

≤对任意()

12

x x D

,恒成立;

⑶求使不等式

2

12

12

112

2

k

x x

x x k

??????

---

??? ?

??

????

≥对任意()

12

x x D

,恒成立的2k的范围.

【例24】若关于x的方程9(4)340

x x

a

+++=有解,求实数a的取值范围.

【例25】已知a∈R,若关于x的方程2

1

4

x x a a

++-+=有实根,则a的取值范围是.

高中数学讲义 【例26】 若关于x 的不等式22840x x a --->在14x <<内有解,则实数a 的取值范围是( )

A .4a <-

B .4a >-

C .12a >-

D .12a <-

【例27】 已知函数()f x x a =-.

⑴ 若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值;

⑵在⑴的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

高中数学恒成立与存在性问题

高中恒成立问题总结 解决高考数学中的恒成立问题常用以下几种方法: ①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 XXX 核心思想: 1.恒成立问题的转化: 恒成立; 2.能成立问题的转化: 能成立; 3.恰成立问题的转化: 若在D 上恰成立在D 上的最小值; 若在D 上恰成立在D 上的最大值. 4.设函数,,对任意的,存在,使得,则 ; 设函数,,对任意的,存在,使得,则 ; 设函数,,存在,存在,使得,则 ; 设函数,,存在,存在,使得,则; 5.若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象上方; 若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象下方. 6.常见二次函数 ①.若二次函数(或)在R 上恒成立,则有(或); ②.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解. ()a f x >?()max a f x >()()min a f x a f x ≤?≤恒成立()a f x >?()min a f x >()()max a f x a f x ≤?≤能成立A x f D x ≥∈)(,?)(x f A x f =)(min ,D x ∈B x f ≤)(?)(x f B x f =)(max ()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min min ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max max ≤()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min max ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max min ≤()()f x g x >()y f x =()y g x =()()f x g x <()y f x =()y g x =2()(0)0f x ax bx c a =++≠>0<00a >???0<

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

高中数学不等式的恒成立问题

高中数学不等式的恒成立问题 高三数学备课组 肖英文 2011-11-23 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己教学谈谈不等式的恒成立问题的处理方法。 题型一:构造函数法(利用一次函数的性质) 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例如; 类型1:对于一次函数],[,)(n m x b kx x f ∈+=有: ()0f x >?恒成立(ⅰ)???>>0)(0m f a ,或(ⅱ)???><0)(0n f a ;亦可合并定成???>>0)(0 )(n f m f ; ()0 ()0()0f m f x f n 2a+x 恒成立的x 的取值范围。 分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题。 解:原不等式转化为(x-1)a+x 2 -2x+1>0, 设f(a)= (x-1)a+x 2 -2x+1,则f(a)在[-2,2]上恒大于0,故有: ?? ?>>-)2(0)2(f f 即?????>->+-0 10 3422 x x x 解得:???-<><>1113x x x x 或或 ∴x<-1或x>3. 引申:在不等式中出现3个字母:m 、x 、a 已知函数()f x 是定义在[]1,1-上的奇函数,且(1)1f =,若[],1,1a b ∈-,0a b +≠,有 ()()0f a f b a b +>+, (1)证明()f x 在[]1,1-上的单调性;(2)若2 ()21f x m am ≤-+对所有[]1,1a ∈-恒成立,求m 的取值范围。 分析:第一问是利用定义来证明函数的单调性,第二问中出现了3个字母,最终求的是m 的范围,所以根据上式将m 当作变量,a 作为常量,而x 则根据函数的单调性求出()f x 的最大值 即可。 (1) 简证:任取[]12,1,1x x ∈-且12x x <,则[]21,1x -∈- 1212 ()() 0f x f x x x +>- ()()1212()()0x x f x f x ∴-+-> 又 ()f x 是奇函数 ()()1212()()0x x f x f x ∴--> ()f x ∴在[]1,1-上单调递增。 (2) 解: 2()21f x m am ≤-+对所有[]1,1x ∈-,[]1,1a ∈-恒成立,即 2max 21m am f -+≥, max (1)1f f == 22211 20m am m am ∴-+≥∴-≥ 即2 ()20g a am m =-+≥在[]1,1-上恒成立。(1)120(1)120g a g a -=+≥?∴?=-≥? 1212 a a ?≤-??∴??≤?? 1122 a ∴-≤≤。 例2.已知不等式 对任意的都成立,求的取值范围. 解:由移项得: .不等式左侧与二次函数非常相 似,于是我们可以设 则不等式 对满足 的一切实数 恒成立 对 恒成立.当 时, 即 解得故的取值范围是. 评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒 为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。 题型二:分离参数法 类型1:αα>?∈>min )()(x f I x x f 恒成立对一切()f x x I α<∈对一切恒成立. max ()f x α?< 类型2:)()(x g x f >对于任意的],[b a x ∈恒成立?min max ()()f x g x >,或)(x f 在

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

(完整word版)高一数学中的恒成立问题

高一数学中的恒成立问题 班级 姓名 学号 1.任意x R ∈,不等式()()222240a x a x ----<恒成立,则a 的范围是____(]2,2-___. 2.若不等式x +2xy ≤a (x +y )对一切正数x ,y 恒成立,则正数a 的最小值为 ( B ) A.1 B.2 C.2 1 2+ D.22+1 . B 由条件:2xy ≤(a -1)x +ay 恒成立,而(a -1)x +ay ≥2xy a a )1(-, 令2xy =2xy a a )1(- ,a (a -1)=2, ∴a =2. 3.不等式() ()2212130m x m x ---+>对一切实数x 恒成立,则实数m 的范围为______. 【解】当2 10m -≠时不等式恒成立的充要条件是2 10m ->且()()22411210m m ---<, 即m>1或m<-2;当m-1=0时不等式化为3>0,恒成立.综上m 范围是[)21-∞+∞U (,),+. 4、已知两个正变量y x ,满足4=+y x ,则使不等式 m y x ≥+4 1恒成立的实数m 的取值 范围是 ]4 9,(-∞ 5.已知不等式(x+y)(1x + a y )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( ) A.2 B.4 C.6 D.8 6、若对于一切正实数x 不等式x x 2 24+>a 恒成立,则实数a 的取值范围是 a<24 7.若不等式.2 log 0m x x -<在(0, 1 2 )的范围内恒成立,则实数m 的取值范围是____. 【解】 1 116 m ≤< 提示:利用数形结合讨论01两种情况 8.设y=x 2+ax+b ,当x=2时y=2,且对任意实数x 都有y≥x 恒成立,实数a 、b 的值为( B ). A.a=-3 b=-4 B.a=-3 b=4 C a=3 b=4 D a=3 b=-4 9、当x>1时,不等式x+ 1 1 -x ≥a 恒成立,则实数a 的取值范围是( D ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 10.若不等式n )1(2a )1(1 n n +-+<-对任意正整数n 恒成立。则实数a 的取值范围是( A )

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?() f x 的 下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界 小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例恒成立,试求实数a 的取值范围; 例数,且当 ? ?? ? ?∈2,0πθ时,有 f .

例4、已知函数 )0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2例 例恒成立,求实数x 的取值范围 例若不等式2 ()1 f x x x a '--+>对任意(0)a ∈+∞, 都成立,求实数x 的取值范围.

3、分离参数法 (1)将参数与变量分离,即化为 ()() g f x λ≥ (或 ()() g f x λ≤ )恒成立的形式; (2)求 () f x 在x D ∈上的最大(或最小)值; (3)解不等式 () max () g f x λ≥ (或 ()() min g f x λ≤ ) ,得λ的取值范围。 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。 例8、当 (1,2) x∈时,不等式240 x mx ++<恒成立,则m的取值范围是 . 例 b a,满足什么条件时,) (x f取a表示出b的取值范围. 4 例________ 例11、当x(1,2)时,不等式

不等式恒成立问题

不等式中恒成立问题的解法 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00 a ; 2)0)(+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。 (1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需???<---=?>-0 )1(8)1(0 12 m m m ,所以,)9,1[∈m 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 例2、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a - <-即:4a >时,()()min 2730f x f a =-=-≥ 7 3 a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ?? =-=--≥ ??? 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤ (3) 当22 a -> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又 4a <-74a ∴-≤<- 综上所得:72a -≤≤

高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。 一、构造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例1 已知不等式对任意的都成立,求的取值范围. 解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数 在区间上是减函数. (Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围. 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数 都有恒成立,则;若对于取值范围内的任一个数都有 恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 例 3 已知函数若不等式恒成立,则实数的取值范围是 .

高中数学解不等式解答

第二讲 解不等式(一) 一、知识梳理 (一)考点目标定位 高考中解不等式主要涉及到一元一次不等式(组)、一元二次不等式(组)、分式不等式(组)、绝对值不等式(组)、指数不等式(组)、对数不等式(组)、三角不等式(组)以及含参数的不等式等。其中尤以一元二次不等式、分式不等式、对数不等式、三角不等式为热门。 解不等式在高考中的题型主要是在综合题中作为解题的一个步骤有所涉及,在填空题中和集合结合为简单题型。 (二)复习方略指南 熟悉各种不等式的解题方法,特别是要注意分式不等式、对数不等式和三角不等式的定义域情况以及一元二次不等式的判别式情况。 二、知识回顾 1、不等式|2x 2-1|≤1的解集为 {x |-1≤x ≤1} 2、已知全集U R =,集合{}240M x x =-≤,则U M e= {} ()()+∞-∞--<>,22,22 或或x x x 3、不等式09 311421 2≥-x x 的解集为______(,3][2,)-∞-+∞_________ 4、不等式3 2-+x x x )(<0的解集为 ()(),20,3-∞- 5、不等式()210ax ab x b +++>的解集为{}12x x <<,则a b +=___- 23或-3____. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴???? ?????==+-<.2310a b a ab a ,,解得?????-=-=121b a ,或???-=-=.21b a , ∴a +b =-23或-3. 6、不等式||52||1 x x ->-+的解集是 (1)(1-???,, . 三、典型例题 例1、解不等式:()R a x a ax ∈+<+2 1 解:原不等式化为()112-<-a x a 当1,1+<>a x a 有时; 当11+>-x x 解一:原不等式可化为??????<<-?∈<<-?∈-<-222223022x R x x R x x

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

高中数学中的存在性问题与恒成立问题例题

第 1 页 共 3 页 高中数学存在性问题与恒成立问题 例1、若不等式 121x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 例2、设函数2()1f x x =-,对任意23x ??∈+∞????,,24()(1)4()x f m f x f x f m m ??--+ ???≤恒成立,则 实数m 的取值范围是 . 例3、若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B . 18a >- C .18a > D .0a < 例4、已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立, 试求实数a 的取值范围. 例5、若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 例6、2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤ 例7、若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 例8、不等式210x ax ++≥对一切102x ??∈ ???,成立,则a 的最小值为( ) A .0 B .2- C .52- D .3- 例9、不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为( ) A .(][)14-∞-+∞,, B .(][)25-∞-+∞,, C .[12], D .(][)12-∞∞,,

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

微专题不等式恒成立问题常见类型及解法

恒成立问题常见类型及解法 恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。 一、一次函数型 给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的 图象(线段)可得①0()0>??>?k f m 或②0()0?k f n ,也可合并成f (m)0f (n)0>??>?, 同理,若在[,]m n 内恒有()0() 2 1-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。 【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数 =y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。考察区间端点,只 要(2)(2)-?? ? <0,<0f x f 即x 的取值范围是(12 ,1 2). 二、二次函数型 若二次函数2 (0,)=++≠∈y ax bx c a x R 的函数值大于(或小于)0恒成立,则有 a 00>???

及二次函数的图象求解。 典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。 【解析】方法1(利用韦达定理) 设3x =t,则t>0.那么原方程有解即方程t 2 +(4+a )t+4=0有正根。 1212 Δ0 (4)040 ≥?? ∴+=-+>??=>?g x x a x x ,即2(4a)160a 4?+-≥?<-?,a 0a 8a 4≥≤-?∴?<-?或,解得a ≤-8. 方法2(利用根与系数的分布知识) 即要求t 2 +(4+a )t+4=0有正根。设f(t)= t 2 +(4+a )t+4. 当?=0时,即(4+a )2 -16=0,∴a =0或a =-8. 当a =0时,f(t)=(t+2)2=0,得t=-2<0,不合题意; 当a =-8时,f(t)=(t-2)2 =0,得t=2>0,符合题意。∴a =-8。 当?>0,即a <-8或a >0时, ∵f(0)=4>0,故只需对称轴4a 02 +->,即a <-4.∴a <-8. 综上可得a ≤-8. 三、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。 典例3设函数2 ()1f x x =-,对任意2,3x ??∈+∞????,2 4()(1)4()x f m f x f x f m m ??-≤-+ ??? 恒成立,则实数m 的取值范围是 【解析】依据题意得2 2222214(1)(1)14(1)---≤--+-x m x x m m 在3[,)2∈+∞x 上恒定成 立,即2 2213241-≤--+m m x x 在3[,)2∈+∞x 上恒成立。 当32=x 时函数2321=--+y x x 取得最小值53 -, 所以 221543-≤-m m ,即22(31)(43)0+-≥m m ,解得2≤-m 或2 ≥m 。 四、利用函数的性质解决恒成立问题 若函数f(x)是奇(偶)函数,则对一切定义域中的x,f(-x)= -f(x),(f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,有f(x)=f(x+T)恒成立;若函数

高中数学恒成立问题典型例题

恒成立问题是数学中的常见问题,在培养同学们思维的灵活性、创造性等方面起到了积极的作用,也是历年高考的一个热点。大多是在不等式中,以已知一个变量的取值范围,求另一个变量的取值范围的形式出现。 下面结合实例,介绍这类问题的几种求解策略。 一、参变分离法 在给出的不等式中,如果能通过恒等变形将参数与变量分离出来,即:若a≥f(x)恒成立,只需求出f(x)max,则a≥f(x)max;若a≤f(x)恒成立,只需求出f(x)min,则a≤f(x)min,转化为函数求最值。 二、主元变换法 在给出的含有两个变量的不等式中,学生习惯把变量x看成是主元(未知数),而把另一个变量a看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。

三、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 四、数形结合 数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图像,然后通过观察两图像(特别是交点)的位置关系,列出关于参数的不等式。 五、判别式法 对可化为关于x的一元二次不等式对x∈R(或去掉有限个点)恒成立,常用判别式法,先将其化为关于x的一元二次不等式,结合对应的一元二次函数图像,确定二次项系数与判别式满足的条件,化为关于参数的不等式问题,通过解不等式求解。要注意二次是否可为0。

六、最值法对含参数的不等式恒成立问题,可将其化为f(x)>0或f(x)<0在某个范围上恒成立的问题,则0<[f(x)]min或0>[f(x)] max,先求出f(x)的最值,将其转化为关于m的不等式问题,通过解不等式求出参数m的取值范围。 上面介绍了含参不等式中恒成立问题的几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。

相关主题
文本预览
相关文档 最新文档