直角三角形的边角关系(初中锐角三角函数)
- 格式:docx
- 大小:848.18 KB
- 文档页数:17
锐角三角函数(1)教学目标了解锐角三角函数的概念,熟记特殊角的三角函数值,会计算各种三角函数值。
重难点分析重点:1、锐角三角函数的概念;2、特殊角锐角三角函数值;3、利用直角三角形计算函数值。
难点:1、锐角三角函数值的计算;2、直角三角形的构造;3、特殊角锐角三角函数值的记忆。
知识点梳理1、正切的概念如图所示,在ABCRt∆中,如果锐角A确定,那么A∠的对边与邻边的比便随之确定,这个比叫做的正切,记作Atan,即=AA∠∠的对边的邻边。
2、正弦的概念如图所示,在中,如果锐角确定,那么的对边与斜边的比也随之确定.的对边与斜边的比叫做的正弦,记作Asin,即=A∠的对边斜边。
3、余弦的概念如图所示,在中,如果锐角确定,那么的邻边与斜边的比也随之确定.的邻边与斜边的比叫做的余弦,记作Acos,即=A∠的邻边斜边。
注意:(1)正弦、余弦、正切只是一个数值,没有单位,其大小只与角的大小有关,与三角形的大小无关;(2)正弦、正切越大,表明角度越大,余弦越大,表明角度越小。
知识点1:锐角三角函数的概念【例1】如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4,那么A cos 的值等于【 】 A.34 B.43 C.35 D.45【随堂练习】1、在Rt △ABC 中,∠C =90°,若BC =1,AC =2,则A sin 的值为【 】 A .55B .255C .12D .22、如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则B sin 的值是【 】A.23B.32C.34D.433、在Rt △ABC 中,∠ C =90°,若BC =1,AB=5,则A tan 的值为【 】 A .55 B .255 C .12D .2【例2】已知:在Rt △ABC 中,∠C=90°,AB=10,54sin =A ,则=BC ______,=∠B tan _______。
直角三角形的边角关系知识点1:锐角三角函数一、知识点讲解: 1.锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图1-1-1,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角是指0°,30°,45°,60°,90°的角. 3.特殊角的三角函数值.4.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (90○-A )= cotA cot (90○-A )=tanA 5.同角的三角函数关系. ①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ×cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==④sin cos 12sin cos a a a a +=+ ⑤222tan cot (tan cot )2a a a a +=+- 二、经典例题讲解: 类型一、关于特殊的函数值 例题1、计算:()()013222sin 60-︒-+-+⋅(结果保留根号......)中考典练1: 024cos 458(3)(1)π-+++-分值6分中考典练2:2(tan 301)____-= 中考典练3:13tan 60|2|22-+-+例题2、 2sin60°-cos30°·tan45°的结果为( ) A 、 3 33. .22B C -D .0 例题3、等腰直角三角形一个锐角的余弦为( ) A 、12 32. .22B C D .l 例4、点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( ) 1111.(3,); .(3,); .(3,) .(3,)2222A B C D ----例5、在锐角△ABC 中,如果2sinC=sin90°,则∠C=__。
直角三角形的边角关系[知识链接]知识讲解:1.直角三角形中的边角关系(1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90°(3)边角之间的关系:sinA =cosB =c a , cosA =sinB =c btanA =cotB =b a , cotA =tanB =ab锐角三角函数的概念如图,在ABC 中,∠C 为直角, 则锐角A 的各三角函数的定义如下:(1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA =ca(2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA =c b(3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA =ba(4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotA =ab2.三角函数的关系(1)同角的三角函数的关系1)平方关系:sinA 2+cosA 2=1 2)倒数关系:tanA·cotA =13)商的关系:tanA =A A cos sin ,cotA =AAsin cos(2)互为余角的函数之间的关系 sin(90°-A)=cosA , cos(90°-A)=sinA tan(90°-A)=cotA , cot(90°-A)=tanA 3.一些特殊角的三角函数值0°30°45°60°90°sinα0 1cosα 1 0tanα0 1 -----cotα----- 1 05.锐角α的三角函数值的符号及变化规律.(1)锐角α的三角函数值都是正值(2)若0<α<90° 则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小.6.解直角三角形(1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角.(2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形.7.解直角三角形的应用,解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰角、俯角视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角(2)坡度.坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示,h即i=l(3)坡角h 坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=l(4)方位角从某点的指北方向线,按顺时针方向转到目标方向线所成的角.例题选讲:1、在Rt△ABC中,∠C=90°(1)已知∠A、c, 则a=__________;b=_________.(2)已知∠A、b, 则a=__________;c=_________.(3)已知∠A、a,则b=__________;c=_________.(4)已知a、b,则c=__________.(5)已知a、c,则b=__________.2、在下列直角三角形中,不能解的是( )A 、已知一直角边和所对的角B 、已知两个锐角C 、已知斜边和一个锐角D 、已知两直角边3、如图,在△ABC 中,已知AC=6,∠C=75°,∠B=45°,求△ABC 的面积.4、求证:平行四边形ABCD 的面积S=AB ·BC ·sinB(∠B 为锐角).5、山顶上有一旗杆,在地面上一点A 处测得杆顶B 的俯角α =600,杆底C 的俯角β =450,已知旗杆高BC=20米,求山高CD.课堂练习1、如图:P 是∠α的边OA 上一点,且P 点的坐标为(3,4),则sin (900 - α)=_____________.2、下列说法正确的是( )A 、a 为锐角则 0≤sina ≤1B 、cos30°+cos30°=cos60°C 、若tanA =cot(90°-B), 则∠A 与∠B 互余D 、若α1,α2为锐角,且α1<α2则c osα1>c osα2 3、已知0°<α<45° 则s inα,c osα的大小关系为( )A 、s inα>c osαB 、s inα<c osαC 、s inα≥c osαD 、s inα≤c osα.4、∠C =90° 且tanA =31,则cosB 的值为( )A 、1013 B 、310 C 、1010 D 10103 5、直角梯形ABCD 中,AD ∥BC ,CD =10,∠B =90°,∠C =30°则AB =( )A 、53B 、5C 、25D 2356、一个三角形的一边长为2,这边上的中线长为1, 另两边长之和为1+, 则这个三角形的面积为( )A. 1B.23C. D.437、外国船只,除特许外,不得进入我国海洋100海里以内的区域.如图,设A 、B 是我们的观察站,A 和B 之间的距离为160海里,海岸线是过A 、B 的一条直线.一外国船只在P 点,在A 点测得∠BAP=450,同时在B 点测得6BCACDABAB CDABP∠ABP=600,问此时是否要向外国船只发出警告,令其退出我国海域. 本课小结本章的重点是直角三角形中锐角三角函数的定义,特殊锐角的三角函数值,及互余两角的三角函数关系,运用这些知识解直角三角形的实际应用,既是重点也是难点.解直角三角形四类基本问题的方法是:(1)已知斜边和一直角边(如斜边c ,直角边a):由sinA =ca,求A, B =90°-A , b =(2)已知斜边和一锐角(如斜边c ,锐角A); B =90°-A , a =c·sinA , b =c·cosA(3)已知一直角边和一锐角(如a ,A): B =90°-A ,b =a·cotA , c =Aasin(4)已知两直角边(如a ,b): c =,由tanA =ba,求A, B =90°-A解直角三角形的思路是:(1)解直角三角形的方法可以概括为“有弦(斜边)用弦(正弦,余弦),无弦用切(正切,余切),取原避中”其意指:当已知或求解中有斜边时,可用正弦或余弦;既可由已知数据又可由中间数据求解时,取原始数据,忌用中间数据.(2)解含有非基本元素的直角三角形(即直角三角形的中线,高,角平分线,周长,面积等)一般将非基本元素转化为基本元素,或转化为基本元素间的关系式,再通过解方程组求解.解直角三角形在实际应用中的解题步骤如下:(1)审题:要弄清仰角,俯角,坡度,坡角,水平距离,垂直距离,水平等概念的意义,要审清题意.(2)画图并构造要求解的直角三角形,对于非直角三角形的图形可添加适当的辅助线把它们分割成一些直角三角形和矩形(包括正方形).(3)选择合适的边角关系式,使运算尽可能简便,不易出错.(4)按照题中已知数的精确度进行近似计算,并按照题目要求的精确度确定答案及注明单位.。
第一章直角三角形的边角关系一、中考要求:1.掌握锐角三角函数(sinA,cosA,tanA)的定义,知道30°、45°、60°、0°、90°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.2.掌握运用三角函数解决与直角三角形有关的简单的实际问题的方法。
二、中考卷研究(一)中考对知识点的考查:(二)中考热点:新课标对解直角三角形的要求略有减弱,从2004、2005年各课改实验区的中考命题来看,运用解直角三角形的知识解决与生活、生产相关联的应用题是中考的热点.三、中考命题趋势及复习对策解直角三角形在实际生活中的应用题,是中考的重点内容,其次是特殊角的三角函数值,锐角三角函数包含三部分内容,一是解直角三角形及特殊锐角函数值的考查,以填空,选择题的形式出现;二是解决实际问题,以解答题的形式出现;三是渗透在中高档解答证明题中,一般占10分左右.在复习时,要正确了解三角函数概念把握其本质,才能正确理解解直角三角形中边角之间关系,才能利用这些关系解题,另外还要注意数形结合,解题时通过画图来找出函数关系,帮助解题.(Ⅰ)考点突破考点1:锐角三角函数的概念一、考点讲解:1.锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图1-1-1,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b,c.∠A 的正弦=A a sin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值. 二、经典考题剖析:1.(2004、南山,4分)计算:()012sin 60-︒+-+(结果保留根号......)解:原式=112-2.(2004____.解:13.(2004、北碚,5160|2|2-+-+.解:原式1242+=. 三、针对性训练:(45 分钟)1.已知cos α<0.5,那么锐角α的取值范围是()A .60°<a <90°;B .0°<a <60°;C .30°<a <90°;D .0°<a <30° 2.2sin60°-cos30°·tan45°的结果为( )A 、 3 .BC .0 3.等腰直角三角形一个锐角的余弦为( )A 、12BC .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3cosB 等于( )A .abcB .(a+b )c 3C .c 3D ().abc a b c +5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )A.1()2B. 1)2C.1)2-D. 1()2-6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c 2-4ac+4a 2= 0,则sinA+cosA 的值为( )B C D7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )sin(90°-B )ABC 一定是( )A .锐角三角形;B .直角三角形;C .钝角三角形 ;D .等腰三角形 8.sin35°·cos55°十cos35°·sin55°=_______; 9.在锐角△ABC 中,如果2sinC=sin90°,则∠C=______;10 已知0°<a <45;11在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______.12 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°,求BC 边上的高AD.13 如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.14 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD .15 计算:sin 30(1tan 45sin 60-;16 如图1-1-5,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________.17 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
初中数学《直角三角形中的边角关系》单元教学设计以及思维导图直角三角形中的边角关系适用年九年级级所需时课内6课时+课外4课时间主题单元学习概述“ 锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
在初中阶段我们主要研究锐角三角函数和解直角三角形的内容。
本章重点是锐角三角函数的概念和直角三角形的解法。
其中锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
解直角三角形在实际生活中有着广泛的应用,而锐角三角函数概念的学习为解直角三角形提供了有效的工具。
对于锐角三角函数的概念新课标只要求掌握其中的三个(正切、正弦、余弦),因为相比之下正切是生活中用的最多的三角函数概念,如刻画物体的倾斜程度、山的坡度等都往往用到正切。
所以教材在第一课时首先安排了正切概念的学习,这也为锐角三角函数这个陌生的概念提供了与实际联系的机会,使学生从生活入手从而不会产生畏惧心理。
同时本节课的学习也为类比得到正弦、余弦的概念作好了铺垫。
主题单元规划思维导图主题单元学习目标知识与技能:了解三角函数的概念,学会在直角三角形中进行一些简单的计算。
过程与方法:(1)通过体验三角函数概念的形成过程增进学生的数学经验。
(2)渗透数形结合的数学思想方法。
(3)培养学生主动探索,敢于实践,勇于发现,合作交流的精神。
情感态度与价值观:(1)让学生感受数学来源于生活又应用于生活,体验数学的生活化经历。
(2)通过实际问题情境的经历探究性的学习培养学生学习数学的兴趣。
对应课标1、理解锐角三角函数的概念。
2、掌握锐角三角函数的表示。
解直角三角形有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导通过锐角三角函数的定义我们便知道锐角三角函数和直角三角形紧密相连。
本节中我们首先要巩固前面学习的勾股定理,然后结合锐角三角函数求出我们需要的答案。
在用三角函数解直角三角函数时,我们尤其要对特殊角的三角函数值熟悉。
本节有配套学习视频。
二、知识要点1、勾股定理。
在RT △ABC 中有222a b c +=, 其中a 和b 分别为直角三角形两直角边,c 为斜边。
注意:勾股定理(国外叫“毕达哥拉斯定理”)只适用于直角三角形。
2、勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,则这个三角形是直角三角形,即:在△ABC 中,若222a b c +=,则∠C =90°;注:逆定律是倒推也成立的定理。
我们知道直角三角形的三边满足关系:222a b c +=;那么反过来如果一个三角形满足222a b c +=,这个三角形就必定是直角三角形。
3、勾股弦数:一组能使勾股定理关系成立的三个正整数。
比如:3,4,5。
勾股弦数分别是3,4和5的倍数,如6、8、10;9、12、15等等。
4、直角三角形的特征⑴直角三角形两个锐角互余;如图1注:两个角护余说明这两个角相加等于90°,任何一个直角三角形中,两个锐角都互余。
RT △ABC 中,∠A 和∠B 互余,∴∠A+∠B=90°⑵直角三角形斜边上的中线等于斜边的一半;如图2RT △ABC 中,CD 是斜边的中线,则有:12CD AB = ⑶直角三角形中30°所对的直角边等于斜边的一半;如图3RT △ABC 中,∠A=30°,则有12CB AB =5、射影定理:如下图,在RT △ABC 中满足:2AC AD AB =∙, 2BC BD AB =∙, 2CD DA DB =∙.6、解直角三角形(Rt △ABC,∠C =90°)⑴三边之间的关系:222a b c +=。
第一章直角三角形的边角关系1 锐角三角函数第1课时正切与坡度1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能用表示直角三角形中两直角边的比来表示物体的倾斜程度和坡度(坡比)等.3.能根据直角三角形的边角关系,用正切进行简单的计算.重点理解正切、倾斜程度、坡度的数学意义,密切关注数学与生活的联系.难点理解正切的意义,并用它来表示两边的比.一、情境导入师:梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放得“陡”,那个梯子放得“平缓”,人们是如何判断的?课件出示下图,提出问题:(1)甲组中EF和AB哪个梯子比较陡?你是怎么判断的?有几种判断方法?(2)乙组中AB和EF哪个梯子比较陡?你是怎么判断的?甲组乙组二、探究新知引导学生阅读教材第2~4页的内容,完成以下问题:1.比较梯子的倾斜程度(1)如图,这里摆放的三组梯子,每组梯子中哪一个更陡?梯子的倾斜程度与什么有关?(2)分别求出每组图中的AC BC 与ED FD,想一想它们的比值与梯子的倾斜程度有什么关系? 2. 如下图,小明想通过测量B 1C 1及 AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及 AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)Rt △AB 1C 1和 Rt △AB 2C 2有什么关系? (2)B 1C 1AC 1和B 2C 2AC 2有什么关系?(3)如果改变B 2在梯子上的位置呢? 由此你得出什么结论? 3.正切是如何定义的?4.梯子的倾斜程度与tan A 的值有什么关系? 5.坡度是如何定义的? 三、举例分析例 如图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?甲 乙(1)tan α和tan β 的值分别是多少? (2)你能比较tan α和tan β 的大小吗?(3)根据tan A 的值越大,梯子越陡你能判断哪一个自动扶梯比较陡吗? 四、练习巩固1.在△ABC 中,∠C =90°,则tan A 等于( ) A.BC AB B.AC AB C.BC AC D. AB AC2.如图,在△ABC 中,∠C =90°,BC =6,若tan A =34,则AC =________.3.如图,Rt △ACB 中,∠B =90°,BC =10,tan A =512,求AB ,AC.五、课堂小结 1.易错点:(1) tan A 中常省略角的符号“∠”,用希腊字母表示角时也可省略,如:tan α,tan β 等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成tan ∠BAC 或tan ∠1,tan ∠2 等;(2) tan A 没有单位,它表示一个比值;(3) tan A 是一个完整的数学符号,不可分割,不表示“tan ”乘“A ”. 2.归纳小结:(1)tan A =∠A 的对边∠A 的邻边;(2)tan A 的值越大,梯子越陡.3.方法规律:(1)一个角的正切是在直角三角形中定义的,因此,tan A=∠A的对边∠A的邻边只能在直角三角形中适用;(2)坡面与水平面的夹角称为坡角;坡面的铅垂高度与水平宽度的比称为坡度(或坡比).六、课外作业1.教材第4页“随堂练习”第1、2题.2.教材第4页习题1.1第1、2题.本课时结合学生身边的数学现象,依据初中学生身心发展的特点,通过比较梯子哪个更徒引入新课,激发了学生的求知欲.为了突破教学难点,教学活动中运用了直观教学、几何画板动态演示和验证、几何推理等方法,既直观地呈现了知识的内在联系,培养了学生的几何直观能力,又唤起和加深了学生对教学内容的体会和理解.本课中,对梯子的倾斜程度、坡角、坡度(坡比)的认识,让学生更进一步体验了数学的实用性,加深了数学和实际生活的联系.第2课时正弦和余弦1.理解正弦、余弦及三角函数的意义.2.能够运用sin A,cos A表示直角三角形两边的比.3.根据直角三角形中的边角关系,进行简单的计算.重点理解正弦、余弦的定义,能根据直角三角形的边角关系进行简单计算.难点正弦、余弦的理解及应用.一、复习导入1.在Rt△ABC中,∠C=90°,tan A=34,AC=10,求BC,AB的长.2.若梯子与水平面相交的锐角为∠A,∠A越大,梯子越________;tan A的值越大,梯子越________.3.当Rt △ABC 中的一个锐角A 确定时,其他边之间的比值也确定吗? 可以用其他的方式来表示梯子的倾斜程度吗?二、探究新知1.正弦、余弦及三角函数的定义 课件出示:(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是什么? (2)B 1C 1AB 1和B 2C 2AB 2的关系是什么?(3)如果改变B 2在斜边上的位置,则B 1C 1AB 1和B 2C 2AB 2的关系是什么? 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小经已确定时,它的对边与斜边的比值____________,根据是________________.它的邻边与斜边的比值呢?2.梯子的倾斜程度与sin A 和cos A 的关系探究活动:梯子的倾斜程度与sin A 和cos A 之间有什么关系?如图,AB ,A 1B 1表示梯子,CE 表示支撑梯子的墙,AC 在地面上. (1)梯子AB ,A 1B 1哪个更陡?(2)梯子的倾斜程度与sin A 和cos A 有关系吗? 三、举例分析例 如图,在Rt △ABC 中,∠B =90°,AC =200,sin A =0.6,求BC 的长.(1)sin A等于图中哪两条边的比?(2)你能根据sin A=0.6写出等量关系吗?(3)根据等量关系你能求出BC的长吗?四、练习巩固1.在 Rt△ABC中,若各边的长度同时都缩小4倍,则锐角A的正弦值( )A.缩小4倍B.缩小2倍C.保持不变D.不能确定2.已知∠A,∠B为锐角.(1)若∠A=∠B,则sin A________ sin B;(2)若sin A=sin B,则∠A ________∠B.3.如图,在Rt△ABC中,∠C=90°,AC=3,AB=6,求∠B的三个三角函数值.五、课堂小结1.易错点:(1)sin A,cos A,tan A是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sin A,cos A,tan A是一个完整的符号,表示∠A的正弦、余弦、正切,习惯省去“∠”符号;(3)sin A,cos A,tan A都是一个比值,注意区别,且sin A,cos A,tan A均大于0,无单位;(4)sin A,cos A,tan A的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系.2.归纳小结:(1)正弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB 的比叫做∠A的正弦,记作sin A;(2)余弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB 的比叫做∠ A的余弦,记作cos A;(3)sin A越大,梯子越陡; cos A越小,梯子越陡.3.方法规律:两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.六、课外作业1.教材第6页“随堂练习”第1、2题.2.教材第6~7页习题1.2第1、3、4、5题.本节课结合初中学生身心发展的特点,运用了类比教学法,加深学生对教学内容的体会和了解,很容易就掌握了正弦和余弦的概念和意义.同时,探究活动培养和发展了学生的观察、思维能力.本课时贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的基本认识规律,运用了这些直观教学,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.2 30°,45°,60°角的三角函数值1.经历探索30°,45°,60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义.2.能够进行30°,45°,60°角的三角函数值的计算.3.能够根据30°,45°,60°的三角函数值说明相应的锐角的大小.重点能够进行30°,45°,60°角的三角函数值的计算;能够根据30°,45°,60°角的三角函数值说出相应的锐角大小.难点通过探索特殊三角函数值的过程,培养学生进行有关推理的能力.一、复习导入1.在Rt△ABC中,∠C =90°.(1)a,b,c三者之间的关系是什么?∠ A+∠ B等于多少度?(2)如何表示sin A,cos A,tan A,sin B,cos B,tan B? 2.观察一副三角尺,其中有几个锐角?它们分别等于多少度?二、探究新知课件出示:如图所示,在Rt△ABC中,∠ C=90°,∠ A=30°.(1)a,b,c三者之间有什么样的关系?(2)sin 30°等于多少?你是怎样得到的?与同伴交流.(3)cos 30°等于多少?tan 30°呢?(4)sin 60°,cos 60°,tan 60°呢?(5)45°角的三角函数值分别是多少呢?引导学生填写表格:三角函数值sin A cos A tan A30°45°60°三、举例分析例1 计算:(1) sin 30°+cos 45°;(2) sin 260°+cos 260°-tan 45°.处理方式:通过记忆特殊角的三角函数值求解,注意格式和过程.例2 (课件出示教材第9页例2)引导学生思考如下问题:(1)你能根据题意画出图形吗?(2)你能根据所画图形构造直角三角形吗?(3)你能找到图形中的特殊角吗?(4)你能根据特殊角的三角函数值求出正确的结果吗?四、练习巩固1.下列式子中成立的是 ( )A.cos 72°<sin 35°<tan 46°B.sin 35°<tan 46°<cos 72°C.tan 46°<cos 72°<sin 35°D.tan 46°<cos 40°<sin 35°2.已知等腰△ABC的腰长为4 3,底角为30°,则底边上的高为________,周长为________.3.若(3tan A-3)2+||2cos B-3=0,则△ABC按角分类是什么三角形?五、课堂小结1.易错点:(1)能进行含30°,45°,60°角的三角函数值的计算;(2)能根据30°,45°,60°角的三角函数值,说出相应锐角的大小.2.归纳小结:sin 30°=12,sin 45°=22,sin 60°=32;cos 30°=32,cos 45°=22,cos 60°=12;tan 30°=33,tan 45°=1,tan 60°= 3.3.方法规律:在Rt△ABC中,若∠A+∠B=90°,则有:sin A=cos (90°-A);cos A= sin (90°-A) ;sin B=cos (90°-B);cos B=sin (90°-B).六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第10页习题1.3第1~4题.本节课课程设计中引入非常直接,由三角板引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.设计开门见山,节省了时间,为后面的教学提供了方便.在讲解特殊角的三角函数值时也很详细,可以说前部分的教学很成功,学生理解得很好.3 三角函数的计算1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义.2.能用计算器由已知三角函数值求角度.3.能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.重点熟悉计数器的使用,能熟练掌握按键顺序.难点非整数度的角的三角函数值的求法.一、情境导入课件出示:如图,当登山缆车的吊箱经过点A到达点B时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m)引导学生思考以下问题:(1)在Rt△ABC中,sin α如何表示?(2)你知道sin 16°是多少吗?(3)我们可以借助科学计算器求锐角的三角函数值,那么怎样用科学计算器求三角函数值呢?二、探究新知1.已知角求三角函数值(1)引导学生阅读教材第12页用计算器求三角函数值的操作过程,提出问题:①利用计算器求三角函数值用到哪些按键?②求值过程中按键使用的先后顺序是什么?③求整数角度和用“度、分、秒”表示的角度的区别是什么?④通过自学你能利用计算器求出sin 16°的数值吗?(2)课件出示:当缆车继续由点B到达点D时,他又走过了200 m,缆车由点B到点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?引导学生思考如下问题:①缆车从点B到点D通过的路程是多少?②缆车从点B到点D水平通过的路程是多少?③缆车从点B到点D垂直高度上升了多少?2.已知三角函数值求角(1)课件出示:为了方便行人推自行车过某天桥,市政府在10 m高的天桥两端修建了40 m长的斜道,这条斜道的倾斜角是多少?引导学生思考如下问题:①在Rt△ABC中,sin A如何表示?②你能根据题目中的已知条件求出sin A的数值吗?③你能根据sin A的数值求出∠A吗?(2)引导学生阅读教材第13~14页用计算器求角的操作过程,提出问题:①利用计算器求角用到哪些按键?②求角过程中按键使用的先后顺序是什么?③如何利用计算器将求出的角度进行“度、分、秒”的换算?④你能利用计算器求出∠A的度数吗?三、练习巩固1.用计算器计算cos 44°的结果(精确到0.01)是( )A.0.90 B.0.72 C.0.69 D.0.662. 用计算器求tan 35°的值,按键顺序是____________________.3.在 Rt△ABC中,若∠C=90°,BC=20,AC=12.5,求两个锐角的度数(精确到1°).四、课堂小结1.易错点:(1)用计算器求三角函数值与用计算器求角的区别和联系;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的.2.归纳小结:(1)用计算器求三角函数值;(2)用计算器求角.3.方法规律:(1)用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定:如无特别说明,计算结果一般精确到万分位;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;先输入数字后,再按三角函数键.五、课外作业1.教材第14页“随堂练习”第1、2、3题.2.教材第15页习题1.4第1~6题.本节课在教学过程中,力求从基本知识入手,尽可能地使计算简单化,然后逐步地加深提高.但从实际的效果上看,学生的基础知识较差,计算能力薄弱,虽然训练量在增加,但效果却不明显,始终对三角函数的性质运用很不熟练.在教学过程中,我深切感到自身知识面的不足,在讲解练习时很单调,不能进行适当地扩展.在以后的教学中,我还要继续加强自身的学习,不断钻研教材教法,力争做到讲课通俗易懂.4 解直角三角形1.了解直角三角形的概念,掌握直角三角形的边角关系.2.能运用直角三角形的角与角(两锐角互余)、边与边(勾股定理)、边与角的关系解直角三角形.重点直角三角形的解法.难点灵活运用三角函数解直角三角形.一、复习导入师:在图形的研究中,直角三角形是常见的三角形之一,因此经常会遇到求直角三角形的边长或角度等问题. 为了解决这些问题,往往需要确定直角三角形的边或角.课件出示:如图,在直角三角形ABC中,∠C=90°,∠A,∠B,∠C的对边分别记作a,b,c.(1)直角三角形的三边之间有什么关系?(2)直角三角形的锐角之间有什么关系?(3)直角三角形的边和锐角之间有什么关系?师:直角三角形中有6个元素,分别是三条边和三个角.那么至少知道几个元素,就可以求出其他的元素呢?这就是我们本节课要研究的问题.二、探究新知1.已知两边解直角三角形课件出示教材第16页例1,提出问题:(1)题目中已知几个元素?分别是什么?(2)解这个直角三角形需要求出哪些元素?(3)解这个直角三角形需要用到已学的哪些知识?(4)你能正确求解吗?教师给出解直角三角形的定义及其依据.2.已知一边和一锐角解直角三角形课件出示教材第16~17页例2,提出问题:(1)题目中已知几个元素?分别是什么?(2)解这个直角三角形需要求出哪些元素?(3)解这个直角三角形需要用到已学的哪些知识?(4)你能仿照例1独立完成求解吗?3.总结(1)通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(2)除直角外有5个元素(3条边、2个锐角),要知道其中的几个元素就可以求出其他的元素?(3)通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?归纳:解直角三角形,有下面两种情况(其中至少有一边) :(1)已知两条边(一直角边一斜边;两直角边);(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角).三、练习巩固1.在Rt△ABC中,∠C=90°,sin A=34,AB=5,则边AC的长是( )A.3 B.4 C.154D.5742.已知在Rt△ABC中,∠C=90°,BC=6,sin A=23,那么AB=________.3.在△ABC中,已知∠C=90°,b+c=30,∠A-∠B=30°,解这个直角三角形.四、课堂小结1.易错点:(1)如何把实际问题转化为数学问题,进而把数学问题具体化;(2)至少需要一边,即已知两边或已知一边一锐角才能解直角三角形.2.归纳小结:(1)“解直角三角形”是由直角三角形中已知的元素求出未知元素的过程;(2)解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角;(3)解直角三角形的方法:①已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);②已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;③已知一个锐角求另一个锐角时,用两锐角互余.3.方法规律:已知斜边求直边,正弦余弦很方便;已知直边求直边,首选正切理当然;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要选好;已知锐角求锐角,互余关系要记好;已知直边求斜边,用除还需正余弦;计算方法要选择,能用乘法不用除.五、课外作业1.教材第17页“随堂练习”.2.教材第17~18页习题1.5第1~4题.本节课的重难点是直角三角形的解法,为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形、直角三角形中三边之间的关系、两锐角之间的关系、边角之间的关系.正确选用这些关系,是正确解直角三角形的关键.解直角三角形的方法灵活多样,学生可以自由选择解题方法.在处理例题时,首先让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合的思想,然后全班集体交流解法和心得,达到共同进步.5 三角函数的应用1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.重点经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.难点灵活将实际问题转化为数学问题,建立数学模型,并选择适当的三角函数来解决.一、情境导入如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续往东航行.你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.二、探究新知课件出示教材第19页“想一想”,提出问题:(1)什么是仰角?(2)在这个图中,30°的仰角、60°的仰角分别指哪两个角?(3)怎样求该塔的高度?处理方式:学生先独立思考解决问题的方法,再回答.解:(1)当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.(2)30°的仰角指∠DAC,60°的仰角指∠DBC.(3)∵CD是Rt△ADC和Rt△BDC的公共边,在Rt△ADC中,tan 30°=CDAC,即AC=CD tan 30°.在Rt△BDC中,tan 60°=CDBC,即BC=CDtan 60°,又∵AB=AC-BC=50 m,∴CD tan 30°-CDtan 60°=50.解得CD≈43 m.三、举例分析例(课件出示教材第19页“做一做”)引导学生思考:(1)你能根据题意将实际问题转化为数学问题吗?(2)你能根据题意画出示意图吗?(3)若AC代表原楼梯长,则楼高、楼梯所占地面的长度分别是多少?(4)40°和35°的角分别是哪个角?(5)在楼梯改造过程中,楼高是否发生了变化?(6)Rt△ABC中的哪条边不变?解:由条件可知,在Rt△ABC中,sin 40°=ABAC,即AB=4sin 40°,原楼梯占地长BC=4cos 40°.调整后,在Rt△ADB中,sin 35°=ABAD,则AD=ABsin35°=4sin 40°sin 35°,楼梯占地长DB=4sin 40°tan 35°.∴调整后楼梯加长AD-AC=4sin 40°sin 35°-4≈0.48(m).楼梯比原来多占DC=DB-BC=4sin 40°tan 35°-4cos 40°≈0.61(m).四、练习巩固1.一辆汽车沿坡角为α的斜坡前进500 m,则它上升的最大高度为( )A.500sin α B.500sin αC.500cos α D.500cos α2.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6 m,则斜坡上相邻两树间的坡面距离是________ m.(结果保留根号)3.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12 m处,测得∠BAC=30°,求BC的长.(结果保留根号)五、课堂小结1.易错点:(1)对于含有非基本量的直角三角形,比如有些条件中已知两边之和,中线、高线、角平分线长,角之间的关系,锐角三角函数值,周长、面积等等.对于这类问题,我们常用的解题方法是:将非基本量转化为基本量,或由基本量间关系通过列方程(组),然后解方程(组),求出一个或两个基本量,最终达到解直角三角形的目的;(2)在非直角三角形的问题中,往往是通过作三角形的高,构成直角三角形来解决,而作高时,常从非特殊角的顶点作高;对于较复杂的图形,往往通过“补形”或“分割”的方法,构造出直角三角形,利用解直角三角形的方法,实现问题的转化.2.归纳小结:解直角三角形一般有以下几个步骤:(1)审题:认真分析题意,根据题目中的已知条件,画出它的平面图,弄清已知和未知条件;(2)明确题目中的一些名词、术语的含义,如仰角、俯角、跨度、坡角、坡度及方向角;(3)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决;(4)确定合适的边角关系,细心推理计算.3.方法规律:(1)在解直角三角形中,正确选择关系式是关键:①若求边:一般用未知边比已知边,求寻找已知角的某一个三角函数值;②若求角:一般用已知边比已知边,去寻找未知角的某一个三角函数值;(2)求某些未知量的途径往往不唯一.选择关系式常遵循以下原则:一是尽量选可以直接应用原始数据的关系式;二是设法选择便于计算的关系式,若能用乘法计算就避免用除法计算.六、课外作业1.教材第20页“随堂练习”第1、2题.2.教材第21页习题1.6第1~4题.本节课尽可能站在学生的角度上思考问题,设计好教学的每一个细节.上课前多揣摩学生的认知特点,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,把课堂让给学生,让他们做课堂这个舞台的主角.教师尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作.不断总结课堂教学中的得失,不断进步,只有这样,才能真正提高课堂教学效率.6 利用三角函数测高1.能够对仪器进行调整和对测量结果进行矫正,能够对所得到的数据进行分析,从而得出符合实际的结果.2.能综合应用直角三角形的边角关系的知识解决实际问题.重点设计活动方案、自制仪器、运用仪器进行实地测量以及撰写活动报告.难点运用直角三角形的边角关系求物体的高.一、情境导入问题1:在现实生活中需要测量像旗杆、高楼、塔等较高且顶部不可到达的物体的高度,根据我们所学的知识,同学们有哪些测量方法?问题2:这些测量的方法都用到了什么知识?问题3:如何利用直角三角形的边角关系,测量底部不可以直接到达的物体的高度呢?二、探究新知1.设计活动方案,自制仪器(1)测倾器(或测角仪、经纬仪等)由哪几部分构成?(2)制作测角仪时应注意什么?处理方式:小组讨论总结测倾器的制作方法和使用步骤.2.测量倾斜角(1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.(2)转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.那么这个度数就是较高目标M的仰角.师:这样做的依据是什么?3.测量底部可以到达的物体的高度要测物体MN的高度,可按下列步骤进行:(如下图)(1)在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).师:根据测量数据,你能求出物体MN的高度吗?解:在Rt△MEC中,∠MCE=α,AN=EC=l,∴tan α=MEEC,即ME=EC·tan a=l·tan α.∵NE=AC=a,∴MN=ME+EN=l·tan α+a.4.测量底部不可以到达的物体的高度要测量物体MN的高度,可按下列步骤进行:(1)在测点A处安置测角仪,测得此时物体MN的顶端M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测角仪(点A,B,N都在同一条直线上),此时测得M的仰角∠MDE=β.(3)量出测角仪的高度AC=BD=a,以及测点A,B之间的距离AB=b.师:根据测量数据,你能求出MN的高度吗?分析:根据测量的AB的长度,AC,BD的高度以及∠MCE,∠MDE的大小,根据直角三角形的边角关系.即可求出MN的高度.解:∵在Rt△MDE中,ED=MEtan β,在Rt△MCE中,EC =MEtan α,∴EC-ED=b.∴MEtan β-MEtan αtan αtan β=b.∴ ME=btan αtan βtan β-tan α.∴ MN=btan αtan βtan β-tan α+a.三、练习巩固1.直升飞机在离地面2 000 m的上空测得上海东方明珠底部的俯角为30°,此时直升飞机与上海东方明珠底部之间的距离是( )A.2 000 m B.2 000 3 mC.4 000 m D.4 000 3 m2.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为 ________米(精确到1米).(参考数据:sin 22.3°≈0.38,cos 22.3°≈0.93,tan 22.3°≈0.41)3.九年级1班的同学为了了解教学楼前一棵树的生长情况,去年在教学楼前点A处测得树顶点C的仰角为30°,树高5 m,今年他们仍在原地A处测得大树顶点D的仰角为37°,问这棵树一年生长了多少米?(精确到0.01)(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75,3≈1.732)。
直角三角形的边角关系(一)三角函数概念及性质1.Rt △ABC 中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sinA =;锐角A的邻边与斜边的比叫做∠A的余弦,记作cos A,即cosA =;锐角A的对边与邻边的比叫做∠A的正切,记作tan A,即tanA =;锐角A的正弦、余弦、正切都叫做∠A的三角函数。
注:①正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;②sinA 不是sin 与A的乘积,是三角形函数记号,是一个整体。
“sinA ”表示一个比值,其他三个三角函数记号也是一样的;③锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
2.一些特殊角的三角函数值(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A) (2)0<sinA<1,0<cosA<1 (3)平方关系 1cos sin 22=+A A(4)弦切关系 tanA=AAcos sin 4.锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)acbcab(2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小)【练习】练习1(求三角函数)1、在Rt △ABC 中,∠C=90°,a = 1 , c = 4 , 则sinA 的值是___A 、B 、C 、D 、 2、在△ABC 中,若三边BC ,CA ,AB 满足BC :CA :AB=5:12:13,则cosB=( )A 、512B 、125C 、513D 、12133、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.4、在Rt△ABC 中,∠C=90°,若AC=2BC,则sin A 的值是( )A .12B .2 CD5、直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE 的值是( )A .247BC .724D .136、如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM=1,则tan ∠ADN= .7、如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )151541314158、如图,在△ABC 中,∠B=30°,P 为AB 上一点,BP AP =12,PQ ⊥BC 于Q ,连结AQ ,则cos ∠AQC=( )A 、217 B 、233 C 、277 D 、23219、如图所示,已知AD 是等腰△ABC 底边上的高,且tan ∠B= 34,AC 上有一点E ,满足AE :CE=2:3,则tan ∠ADE 的值是( )A 、35 B 、8 9 C 、45D 、7910、如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .练习2(网格)1、如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 等于_______________2、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .2C D 3、如图,△ABC 的三个顶点在正方形网格的格点上,则tan ∠A 的值是___________4、如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为_______。
5、如图,将∠AOB 放置在正方形网格中,则cos∠AOB 的值是________.6、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则tan ∠ABC=7、如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan∠CAB 的值为( )8、如图,在下列网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠AOB 的正弦值是( )A.B .C .D .9、网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA=练习3(利用三角函数求边长)1、在Rt △ABC 中,∠C = 90°, AC = 9 , sin ∠B =35,则AB =( )A.15B. 12C. 9D. 62、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是 ( ) A 、4cm B 、6cm C 、8cmD 、10cm3、如图,在等腰Rt △ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=5,则AD 的长是( )A B 、2 C 、1 D 、练习3(三角函数性质及之间的关系)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定2、在Rt ΔABC 中,∠C=900,则下列等式中不正确的是( )A.a=csinA ;(B )a=bcotB ;(C )b=csinB ;(D )c= .3、已知α为锐角,m=sin α+cos α的值,则( )A .m >1B .m=1C .m <1D .m ≥14、在△ABC 中,∠C =90°,sinA =45,则tanB =( ) A .43 B .34 C .35 D .455、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、06、已知1α=tan ,则22αααα-+sin cos sin cos =7、sin55°、cos36°、sin56°的大小关系是 ____<____<____;sin63°、cos29°、tan47°的大小关系是____<____<_____。
8、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<900 9、已知∠A 为锐角,若sinA=23则( )。
A .30°<A <60° B. 30°<A <45° C. 45°<A <60° D.60°<A <90° 10、若∠A 为锐角,且cosA=14,则( )。
A . 0°<A <30° B. 30°<A <45° C. 45°<A ≤60° D.60°<A ≤90° 11、已知∠A 为锐角tanA=23,则锐角A 的取值范围是( )。
A . 0°<A <30° B. 30°<A <45° C. 45°<A <60° C.60°<A <90° 12、已知△ABC 中,∠C=90°,设sin B=n.当∠B 是最小的内角时,n 的取值范围是( )A.0<n<B.0<n<C.0<n<D.0<n<cos bB13、下列等式中正确的是( )(A )1sin cos 22=+αα (B )cos30°+cos45°=cos75° (C )33260tan 30tan =︒-︒ (D )2cot22°30'=cot45°=1练习5(特殊角的三角函数) 1、计算201()2sin 3032--+︒+-()﹣2+(π﹣2014)0+sin60°+|﹣2|﹣4sin30°+(2014﹣π)0﹣22.10)81()13(30cos 212---+︒- 12)14.3(30cos 40+-+︒-π2145sin 28)43(2--︒-+-- ︒--+-+-30cos 3)53()21(1601 8)21(45sin 4)21(01+--︒-- 2360sin )2014()31(02-+︒+-+-π 10)21(30cos 2)20142(12--︒--+π (﹣1)2﹣4sin45°+|﹣3|+.27330cos 4)31()23(10--︒++-- 01)3(8)41(45cos 2-----︒-π︒-+-︒+⨯--60sin 23)298(sin )21()1(022020π260sin 23)2(2-︒+-+-︒--++-60tan 3)1(8)5(201330π 312013260sin 201---+︒-013)2(60cos 28---︒+π ︒---+--60sin 2)31()22013(12102530sin 2)1(52013-︒+-+-。
2、已知为锐角,且osin-10α()等于( ) A. B. C. D. 3、若锐角α满足2sin(α-15°)=,则α=______.4、在△ABC 中,若+=0(∠B、∠C 是锐角),则∠A 的度数为( )A.90°B.60°C.40°D.30°5、在△ABC 中,如果∠A、∠B 满足|tanA ﹣1|+(cosB ﹣)2=0,那么∠C=()02cos602009π--°αα︒50︒60︒70︒806、因为cos 30°=,cos 210°=-,所以cos 210°=cos(180°+30°)=-cos 30°=-;因为cos45°=,cos 225°=-,所以cos 225°=cos(180°+45°)=-cos 45°=-.猜想:一般地,当α为锐角时,有cos(180°+α)=-cos α.由此可知cos 240°的值等于______.7、如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 则AGAF的值为 .8、如图是教学用的直角三角板,边AC=30 cm,∠C=90°,tan∠BAC=,则边BC 的长为( )A.30cm B.20cm C.10cm D.5cm9、如图,等腰直角三角形ABC 的直角边AB 的长为6 cm,将△ABC 绕点A 逆时针旋转15°后得到△AB'C',则图中阴影部分的面积等于________cm 2.10、在△ABC 中,若∠C=45°,∠A=105°,AC=6,则AB 的长是( )A.3B.3C.2D.611、如图,在Rt△ABC 中,∠C=90°,∠A=30°,E 为AB 上一点且AE :EB=4:1,EF⊥AC 于F ,连接FB ,则tan∠CFB 的值等于( ) A . AB .C .D .(二)解直角三角形1.在直角三角形中,用除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。