当前位置:文档之家› 高产纤维素酶的枯草芽孢杆菌的选育

高产纤维素酶的枯草芽孢杆菌的选育

高产纤维素酶的枯草芽孢杆菌的选育
高产纤维素酶的枯草芽孢杆菌的选育

枯草芽孢杆菌的发酵

枯草芽孢杆菌的发酵学院:化工学院 专业:生物工程 班级:生物10-2 姓名:姜霞

摘要 枯草芽孢杆菌是我国农业部允许作为饲料添加剂的15种菌种之一,其已被越来越多地制成饲用微生态制剂。因其制剂是无毒、无残留、无污染的“绿色”添加剂,故具有广阔的发展前景,并已在畜牧业、饲料业广泛应用,显示巨大的社会效益和生态效益。通过摇床培养筛选出较适宜于枯草芽孢杆菌发酵的培养基配方,发酵培养基配方确定后,在摇床条件下,通过对温度、初始pH值、初始接种量、装液量、摇床转速等发酵条件的摸索,确定最佳发酵条件。在摇瓶条件下优化发酵培养基和发酵工艺后,采用发酵罐进行发酵培养,对枯草芽孢杆菌在液体发酵过程中的菌体数量、pH值、总糖含量和总氮含量四个因素随时间的变化进行了观察。 枯草芽孢杆菌,是芽孢杆菌属的一种。单个细胞0.7~0.8×2~3微米,着色均匀。无荚膜,周生鞭毛,能运动。革兰氏阳性菌,芽孢0.6~0.9×1.0~1.5微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大。菌落表面粗糙不透明,污白色或微黄色。枯草芽孢杆菌菌体生长过程中产生的枯草菌素、多粘菌素、制霉菌素、短杆菌肽等活性物质,这些物质对致病菌或内源性感染的条件致病菌有明显的抑制作用。枯草芽孢杆菌迅速消耗环境中的游离氧,造成肠道低氧,促进有益厌氧菌生长,并产生乳酸等有机酸类,降低肠道pH值,间接抑制其它致病菌生长。枯草芽孢杆菌菌体自身合成α-淀粉酶、蛋白酶、脂肪酶、纤维素酶等酶类,在消化道中与动物体内的消化酶类一同发挥作用,能合成维生素B1、B2、B6、烟酸等多种B族维生素,提高动物体内干扰素和巨噬细胞的活性,在饲料中应用广泛。它还可以用来改善水质,应用在污水处理和环境保护中。和其它微生物混合使用,还可以用于生物肥料和土地改良等 关键词:枯草芽孢杆菌生长发酵活菌数

枯草芽孢杆菌发酵工艺2

(10)申请公布号 (43)申请公布日 (21)申请号 201510320760.5(22)申请日 2015.06.11 C12N 1/20(2006.01)C12R 1/125(2006.01) (71)申请人山东西王糖业有限公司 地址256209 山东省滨州市邹平县韩店镇驻 地西王工业园电厂路南侧(72)发明人王棣 王居亮 李伟 杨荣玉 唐海静 夏颖颖(74)专利代理机构济南舜源专利事务所有限公 司 37205 代理人宋玉霞(54)发明名称 一种用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法(57)摘要 本发明提供一种以玉米淀粉生产过程中的副产品玉米粗蛋白粉为原料生产枯草芽孢杆菌微生态制剂的生产方法,采用本方法在不添加其它碳源和氮源的条件下,单纯以玉米粗蛋白粉为营养源经过固态培养可以生产出活菌数为3000亿-5000亿/g 的枯草芽孢杆菌微生态制剂。生产过程不需要通压缩空气,不产生任何废水废气。减少了枯草芽孢杆菌微生态制剂的生产成本。且所得产品以玉米纤维低聚糖为载体具有益生元的功能提高了产品质量。 (51)Int.Cl. (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书4页 (10)申请公布号CN 104988088 A (43)申请公布日2015.10.21 C N 104988088 A

1.一种用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,步骤如下: (1)取玉米粗蛋白粉移入固体发酵罐中,加水调到料水比为1:0.7-0.9,加氧化钙调pH 到6.0-7.0; (2)打开循环水使固体发酵罐温度上升到80-90℃后,通入蒸汽消毒30分钟; (3)待原料冷却到40℃-44℃后,加入物料干基重量1/9-1/10培养15h以后的种子液,固含量为5%; (4)维持30-40℃培养50-60h,24h后每隔6h搅拌一次物料; (5)培养到50-60h后,物料明显粘湿,有较浓的枯草芽孢杆菌特有气味,升温到44-56℃继续培养12-22h; (6)共计培养72h后移出物料,65-80℃烘干物料; (7)烘干物料水份到小于6%后,粉碎物料; (8)将粉碎的物料进行包装,取样检测产品质量。 2.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(1)中,料水比是指:物料干基质量即无水的物料质量。 3.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的种子液为将枯草芽孢杆菌菌种在液体培养基中通气搅拌培养15小时以后的液体培养基和菌种的混合物,所述的液体培养基为:葡萄糖5%w/w,玉米浆10%w/w,硫酸镁0.03%w/w,碳酸钙调pH到7.0,其余为黄河水,所述的玉米浆干基含量为26%。 4.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(4)中,维持温度为33-38℃。 5.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(5)中,升温到45-50℃。 6.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(4)(5)中,发酵过程罐体与空气相通,有空气过滤器装置过滤掉空气中的杂菌。 7.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,得到的枯草芽孢杆菌微生态制剂,活菌数3000-5000亿/g。 8.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,采用的玉米粗蛋白粉的情况见表1, 表1 玉米粗蛋白粉指标 蛋白质%脂肪%纤维质%淀粉%灰分%木质素%水份%玉米皮1125412 2.612 粗蛋白10 2.41250 4.6—10 胚芽粕1825314 2.3— 。

枯草芽孢杆菌发酵培养基的优化

枯草芽孢杆菌发酵培养基优化 作者姓名 专业 指导教师姓名 专业技术职务

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1枯草芽孢杆菌简介 (3) 1.2枯草芽孢杆菌的应用 (3) 1.2.1枯草芽孢杆菌在工业酶生产中的应用 (3) 1.2.2枯草芽孢杆菌在生物防治领域中的应用 (3) 1.2.3枯草芽孢杆菌在微生物添加剂领域中的应用 (4) 1.2.4 枯草芽孢杆菌在医药方面的应用 (4) 1.2.5 枯草芽孢杆菌在水产中的应用 (4) 1.2.6枯草芽孢杆菌是微生物学与分子生物学研究的良好试验材 料 (5) 1.2.7枯草芽孢杆菌在环境保护方面的应用 (5) 1.3 国内外的研究现状与发展趋势 (6) 1.4研究的思路、目的及意义 (7) 第二章材料与方法 (7) 2.1实验材料 (7) 2.1.1 菌株鉴定 (7) 2.1.2 培养基 (7)

2.1.3 主要设备 (8) 2.2 培养基的优化 (9) 2.2.1 培养方法 (9) 2.2.2实验流程 (9) 2.2.3实验方法 (10) 2.2.4正交试验 (11) 第三章结果和分析 (11) 3.1 鉴定结果如下 (11) 3.2 枯草芽孢杆菌最优化培养基正交实验结果 (16) 3.3 pH变化曲线(以G18为例) (19) 3.4 实验总结 (25) 致谢 (27)

摘要 枯草芽孢杆菌是主要的饲用益生菌菌株,本论文以两株枯草芽孢杆菌G18和G21培养的延滞期和倍增时间为评价指标,通过三角瓶摇床培养,进行了两因素三水平的正交试验,对发酵培养基主要组分进行了优化,豆粕处理的蛋白酶加量2u/g 豆粕、5u/g豆粕、10u/g豆粕和玉米浆添加量0.5%、1.0% 、1.5% 做两个因素三水平的正交实验,研究表明:G18最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.0%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量10u/g豆粕。G21的最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.5%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量5u/g豆粕。[关键词] 枯草芽孢杆菌培养基优化正交试验

高效产纤维素酶菌株ZJW-6发酵条件优化

高效产纤维素酶菌株ZJW-6发酵条件优化 摘要:在筛选出纤维素酶高产菌株的基础上,对纤维素酶高产菌株ZJW-6采用单因素试验进行不同条件下的液体发酵培养,使用DNS法对发酵后的菌悬液进行酶活力测定从而获得其最优发酵条件?结果表明,菌株ZJW-6产纤维素酶的最优发酵条件是以蛋白胨+(NH4)2SO4为氮源培养基,在30 ℃?pH 6下振荡培养48 h? 关键词:纤维素分解菌;发酵条件;纤维素酶;酶活力 Research on the Optimum Fermentation Conditions of High-Yield Cellulolytic Enzymes Strain ZJW-6 Abstract: The optimum fermentation conditions of high-yield cellulolytic enzymes strain ZJW-6 were studied in this paper. The strain was cultured under different liquid fermentation conditions and enzymes activity of bacteria suspension was determined using DNS method. The results showed that the optimum fermentation conditions of ZJW-6 was as follows: peptone and (NH4)2SO4 as nitrogen source, shaking for 48h at 30℃ and pH 6. Key words: cellulose-decomposing microorganisms; fermentation conditions; cellulose; enzyme activity 纤维素酶是指能降解纤维素生成纤维素二糖和葡萄糖等小分子物质的一组酶的总称?随着人们对纤维素酶研究的深入,纤维素酶在食品?饲料?环境保护?能源和资源开发等各个领域中发挥着越来越大的作用,因而引起了全世界的关注,其研究也取得了很大进展?但是纤维素酶的生产仍然存在着酶活力低?生产周期长等问题,大大限制了其大规模工业化生产[1]?对高产纤维素酶菌株ZJW-6采用单因素试验法进行不同条件下的液体发酵培养,使用DNS法对发酵后的菌悬液进行酶活力测定从而获得最优发酵条件,旨在为其工业化发酵生产打下基础? 1 材料与方法 1.1 材料 1.1.1 菌种菌种为邢台学院生物化学系微生物实验室筛选并保存的产纤维素酶菌株? 1.1.2 培养基液体培养基:羧甲基纤维素钠10.0 g/L,蛋白胨10.0 g/L,磷酸二氢钾1.0 g/L,硫酸铵0.2 g/L,氯化钠10.0 g/L,去离子水1 000 mL,pH 7.0[2]?

从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌 作者:王春学号:11101680 摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株. 1 材料与方法 1.1 培养基 1.1.1 平板培养基 (1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7. 2.(2)纯几丁质培养基:胶体 几丁质 5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2 摇瓶培养基 (1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂 1.2 菌株的分离 1.2.1 菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h. 1.2.2 菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养. 1.3 菌种的鉴定 1.3.1 细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r?min-1)10min,取上层清液分装后,置4℃下保存备用. 1.3.2 16SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’. 1.3.3 聚合酶链反应(PCR)检测 PCR反应体系为20μL,二次蒸馏水1 2.6μL,10倍扩增缓冲液2.0μL,25mmol?L-1Mg2+1.6μL,各2.5mmol?L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol?L-1引物各1.0μL,DNA模板1.0μL,5GU?L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min. 1.3.4 扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR 扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果. 1.3.5 序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到

高产纤维素酶菌株的诱变育种

湖南农业大学课程论文 学院:生物科学技术学院班级: 姓名:学号: 课程论文题目:纤维素酶高产菌株的诱变育种 课程名称:工业微生物育种学 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

纤维素酶高产菌株的诱变育种 ( ) 【摘要】纤维素酶是一种重要的工业酶制剂,是一种复合酶,它将纤维素及类似物水解成葡萄糖。近年来,对产纤维素酶菌株的鉴定、诱变育种、筛选等方面取得了长足的进展。本文对这些研究进展进行了归纳和总结. 【关键词】产纤维素酶菌株;纤维素酶;筛选;诱变育种 Mutation Breeding of Cellulase High-yield Strain TAO Mi-lin (College of Biological Science and Technology, Hunan Agriculture University, Hunan 410128) 【Abstract】Cellulase is a kind of complex enzyme. Due to the ability of hydrolyzing cellulose or the similarity of cellulose into glucose. A great effort has been made until now on the research such as identification, mutation breeding and filter of cellulose-producing strain. This paper focused a brief induction and summary on advancing about these aspects. 【Key words】cellulose-producing strain ; cellulase ; filter ; mutation breeding 随着石化燃料由短缺变枯竭,能源是人类面临的共同问题。寻找新的能量来源关系到经济的可持续发展乃至人类的生存问题。纤维素与石化燃料不同,它是一种可再生的资源。地球上每年光合作用可产生大于100亿吨的植物干物质,其中一半以上是纤维素和半纤维素。另外,人类活动产生的废弃物中也含有大量的纤维素,如农业废物( 稻草、稻壳、麦杆、花生壳、玉米芯、棉籽壳、甘蔗渣等)、食品加工废物(果皮、果渣等)、木材废物(木屑、树皮)以及城市废弃物(40%~60% 固体废物是垃圾和废纸)等。如果能有效地利用生物转化技术将这些纤维素转化成简单糖,再发酵产生乙醇等能源物质,不仅可以变废为宝,而且还可以避免由于化石燃料燃烧所带来的环境污染,更重要的是可以缓解或解决石化能源短缺乃至枯竭所带来世界性能源危机。纤维素酶的特异性高,反应条件比较温和,可避免化学转化所导致的环境污染等,是将这些纤维素物质转化成简单糖的关键。因此,在再生能源利用方面具有很广阔的应用前景。另外,自然界中细菌、真菌、某些无脊椎动物,直至高等植物中都有纤维素酶的存在,因此,纤维素酶的研究还具有普遍的生态意义。 1、纤维素酶 纤维素酶最早由Seilliere于1906年研究发现,我国约从20世纪70年代开始纤维素酶的研究,且已被正式批准为饲料添加剂在动物生产中应用。 1.1 纤维素酶的结构 不同来源的纤维素酶理化性质不相同,纤维素酶分子一般由球状的催化结构域(CD)、连接桥(Linker)和纤维素结合结构域(CBD)3部分组成。纤维素酶是由葡聚糖内切酶(endo-1,4-β-D-glucanases,EC3.2.1.4,简称EG)、葡聚糖外切酶

高产纤维素酶黑曲霉菌株的化学诱变选育

湖北农业科学2009年(责任编辑郑威) mineral forming elements [C ].Amsterdam :Elsevier ,1979. 253-292.[6] NEALSON K H.The microbial manganese cycle [A ]. KRUMBEIN W E.Microbial geochemistry [C ].Oxford :Blackwell Scientific Publications ,1983.191-221.[7] TEBO B M ,BARGAR J R ,CLEMENT B G ,et al.Bio-genic manganese oxides :properties and mechanisms of forma-tion [J ].Annu.Rev.Eath.Planet Sci ,2004,32:287-328. [8]田美娟,邵宗泽.深海抗锰细菌的分离鉴定[J ].厦门大学学报 (自然科学版),2006,45(2):272-276. [9] SOLOMON E I ,SUNDARAM U M ,MACHONKIN T E.Multicopper oxidases and oxygenases [J ]. Chem Rev , 1996,96:2563-2605. [10] TONER B ,FAKRA S ,VILLALOBOS M ,et al.Spatially Resolved Characterization of Biogenic Manganese Oxide Pro-duction within a Bacterial Biofilm [J ].Appl Environ Micro-biol ,2005,71(3):1300-1310. 第48卷第1期 2009年1月 湖北农业科学 H ubei A gricultural S ciences Vol.48No.1 Jan .,2009 收稿日期:2008-10-18 基金项目:鲁东大学基金项目(20053305) 作者简介:冯培勇(1977-),男,山东日照人,硕士,主要从事微生物产酶的研究工作,(电话)132********(电子信箱)fengpeiyong2004@yahoo.com.cn 。 纤维素是广泛存在于自然界中的一种由许多葡萄糖基组成的大分子物质,可被存在于微生物中的纤维素酶所降解。纤维素酶指的是降解纤维素酶生成葡萄糖的一组酶的总称。目前认为,完全降解纤维素至少需要3种功能不同且互补的纤维素酶组分,即内切葡聚糖酶(C1酶或EG )、外切葡聚糖酶(Cx 酶或CBH )、β-葡萄糖苷酶(简称βG )[1]。纤维素酶的应用随着工业的发展而日趋广泛,不仅能用于生产葡萄糖、酿酒、饲料工业、纺织行业、环卫污物的处理、农产品加工及生物工程等方面[2],而且可用于服装加工行业[3]。由于野生型菌种的纤维素酶 活力不高,因此,利用各种诱变手段选育高产纤维素酶生产菌一直是国内外研究的热点。本研究通过化学诱变剂NTG 、硫酸二乙酯和LiCl 对一株黑曲霉菌株进诱变,获得了纤维素酶活性显著提高且遗传性状稳定的突变株。 1 材料与方法 1.1材料 1.1.1出发菌株黑曲霉(Aspergillus niger F1), 本实验室分离保存。 1.1.2 培养基 ①斜面培养基(PDA 培养基):马铃 高产纤维素酶黑曲霉菌株的化学诱变选育 冯培勇,宿红艳,张 丽,王艳华 (鲁东大学生命科学学院,山东烟台 264025) 摘要:以1株黑曲霉(Aspergillus niger F1)为出发菌株,经过亚硝基胍、硫酸二乙酯和氯化锂诱变处理,选育出1株纤维素酶高产菌株L1。在适宜条件下,其产CMCase 活力为出发菌株的150.2%。关键词:纤维素酶;化学诱变;黑曲霉中图分类号:Q933 文献标识码:A 文章编号:0439-8114(2009)01-0088-03 Breeding of High-Yield Cellulase Aspergillus niger Mutated by Chemicals FENG Pei-yong ,SU Hong-yan ,ZHANG li ,WANG Yan-hua (College of Life Science ,Ludong University Yantai 264025,Shandong ,China ) Abstract :A strain ,Aspergillus niger F1,was used as starting strain and mutated by NTG ,DES and LiCl.The strain named L1was bred which could produce high-yield cellulase.Under suitable conditions ,its CMCase activity was 150.2%of the starting strain. Key words :cellulase ;chemical mutatation ;Aspergillus niger !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌 摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株. 1材料与方法 1.1培养基 1.1.1平板培养基(1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7. 2.(2)纯几丁质培养基:胶体 几丁质5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2摇瓶培养基(1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂 1.2菌株的分离 1.2.1菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h. 1.2.2菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养. 1.3菌种的鉴定 1.3.1细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r?min-1)10min,取上层清液分装后,置4℃下保存备用. 1.3.216SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’. 1.3.3聚合酶链反应(PCR)检测PCR反应体系为20μL,二次蒸馏水1 2.6μL,10倍扩增缓冲液2.0μL,25mmol?L-1Mg2+1.6μL,各2.5mmol?L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol?L-1引物各1.0μL,DNA模板1.0μL,5GU?L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min. 1.3.4扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果. 1.3.5序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到

枯草芽孢杆菌酶在发酵工艺上的应用

枯草芽孢杆菌酶在发酵工艺上的应用 王伟王上俞志敏丛丽娜* (大连工业大学生物工程学院辽宁大连 116034) 摘要:枯草芽孢杆菌(Bacillus subtilis)是当今工业酶的主要生产菌种之一,由于其产酶量高、种类多、安全性好、环保等优点在现代发酵工业生产中被广泛应用,其发酵生产的酶在工业、医学、食品、饲料、洗涤、纺织、皮革、造纸、水产养殖等领域均发挥着十分重要的作用。 关键词:枯草芽孢杆菌;发酵;酶 B. subtilis enzyme used in the fermentation process WANG Wei WANG Shang YU Zhi-Min CONG Li-Na* (School of Biological Engineering,Dalian polytechnic University,Dalian,Liaoning 116034, China) Abstract:Bacillus subtilis (Bacillus subtilis) is one of today's major producing strain of industrial enzymes,enzyme production because of its high volume,variety,safety, environmental protection,etc.are widely used in modern industrial production fermentation,fermentation enzymes produced in the fields of industry,medicine,food, feed,wash,textile,leather,paper,aquaculture and other have played a very important role. Keywords:Bacillus subtilis; fermentation; Enzyme 长期以来,枯草芽孢杆菌一直是工业微生物的主力军之一,它的使用可追溯到一千多年前,早在日本平安时代(794~1192年)日本人就已经利用枯草芽孢杆菌在大豆中采用固态发酵的方法生产他们的传统食品——纳豆,开创了利用枯草芽孢杆菌的历史[1]。由于其具有发酵周期短、产物丰富、可利用开发价值高以及作为食品药品安全性好等显著优点,使得它的应用一直延续至今,并在过去的一百多年中有了长足的进步。近年来,由于分子生物学的飞速发展,新的分子手段和技术的不断介入使得枯草芽孢杆菌的研究利用进入了新时期,在食品加工、农业生产、能源开发等方面不断地涌现新突破,在工业微生物中的地位不断得到

枯草芽孢杆菌表达手册 个人翻译中文版

枯草芽孢杆菌表达载体 产品信息和说明 2005年11月

目录 1.简介 (3) 2. pHT 载体 (3) 2.1. pHT01载体图谱 (4) 2.2. pHT43载体图谱 (5) 2.3. pHT01衍生物中标签的定位 (5) 3. 实验方案 (6) 4. 参考文献 (6) 5. 订单信息,运输和存储 (6) 本载体系统由德国拜罗伊特大学遗传研究所的沃尔夫冈·舒曼实验室 开发。 仅用于科研! 本手册由wy135033405翻译百度文库首发任何意见请PM

枯草芽孢杆菌表达载体 通过质粒在枯草芽孢杆菌中高效表达胞内/胞外重组蛋白 1.简介 革兰氏阳性菌因其在农业,医疗和食品生物技术和重组蛋白生产等方面的贡献而广为人知。在所有革兰氏阳性菌中,枯草芽孢杆菌载体因下列原因尤为引人瞩目。(一)无致病性,且一般认为安全的有机体;(二)无明显的密码子偏好性;(三)可直接将功能性胞外蛋白分泌到培养基中(目前,大约60%的市售酶由芽孢杆菌生产);(四)具备包含转录,翻译,蛋白质折叠、分泌机制,遗传操作和大规模发酵的大信息量机体。 但是下述两个障碍减少了枯草芽孢杆菌的使用:(一)产生一定数目的识别并降解外源蛋白的胞外蛋白酶;(二)载体质粒稳定性。第一个障碍已因蛋白酶缺失株的构建而基本解决。第二个因引入使用θ-复制模式质粒被完全克服,如由天然质粒pAMβ1和pBS72衍生的一些质粒(Jannière等,1990;Titok等,2003)。 最近,基于大肠杆菌 - 枯草杆菌穿梭质粒pMTLBS72的四种不同表达载体的构建和使用展示出全面的结构稳定性,业已出版(Nguyen等,2005)。 两个新的载体pHT01和pHT43允许在细胞质中高水平表达重组蛋白,其中pHT43载体引导重组蛋白到培养基。这两个载体基于强σA-依赖性启动子的枯草杆菌gro E操纵子通过添加lac操纵子改造成为一种高效可控的(IPTG诱导的)启动子。pHT01衍生载体可与8×His 标签(pHT08),链球菌标签(pHT9)或C - Myc的标签(pHT10)相结合。 2. pHT 载体 所有在枯草芽孢杆菌的gro ESL操纵子之前使强启动子与lac操纵子融合的载体都可通过加入IPTG进行诱导。尽管当未添加诱导物时表达组件的背景表达水平很低,还是成功从约1300种诱导因子中筛选出一种来使用bga B报道基因(Phan等,2005)。当分别将htp G 和pbp E基因融合到gro E启动子时,加入IPTG后,表达的重组蛋白可能分别占细胞总蛋白的10%和13%(Phan等,2005)。热纤梭菌的amyQα-淀粉酶和纤维素酶A、B的高水平表达实验证实。该载体还插入了一个高效SD序列以及一个多克隆位点(BamH I, Xba I, Aat II, Sma I)。编码α-淀粉酶的amyQ基因的信号肽编码区域与pHT01的SD序列融合,构成了pHT43,以此获得分泌的重组蛋白。

枯草芽孢杆菌生产工艺

枯草芽孢杆菌生产工艺-实验室操作 1. 培养基 1.1 种子培养基蛋白胨1 %,酵母浸出物0. 5 %,氯化钠1 % ,自然pH。 1.2 基础发酵培养基蔗糖1 %,蛋白胨1 %,磷酸氢二钠0. 2 %,磷酸二氢钠0. 2 %,pH 7. 0。 1.3 主要试剂 蔗糖、葡萄糖、淀粉、玉米淀粉、麦芽糖、酵母浸出物、胰蛋白胨、牛肉膏、尿素、氯化铵、硫酸锰、硫酸镁、磷酸二氢钠、磷酸氢二钠、硫酸亚铁、氯化钠和氯化钙。 1.4 仪器设备 控温摇床、高压蒸气灭菌锅、电子天平、pH 测定仪、无菌操作台和紫外分光光度计。 2.方法 2. 1培养方法 2. 1. 1菌种活化 将保存的菌种转接到斜面培养基,37 ℃培养24 h,备用。 2. 1. 2种子液的制备 取一环活化的菌种,接入装量为50 mL种子培养基的250mL三角瓶中,37℃,180 r/ min 培养18 h。 2. 1. 3摇瓶培养 分别取1 mL 种子液,接入盛有50 mL 发酵培养基的200 mL三角瓶中(接种量为2 % ,V/ V) 。置摇床中,30 ℃振荡培养12 h,转速为160 r/ min 3. 培养条件 3.1碳源 以葡萄糖、蔗糖和麦芽糖为碳源时枯草芽孢杆菌的生长明显优于可溶性淀粉和玉米淀粉。最佳碳源是葡萄糖,其次是蔗糖。 3.2氮源 氮源为有机氮源时枯草芽孢杆菌的生长明显优于无机氮源。最适氮源是酵母浸出物,从发酵成本考虑,酵母浸出物、胰蛋白胨及氯化铵组成的复合氮源较合适。

4.发酵条件 4.1生长曲线 接种12 h后细菌数量开始减少,枯草芽孢杆菌进入生长衰亡期。因此,采用8~12 h 时的菌液作为菌种较合适,此时枯草芽孢杆菌为对数生长末期,既可保持高的细胞活力,又可获得尽可能多的细胞数。 4.2 初始PH 在初始pH 5. 5~8范围内枯草芽孢杆菌均可良好生长,pH 为6. 0 时生长最好,说明枯草芽孢杆菌对pH 的适应性较宽,但随pH 的增大,活菌数呈下降趋势。 4.3温度 枯草芽孢杆菌在25~40℃均可良好生长,其生长的最适温度为35℃。 4.4装液量及接种量 枯草芽孢杆菌为需养菌,在生长过程中需要大量的氧气,装液量不可过多,培养液与容器体积比可设定为2:25;接种量3 % (V/ V) 较适合其生长。 5.干燥方式 采用喷雾干燥和低温冷冻干燥。低温冷冻干燥更利于芽孢的形成,但其操作复杂、成本高,不利于规模化工业生产。而喷雾干燥同样可产生高芽孢率,且成本相对低,更适合工业生产。

枯草芽孢杆菌的介绍

目录 第一章芽孢杆菌的简要介绍 (1) 第一节芽孢杆菌种类 (1) 第二节芽孢杆菌表达系统发展简史 (2) 第二章枯草芽孢杆菌的转化系统 (3) 第一种方法:电转化 (3) 第二种方法:Spizizen转化 (3) 第三种方法:原生质体法(Takashi) (4) 第四种方法:原生质体转化之二 (4) 第五种转化方法:质粒混合法(BGSC推荐) (5) 第三章芽孢杆菌表达系统发展简史 (6) 第一节芽孢杆菌表达系统的优点(相对于大肠杆菌) (7) 第二节芽孢杆菌的缺点 (7) 第三节助表达系统 (7) 第四节芽孢杆菌基因表达的主要特点 (7) 第四章枯草芽孢杆菌转录翻译系统 (8) 第一节:转录系统 (9) 第二节:翻译系统 (9) 第五章芽孢杆菌常用的宿主和载体 (10) 第六章芽孢杆菌表达系统应用实例 (11) 1 中国 (11) 2 日本 (12) 3 加拿大 (12) 第七章芽孢杆菌其他产品 (13) 第一节核苷类产品 (13) 第二节核黄素 (13) 第三节微生物制剂/益生菌 (13) 第八章结语 (14) 附录一. 芽孢杆菌的相关经典文章 (14) 附录二. 枯草芽孢杆菌相关数据库 (15) 致谢及参考文献 (15)

第一章芽孢杆菌的简要介绍 芽孢杆菌作为一个属,于1872年被首次提出,至今已有一百多年。目前人们对芽孢杆菌的研究几乎涉及到了革兰氏阳性可生孢细菌的各个领域。尤其是在感受态、芽孢形成及其调控、遗传操作、菌种改良、生物技术等领域进行了大量的工作。芽孢杆菌是一个泛泛的概念,而科学研究中应用最多的当属枯草芽孢杆菌,例如168菌株及其大量的衍生菌株。枯草杆菌的研究之所以领先于其他芽孢杆菌的种,主要是由于他的转化、转导方法较完善,以及大量的衍生菌株。 目前应用最多的芽孢杆菌属菌种有枯草芽孢杆菌、嗜碱芽孢杆菌、解淀粉芽孢杆菌、短芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、短小芽孢杆菌、球形芽孢杆菌、嗜热脂肪芽孢杆菌、苏云金芽孢杆菌和耐碱的芽孢杆菌以及病原菌炭疽芽孢杆菌等12种。 第一节芽孢杆菌种类 目前,芽孢杆菌属很多菌株的全基因组序列已经报道,截至2011年10月,在KEGG 上公布全基因组序列的芽孢杆菌属菌种有: 简称菌种名称测序时间测序链接 bsu Bacillus subtilis1997RefSeq bss Bacillus subtilis subsp. spizizenii W232010RefSeq bst Bacillus subtilis subsp. spizizenii TU-B-102011 RefSeq bsn Bacillus subtilis BSn52011RefSeq bha Bacillus halodurans2000RefSeq ban Bacillus anthracis Ames2003RefSeq bar Bacillus anthracis Ames 05812004RefSeq bat Bacillus anthracis Sterne2004 RefSeq bah Bacillus anthracis CDC 6842009 RefSeq bai Bacillus anthracis A02482009 RefSeq bal Bacillus cereus biovar anthracis CI2010RefSeq bce Bacillus cereus ATCC 145792003RefSeq bca Bacillus cereus ATCC 109872004RefSeq bcz Bacillus cereus ZK2004RefSeq bcr Bacillus cereus AH1872008 RefSeq bcb Bacillus cereus B42642008 RefSeq bcu Bacillus cereus AH8202009 RefSeq bcg Bacillus cereus G9******* RefSeq bcq Bacillus cereus Q12009RefSeq

1班3组微生物自主实验论文—高产纤维素酶菌株的分离与酶活性检测

高产纤维素酶菌株的分离与酶活性检测 一班3组 摘要:本组实验通过从土壤中取样并经过选择培养和梯度稀释,将所得样品进行纯化培养 后染色鉴别,之后挑取菌落进行涂布培养,即可分离出高产纤维素酶菌株。为确定分离得到 的是纤维素分解菌,还需要进行发酵产纤维素酶实验,我组采用液体发酵法。我组培养基在 培养过程中有菌落生长,后来观察到产生透明圈的菌落,经过分离纯化,进一步筛选出了单 菌落,然后又进行了镜检,最后通过液体发酵,检验了纤维素酶的活性。 关键词:高产纤维素酶菌株、分离、酶活性检测 1.研究方法: 1.1实验材料及用具 土壤、滤纸、刚果红染料、试管、培养皿、玻璃棒、烧杯、酒精灯、称量纸、天平、揺瓶、 摇床、胶头滴管、接种环、接种针、酒精棉球、无菌操作台、离心管、高速离心机、牛津杯 培养基、鉴别培养基、液体发酵法所需培养基 1.2实验方法 1.2.1高产纤维素酶菌株的分离 (1)土壤取样:在富含纤维素的环境中土壤取样,比如取树林中多年落叶形成的腐殖土。 (2)制备选择培养基: 纤维素钠 5g NaNO3 1g KCl 0.5g Na2HPO4·7H2O 1.2g KH2PO4 0.9g MgSO4 ·7H2O 0.5g酵母膏 1.0g 溶解后, 蒸馏水定容至1000mL (3)制备鉴别培养基: 纤维素钠 5g NaNO3 1g KCl 0.5g Na2HPO4·7H2O 1.2g KH2PO4 0.9g MgSO4 ·7H2O 0.5g酵母膏 1.0g 琼脂 20g 刚果红 0.2g 溶解后,蒸馏水定容至1000mL (4)选择培养:称取土样20 g,在无菌条件下加入装有30 mL培养基的摇瓶中。将摇瓶置于 摇床上,在30 ℃下振荡培养1~2 d,至培养基变混浊。吸取一定的培养液(约5 mL),转 移至另一瓶新鲜的选择培养基中,以同样的方法培养到培养液变浑浊。 (5)梯度稀释:按照前面的稀释操作方法,将选择培养后的培养基进行等比稀释10~1000000 倍。 (6)将样品涂布到鉴别纤维素分解菌的培养基上:制备鉴别培养基后涂布平板,将稀释度为 104~106的菌悬液各取0.1ml涂布到平板培养基上,30℃倒置培养。 (7)纯化培养:在产生明显的透明圈的菌落,挑取并接种到纤维素分解菌的选择培养基上, 在300C- 370C培养,可获得纯化培养。 1.2.2纤维素酶活力鉴定 (1)发酵培养:取上鉴别培养基长出的单菌落,在无菌环境中将菌株接种到液体培养基中, 然后摇床发酵培养24h。 (2)纤维素酶液获取:取发酵液2ml加入离心管,共加4支,高速离心5min后取出,上清液 即为欲获取的酶液。 (3)酶活性检测:将所取酶液加入到插有牛津杯的鉴别培养基中的牛津杯中,然后30度左右, 放置24h,观察透明圈大小,透明圈越大,说明酶活力越高。

【文献综述】纤维素酶的概述

文献综述 生物工程 纤维素酶的概述 【摘要】纤维素作为地球上分布广,含量丰富的碳水化合物,它的降解是自然界碳素循环的中心环节。纤维素的利用和转化对于解决目前世界能源危机,粮食短缺、环境污染等问题具有十分重要的意义。本文就纤维素酶的应用进行一个简要的概述。 【关键词】纤维素酶;纤维素酶的实际应用:应用前景 1. 纤维素的概况 1.2 纤维素酶的分类 纤维素酶的组成比较复杂,通常所说的碱性纤维素酶是具有3~10 种或更多组分构成的多组分酶。根据其作用方式一般又可将纤维素酶分为3 类: 外切β- 1, 4-葡聚糖苷酶( 简称CBH) 、内切β-1, 4- 葡聚糖苷酶( 简称EG)和β- 1, 4- 葡萄糖苷酶( 简称BG) [1]。在这3 种酶的协同作用下,纤维素最终被分解成葡萄糖。到目前为止, 还没有能够在碱性条件下分解天然纤维素的纤维素酶。碱性纤维素酶是一种单组分或多组分的酶, 只具有内切β- 1, 4- 葡聚糖苷酶( 又称CMC酶) 的活性, 有的还与中性CMC 酶组分共存[2]。 1.3 纤维素酶的作用机理 纤维素酶在提高纤维素、半纤维素分解的同时, 可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质, 有利于动物胃肠道的消化吸收[3]。同时, 纤维素酶制剂可激活内源酶的分泌, 补充内源酶的不足, 并对内源酶进行调整, 保证动物正常的消化吸收功能, 起到防病、促生长的作用, 消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液, 增加消化物的粘度, 对内源酶造成障碍, 而添加纤维素酶可降低粘度, 增加内源酶的扩散, 提高酶与养分接触面积, 促进饲料的良好消化。而纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物, 在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物, 从而使消化道内的消化作用得以顺利进行[4]。也就是说纤维素酶除直接降解纤维素, 促进其分解为易被动物所消化吸收的低分子化合物外, 还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化[5] 2. 纤维素酶的一些历史及研究成果 在吴琳,景晓辉,黄俊生[3]的产纤维素酶菌株的分离,筛选和酶活性测定中,他们利用“采样—培养—分离单菌落—初筛—复筛—测OD值”的方法筛选出分解纤维素能力较强的菌株。[结果]经反复培养和划线分离从80份样品中初选出35株具有分解纤维素能力的菌株。其中10株由白转绿,长势较

相关主题
文本预览
相关文档 最新文档