当前位置:文档之家› 三相方波逆变电路的设计

三相方波逆变电路的设计

三相方波逆变电路的设计
三相方波逆变电路的设计

目录

1 引言 (1)

1.1设计要求 (1)

1.2逆变的概念 (1)

1.3三相逆变 (1)

2 三相电压源型SPWM逆变器 (1)

2.1 PWM的基本原理 (1)

2.2 SPWM逆变电路及其控制方法 (2)

2.3 三相方波逆变器 (2)

2.3 三相PWM逆变器提高直流电压利用率的方法 (2)

2.4 三相PWM逆变器提高直流电压利用率的方法 (3)

3 逆变器主电路设计 (5)

4软件仿真 (6)

4.1 Matlab软件 (6)

4.2 建模仿真 (6)

5 总结 (10)

参考文献 (13)

1 引言

1.1设计要求

本次课程设计题目要求为三相方波逆变电路的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。完成三相方波逆变电路的仿真,开关管选IGBT,直流电压为530V,阻感负载,负载有功功率1KW,感性无功功率为100Var。

1.2逆变的概念

逆变即直流电变成交流电,与整流相对应。

电力系统中,将电网交流电通过整流技术变成直流电,然后通过逆变技术,将直流变成高频交流,再通过高频变压器降压,就达到缩小变压器体积和提高供电质量的目的了。

1.3三相逆变

三相逆变技术广泛应用于交流传动、无功补偿等领域。在三相PWM 交流伺服系统中,一般采用三个桥臂的结构,即逆变桥主电路有 6 个功率开关器件(功率MOSFET 或IGBT)构成,若每个开关器件都用一个单独的驱动电路驱动,则需6 个驱动电路,至少要配备4 个相互独立的直流电源为其供电,使得系统硬件结构复杂,可靠性下降,且调试困难,设计成本偏高。

2 三相电压源型SPWM逆变器

2.1 PWM的基本原理

PWM(Pulse Width Modulation)控就是对脉冲的宽度进行调制的技术,即通过一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术最重要的理论基础是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

SPWM 控制技术是PWM 控制技术的主要应用,即输出脉冲的宽度按正弦规律变化而和正弦波等效。

2.2 SPWM 逆变电路及其控制方法

SPWM 逆变电路属于电力电子器件的应用系统,因此,一个完整的SPWM 逆变电路应该由控制电路、驱动电路和以电力电子器件为核心的主电路组成。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。

目前应用最为广泛的是电压型PWM 逆变电路,脉宽控制方法主要有计算机法和调制法两种,但因为计算机法过程繁琐,当需要输出的正弦波的频率、幅值或相位发生变化时,结果都要变化,而调制法在这些方面有着无可比拟的优势,因此,调制法应用最为广泛。

所谓调制法,就是把希望输出的波形作为调制信号t u ,把接收调制的信号作为载波c u ,通过信号波的调制得到所期望的PWM 波形。 2.3 三相方波逆变器

电路结构相同,只是控制方式不同。每一开关元件在输出电压的一个周期中闭合180o (占空比为0.5),因此,在任何时间,总有三个开关元件闭合。 幅值关系:

直流电压利用率:

2.3 三相PWM 逆变器提高直流电压利用率的方法 2.

3.1梯形波调制

采用梯形波作为调制信号,可有效提高直流电压利用率;当梯形波幅值和

三角波幅值相等时,梯形波所含的正弦基波分量幅值已经超过三角波幅值。

采用这种调制方式时,决定功率开关器件通断的方法和用正弦波作为调制信号时完全相同。

2.4 三相PWM逆变器提高直流电压利用率的方法

梯形波的形状用三角化率s =U t/U to描述,U t为以横轴为底时梯形波的高,U to为以横轴为底边把梯形两腰延长后相交所形成的三角形的高;s =0时梯形波变为矩形波,s =1时梯形波变为三角波;梯形波含低次谐波,故调制后的PWM 波含同样的低次谐波(3,5,7…),但线压中3及其倍数次谐波不存在。

图2-1:梯形波为调制信号的PWM控制

图2-2 180°导电型三相方波逆变器输出电压波形

图2-3 120°导电型三相方波逆变器输出电压波形

3 逆变器主电路设计

图3-1是SPWM 逆变器的主电路设计图。图中Vl —V6是逆变器的六个功率开关器件,各由一个续流二极管反并联,整个逆变器由恒值直流电压U 供电。一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。参考信号的幅值也可在一定范围内变化,决定输出电压的大小。三角载波信号c U 是共用的,分别与每相参考电压比较后,给出“正”或“零”的饱和输出,产生SPWM 脉冲序列波。da U ,

db U ,dc U 作为逆变器功率开关器件的驱动控制信号。

当ru 2un d U U U <=-时,给V4导通信号,给V1关断信号un 2d U U =-,给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通。d U 和'wn U 的PWM 波形只有/2d U ±两种电平。当c ru U U >时,给V1导通信号,给V4关断信号,/2un d U U '=-。uv U 的波形可由vn un U U ''-得出,当1和6通时,d uv U U =,当3和4通时,d uv U U =-,当1和3或4和6通时,uv U =0。输出线电压PWM 波由d U ±和0三种电平构成负载相电压PWM 波由(±2/3)d U ,(±1/3)d U 和0共5种电平组成。

图3-1 SPWM 逆变器的主电路设计图

防直通的死区时间同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间。死区时间的长短主要由

开关器件的关断时间决定。死区时间会给输出的PWM波带来影响,使其稍稍偏离正弦波。

4软件仿真

4.1 Matlab软件

Matlab软件提供的仿真工具箱Simulink是一个功能十分强大的仿真软件,它可以根据用户的需要方便的为系统建立模型,并且十分直观,仿真精度高,结果准确。特别是其电力系统模块库PSB中包含了大量的电力电子功能模块,为我们仿真提供了极大的便利。

Matlab提供了系统模型图形输入工具——Simulink工具箱。在Matlab中的电力系统模块库PSB以Simulink为运算环境,涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本原件和系统仿真模型。它由以下6个子模块组成:电源模块库、连接模块库、测量模块库、电力电子模块库、电机模块库、基本件模块库。在这6个基本模块库的基础上,根据需要还可以组合出常用的、复杂的其他模块添加到所需的模块库中,为电力系统的研究和仿真带来更多的方便。

4.2 建模仿真

第一步先建立主电路仿真模型。在simpowersystems的electrical sources库中选择直流电压源模块,参数设置如下图:

然后选择universal bridge模块,构成三相半桥电路。开关器件选带反并联二极管的IGBT,选择三相串联RLC负载模块,选为星形连接。将各模块相连,边完成三相方波逆变器仿真模型的主电路部分。

第二步再来构造控制部分。选择六个pulse generator模块,第一个参数设置如下图:

之后,各模块一次之后0.02/6s,即相差60度。采用mux模块将六路信号合成后加在三相桥的门极。

最终得到的仿真模型如下图所示:

三相逆变电路主电路

第三步完成波形观测及分析部分。在相应模块的测量选项和multimeter 模块,即可观察逆变器的输出的相电压,相电流,和线电压。通过串联的电流表可观察直流电流的波形。

4.3分析仿真结果

将仿真时间设为0.1s,在powergui中这是为离散仿真模式,采样时间为5-

10s,运行后可得仿真结果。理论上a相电压、a相电流,ab间线电压及直流

电流波形如图

实际仿真结果如下图

逆变器输出的相电压为六阶梯波,相电流和直流电流的波形与负载又关。改变负载参数,观察电流波形的变化。

当负载参数如下图所示时:

A相,B相,C相电压和电流波形如下图:

Ab,bc,ca电压如图:

5 总结

课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程.随着科学技术发展的日新日异,电力电子已经成为当今空前活跃的领域,在生活中可以说得是无处不在。因此作为二十一世纪的大学来说掌握电力电子的开发技术是十分重要的。回顾起此次课程设计,至今我仍感慨颇多,的确,从选题到定稿,从理论到实践,在整整两星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,以后一定要努力学习,熟练掌握。

课程设计终于顺利结束了,特别感谢赵俊梅老师多次给予耐心的帮助和支持!

参考文献

[1] 宏乃刚,电力电子技术基础,清华大学出版社,2007

[2] 王兆安,电力电子技术,电子工业出版社,2003

[3] 谢卫,电力电子与交流传动系统仿真,机械工业出版社,2009

[4] 林飞,杜欣,电力电子应用技术的MATLAB仿真,中国电力出版社,2009

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

三相全控桥式整流及有源逆变电路的设计

电力电子技术课程设计报告 有源逆变电路的设计 姓名 学号 年级20级 专业电气工程及其自动化 系(院) 指导教师 2012年12 月10 日 课程设计任务书

课程《电力电子技术》 题目 有源逆变电路的设计 引言 任务: 在已学的《电力电子技术》课程后,为了进一步加强对整流和有源逆变电路的认识。可设计一个三相全控桥式整流电路及有源逆变电路。分析两种电路的工作原理及相应的波形。通过电路接线的实验手段来进行调试,绘制相关波形图 要求: a. 要有设计思想及理论依据 b. 设计出电路图即整流和有源逆变电路的结构图 c. 计算晶闸管的选择和电路参数 d. 绘出整流和有源逆变电路的u d(t)、i d(t)、u VT(t)的波形图 e. 对控制角α和逆变β的最小值的要求

设计题目三相全控桥式整流及有源逆变电路的设计 一.设计目的 1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下Ud, Id及Uvt的波形,初步 认识整流电路在实际中的应用。 2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。 二.设计理念与思路 晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外,还必须在控制级加正向电压,它一旦导通后,控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。 在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源,利用晶闸管的单向可控导电性能,可以很方便的实现各种可控整流电路。当整流负载容量较大时,或要求直流电压脉冲较小时,应采用三相整流电路,其交流侧由三相电源提供。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。三相半波可控电路只用三只晶闸管,接线简单,但晶闸管承受的正反向峰值电压较高,变压器二次绕组的导电角仅120°,变压器绕组利用率较低,并且电流是单向的,会导致变压器铁心直流磁化。而采用三相全控桥式整流电路,流过变压器绕组的电流是反向电流,避免了变压器铁芯的直流磁化,同时变压器绕组在一个周期的导电时间增加了一倍,利用率得到了提高。 逆变是把直流电变为交流电,它是整流的逆过程,而有源逆变是把直流电经过直-交变换,逆变成与交流电源同频率的交流电反送到电网上去。逆变在工农业生产、交通运输、航空航天、办公自动化等领域已得到广泛的应用,最多的是交流电机的变频调速。另外在感应加热电源、航空电源等方面也不乏逆变电路的身影。 在很多情况下,整流和逆变是有着密切的联系,同一套晶闸管电路即可做整流,有能做逆变,常称这一装置为“变流器”。 三.关键词

逆变电路课程设计

本科电力电子技术课程设计说明书 题目:基于SG3524芯片的逆变电源设计 与MATLAB仿真 (控制电路) 学院:机电工程学院 专业:农业电气化与自动化 姓名:王德昭 学号:1 指导教师:洪宝棣 职称:副教授

设计完成日期:二Ο一五年一月 电力电子简介 (4) 课设的目的 (4) 课程设计要求 (4) 课程设计的主要内容与技术参数 (5) 二、单相电压型逆变电路 (7) 全桥逆变电路 (7) 三、器件的选择 (8) 内部结构图 SG3524引脚功能 SG3524引脚图 四、控制电路 (10) 五、心得体会 10

一、前言 电力电子简介 电力电子技术又称为功率电子技术,他是用于电能变换和功率恐控制的电子技术。电力电子技术示弱电控制强电的方法和手段,是当代高兴技术发展的重要内容,也是支持电力系统技术革命和技术革命的发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十时间九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。 课设的目的 1)通过对单相桥式PWM逆变电路的设计,掌握单相桥式PWM逆变电路的工作原理,综合运用所学知识,进行单项桥式全控整流电路和系统设计的能力。 2)了解与熟悉单相桥式PWM逆变电路的控制方法。 3)理解和掌握单相桥式PWM逆变电路及系统的主电路、控制电路、保护电路的设计方法,掌握元器件的选择计算方法。 课程设计要求 1、输入直流电源:24V±10%; 2、输出交流电压:220V±10%; 3、控制电路芯片为SG3524;

三相方波逆变电路的设计样本

目录 1 引言.............................................. 错误!未定义书签。 1.1设计规定..................................... 错误!未定义书签。 1.2逆变概念..................................... 错误!未定义书签。 1.3三相逆变..................................... 错误!未定义书签。 2 三相电压源型SPWM逆变器........................... 错误!未定义书签。 2.1 PWM基本原理................................. 错误!未定义书签。 2.2 SPWM逆变电路及其控制办法.................... 错误!未定义书签。 2.3 三相方波逆变器.............................. 错误!未定义书签。 2.3 三相PWM逆变器提高直流电压运用率办法........ 错误!未定义书签。 2.4 三相PWM逆变器提高直流电压运用率办法........ 错误!未定义书签。 3 逆变器主电路设计.................................. 错误!未定义书签。4软件仿真.......................................... 错误!未定义书签。 4.1 Matlab软件.................................. 错误!未定义书签。 4.2 建模仿真.................................... 错误!未定义书签。 5 总结.............................................. 错误!未定义书签。参照文献............................................ 错误!未定义书签。

逆变器设计 课程设计任务

逆变器设计课程设计任务

3KVA逆变器设计课程设计任务书

课程设计任务书 题目: 3KVA三相逆变器设计 初始条件: 输入直流电压220V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出220V三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 6月5日~6月6日:完成选题,领取设计任务书,查阅相关资料,规划总体设计方案; 6月7日~6月11日:完成电力电子装置的具体设计方案,包括参数设计、器件选取等; 6月12日~6月14日:整理资料,完成设计论文撰写。 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录

摘要 (1) 1 设计意义及要求 (2) 1.1设计意义 (2) 1.2设计要求 (2) 2 方案设计 (3) 2.1设计原理及思路 (3) 2.1.1逆变电路 (3) 2.1.2 三相逆变原理介绍 (4) 2.1.3 SPWM逆变电路原理及其控制方法 (5) 2.1.4 设计思路 (8) 2.2方案设计与选择 (8) 2.2.1 逆变电路选择 (8) 2.2.2 SPWM采样方法选择 (10) 3 部分电路设计 (11) 3.1IGBT三相桥式逆变电路 (11) 3.2脉宽控制电路的设计 (12) 3.2.1 SG3524芯片 (12) 3.2.2 调制波及载波的产生 (13) 3.3驱动电路的设计 (14) 3.3.1 IR2110芯片 (14) 3.3.2 驱动电路 (14) 3.4LC滤波 (15) 3.5变压器升压模块 (16) 4 系统元件有关参数的计算 (17) 4.1开关管和二极管的选择 (17) 4.2L、C滤波器的设计 (17) 4.3变压器参数设计 (18) 5 基于MATLAB的原理仿真 (19) 结束语 (22) 参考文献 (24)

电压型逆变器

电压型逆变电路[浏览次数:约247次] ?电压型逆变电路是指由电压型直流电源供电的逆变电路。它的直流侧为电压源,或并联有大电容,相当于电压源,直流侧电压基本无脉动,直流回路呈现低阻抗。电压型 逆变电路主要应用于各种直流电源。 目录 ?电压型逆变电路种类 ?电压型逆变电路原理 ?电压型逆变电路特点 电压型逆变电路种类 ?1、单相电压型逆变电路 (1)单相半桥电压型逆变电路 优点:简单,使用器件少 缺点:交流电压幅值Ud/2,直流侧需两电容器串联,要控制两者电压均衡 (2)单相全桥电压型逆变电路,由两个半桥电路的组合,是单相逆变电路中应用最多的。 (3)带中心抽头变压器的逆变电路 2、三相电压型逆变电路 三个单相逆变电路可组合成一个三相逆变电路,应用最广的是三相桥式逆变电路。 电压型逆变电路原理 ?以三相电压型逆变电路为例:图1是一个三相电压型逆变电路的主电路。直流电源采用相控整流电路,由普通晶闸管组成。逆变电路由6个导电臂组成,每个导电臂均由具有自关断能力的全控型器件及反并联二极管组成,所以实际上也是一种全控型逆变电路。负载为感性,星形接法,在整流电路和逆变电路之间并联大电容Cd。由于Cd的作用,逆变入端电压平滑连续,直流电源具有电压源性质。

逆变电路中各全控器件控制极电压信号的时序如图2b所示。信号脉宽为180°,每隔60°有一次脉冲电平的变化,任何时刻有3个脉冲处于高电平。相应地在主电路中也有3个导电臂处于导通状态。 依此类推,可得uAO波形如图2c所示。其他两相uBO和uCO波形分别滞后于uAO120°和240°。根据uAB=uAO-uBO,可得uAB波形如图2e所示。由图可见,逆变电路输出电压uAB、uBC和uCA是分别互差120°的交变四阶梯波。该波形不随负载而

电压型逆变电路课程设计

1 主电路设计 逆变电路的作用是将直流电压转换成梯形脉冲波,经低通滤波器滤波后,从而使负载上得到的实际电压为正弦波。 1.1 主电路图 图1三相电压型桥式逆变电路 1.1 主电路原理分析 图1是采用IGBT作为开光器件的电压型三相桥式逆变电路,可以看成由三个半桥逆变电路组成。图1的直流侧通常只有一个电容就可以了,但为了分析方便,画作串联的两个电容器并标出假象中点N′。和单相半桥、全桥逆变电路相同,三相电压型桥式逆变电路的基本工作方式也是180°导电方式,即每个桥臂的导电角度为180°,同一相(即同一半桥)上下两个臂交替导电,各相开始导电的角度依次相差120°。这样,在任一瞬间,将有三个桥臂同时导通。可能是上面一个臂下面两个臂,也可能是上面两个臂下面一个臂同时导通。因为每次换流都是在同一相上下两个桥臂之间进行,因此也被称为纵向换流

1.2 工作波形分析和绘制 对于U 相输出来说,当桥臂1导通时,2'd UN U u =,当桥臂4导通时, 2'd UN U u -=。因此,'UN u 的波形是幅值为2d U 的矩形波。V 、W 两相的情况和U 相相似,'VN u 、'WN u 的波形形状和'UN u 相同,只是相位依次相差120°。'UN u 、 'VN u 、'WN u 的波形如图2a 、b 、c 所示。 图2 三相电压型桥式逆变电路的工作波形 负载线电压UV u 、VW u 、WU u 可由下式求出 ?? ? ?? -=-=-=''''''UN WN WU WN VN VW VN UN UV u u u u u u u u u ()1?? ??? -=-=-=''''''UN WN WU WN VN VW VN UN UV u u u u u u u u u

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

电压型逆变电路输出电压的调节

电压型逆变电路输出电压的调节 电动巡逻车调节电压型逆变电路输出电压的方式有三种,即调节直流侧电压、移相调压和脉宽调制调压。 调节直流侧电压 从上面的分析可以看出,改变直流侧电压Ud即可调节逆变电路输出电压。为了调节直流侧电压,可以采用如图8-11a的可控整流方式,也可以像图8-11b那样,用二极管整流桥整流,然后再用直流斩波调压。 调节直流侧电压方式 移相调压 电动巡逻车移相调压实际上就是调节输出电压脉冲的宽度。在图8-12a的单相全桥逆变电路中,各电力晶体管的基极信号仍为180°正偏,180°反偏,V1和V2的基极信号互补,V3和V4的基极信号互补,但V3的基极信号不是比V1落后180°,而是只落后θ(0<θ<180°)。这样,输出电压波形就不再是正负各为180°的矩形波,而是正负各为θ的矩形波,各基极信号ub1-ub4及输出电压uo输出电流io的波形如图,.8-12b所示。设在tl 以前,V1和V4导通,输出电压uo为Ud,t1时刻V3和V4基极信号反向,V4截止,而因感性负载电流io不能突变,V3不能立刻导通,VD3导通续流,因V1和VD3同时导通,所以输出电压为零。到t2时刻V1和V2基极信号反向,V1截止,而V2不能立刻导通,VD2导通续流,输出电压uo为-Ud。到负载电流过零并反向时,VD2和VD3截止,V2和V3开始导通,uo仍为-Ud。t时刻V3和V4基极信号再次反向,V3截止,而V4不能立刻导通,VD4续流,uo为零。以后的过程和前面类似。这样,输出电压uo的正负脉冲宽度就各为θ。改变θ,就可调节输出电压。

移相调压方式 脉宽调制(PWM)调压 电动巡逻车PWM控制方式是把逆变电路输出波形半个周期内的脉冲分割成多个,通过对每个脉冲的宽度进行控制,来控制输出电压并改善波形。PWM是一种非常重要的控制方式。 更多电动汽车详情:https://www.doczj.com/doc/b415648735.html,

逆变电路 电力电子课程设计 spwm

电力电子课程设计报告 题目无源逆变系统的实现 专业班级电气工程及其自动化02 学号 1004150213 学生姓名孔令上 指导教师胡为兵 学院名称电气信息学院 完成日期:2013年 1月

目录 1、设计说明 (3) 1.1、设计目的及作用 (3) 1.2、设计依据(技术要求) (3) 1、正文 (3) 2.1、主电路详细原理图 (4) 2.2、主电路工作原理论述 (4) 2.4.1单向全控桥式逆变电路 (4) 2.3、元件参数 (5) 2.4、元件选择 (6) 2.5、控制保护电路详细框图 (6) 2.6、控制保护原理的论述 (7) 2.6.1、spwm控制原理 (7) 2.6.2、过流保护设计 (8) 2.6.3、过流保护论述 (9) 2.6.4、过压保护设计 (9) 2.6.4、过压保护论述 (10) 2、小节 (10) 3、参考资料 (11)

1、设计说明 1.1、设计目的及作用 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。现如今,逆变器的应用非常广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变。另外,交流电机调速变频器、UPS、感应加热电源等使用广泛的电力电子装置,都是以逆变电路为核心。 本文以单相DC-AC逆变器为研究对象,设计了一种基于全桥式结构的SPWM逆变器。以stc公司的51单片机作为控制核心,根据反馈的电压或电流信号对PWM波形作出调整,进行可靠的的双闭环控制,逆变部分采用mcs-51数字化SPWM控制技术,以尽可能减少谐波。为降低开关损耗,防止产生噪声,将开关频率设置为20KHZ。系统具有短路保护,输入过压和过流保护功能,针对开关管,还完善了抑制浪涌电流,开断缓冲和关断缓冲等功能。设计的硬件电路主要包括全桥式逆变主电路、控制电路、驱动电路、取样电路、保护电路等。重点分析了SPWM控制算法,并给出了软件实现SPWM波形的过程。采用无差拍控制和传统的PI 控制方法相结合的复合控制方法,既利用了无差拍控制的快速动态响应特性,又利用了PI控制具有强的鲁棒性,据此设计的控制器能够使逆变器的输出电压很好地跟踪正弦波,在电容性整流负载下输出电压也具有很好的正弦性,在MATLAB/SIMULINK下建立了电源系统的仿真模型,完成了控制器的参数设计,并给出电源在不同负载下和主电路滤波器参数变化下的输出电压仿真波形,证明了本方案设计的逆变器能够得到优质的正弦交流电。 1.2、设计依据(技术要求) 1.直流电压为12 V。 2.要求频率可调。 3.输出为5V的正弦交流电。 4.带阻感负载。负载中R=2 L=1mH。 5.要求输出频率范围:10HZ~100HZ。 1、正文

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

电压型逆变器与电流型逆变电路的定义及特点

比较电压型逆变器和电流型逆变器的特点 先两者都属于交-直-交变频器,由整流器和逆变器两部分组成。 由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下: 电压型变频器与电流型变频器的性能比较 1、储能元件:电压型变频器——电容器;电流型——电抗器。 2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波 3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。

4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制 电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差; 高压变频器的结构特征 1.1电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。 1.2电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。功率较大时,输出还需要增设正弦波滤波器。 1.3高低高变频器;采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

三项电压型逆变电路实验报告

一、引言: (2) 二、交-直-交变压变频器的基本结构 (2) 1、三相电压型桥式逆变电路拓扑图 (3) 2、交-直-交变压变频器的工作原理 (3) 三、三相电压型桥式逆变电路的Simulink建立及模型: 4 四、仿真参数及仿真波形设置: (5) 1.对脉冲触发器进行参数设置: (5) 2. 用subplot作图: (6) 3.仿真波形: (7) 五、实验结果及分析: (13) 六、结论及拓展: (13) 七、设计心得: (14) 八、参考文献: (14)

交-直-交变压变频器中逆变器的仿真 一、引言: 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 逆变电路的作用是将直流电压转换成梯形脉冲波,经低通滤波器滤波后,从而使负载上得到的实际电压为正弦波。 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1) 按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2) 按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3) 按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4) 按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5) 按输出稳定的参量,可分为电压型逆变和电流型逆变。 6) 按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7) 按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生 本文主要利用MATLAB/Simulink中的电力系统仿真工具箱Simpowersystems对交-直-交变压变频器中的逆变电路部分进行仿真,通过仿真将其与三相正弦工频电源进行性能比较,并得出结论 二、交-直-交变压变频器的基本结构 交-直-交变压变频器先将工频交流电源通过整流器变换成直流,再通过逆变器变换成可控频率和电压的交流,如图1所示。

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

电压型逆变器与电流型逆变电路的定义及特点

电压型逆变器与电流型逆变电路的定义及特点 比较电压型逆变器和电流型逆变器的特点 先两者都属于交-直-交变频器,由整流器和逆变器两部分组成。 由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下: 电压型变频器与电流型变频器的性能比较 1、储能元件:电压型变频器——电容器;电流型——电抗器。 2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波 3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。 4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制 电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差; 高压变频器的结构特征 1.1电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,

装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。 1.2电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。功率较大时,输出还需要增设正弦波滤波器。 1.3高低高变频器;采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网 电压降到低压变频器额定或允许的电压输入范围内,经变频器的变换形成频率和幅度都可变的交流电,再经过升压变压器变换成电机所需要的电压等级。这种方式,由于采用标准的低压变频器,配合降压,升压变压器,故可以任意匹配电网及电动机的电压等级,容量小的时侯( 1.3.1高低高电流型变频器在低压变频器的直流环节由于采用了电感元件而得名。输入侧采用可控硅移相控制整流,控制电动机的电流,输出侧为强迫换流方式,控制电动机的频率和相位。能够实现电机的四象限运行。 1.3.2高低高电压型变频器在低压变频器的直流环节由于采用了电容元件而得名。输入侧可采用可控硅移相控制整流,也可以采用二极管三相桥直接整流,电容的作用是滤波和储能。逆变或变流电路可采用GTO,IGBT,IGCT,或,SCR元件,通过SPWM变换,即可得到频率和幅度都可变的交流电,再经升压变压器变换成电机所需要的电压等级。需要指出的是,在变流电路至升压变压器之间还需要置入正弦波滤波器(F),否则升压变压器会因输入谐波或dv/dt过大而发热,或破坏绕组的绝缘。该正弦波滤波器成本很高,一般相当于低压变频器的1/3到1/2的价格。 1.4高高变频器高高变频器无需升降压变压器,功率器件在电网与电动机之间直接构建变换器。由于功率器件耐压问题难于解决,目前国际通用做法是采用器件串联的办法来提高电压等级,其缺点是需要解决器件均压和缓冲难题,技术复杂,难度大。但这种变频器由于没有升降压变压器,故其效率较高低高方式的高,而且结构比较紧凑。高高变频器也可分为电流型和电压型两种。

相关主题
文本预览
相关文档 最新文档