当前位置:文档之家› hypermesh平板应力集中有限元分析 实例

hypermesh平板应力集中有限元分析 实例

hypermesh平板应力集中有限元分析 实例
hypermesh平板应力集中有限元分析 实例

平板应力集中受力分析

姓名:

单位:

邮箱:

Hypermesh建模

划分网格

创建载荷、约束集合器,加载和约束

建立属性

单元附属性

求解Displacement

Von mises stress

Normal X stress

经计算:

应力集中系数k,

k=σmax

σ0

=

2.64

1

=2.64

hypermesh运用实例

运用HyperMesh软件对拉杆进行有限元分析 1、1 问题得描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下得应力与变形。 图1-1 拉杆结构图 1、2 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆得纵向对称中心平面上施加轴向对称约束。 1、3 模型创建过程 1、3、1 CAD模型得创建 拉杆得CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 1、3、2 CAE模型得创建 CAE模型得创建工程为: 将三维CAD创建得模型保存为lagan、igs文件。 启动HyperWorks中得hypermesh:选择optistuct模版,进入hypermesh程序窗口。主界面如图1-3所示。 程序运行后,在下拉菜单“File”得下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应得图形按钮,选择“lagan01、igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后得界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入得几何模型 (4)几何模型得编辑。根据模型得特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应得面板 图1-6 solids按钮命令对应得弹出子面板

Hypermesh2017.2有限元分析的前处理1D单元连接

ALTAIR HYPERWORKS2017.2 有限元分析前处理 1D 单元和连接 Trainer’s Name Month XX, 2017

HMD Intro, 2017.2第5章: 1D 单元和焊点 5) 1D 单元和焊点 ?1D Meshing (1D单元) ?HyperBeam (梁截面) ?Connectors (焊点)

HMD Intro, 2017.2 1D 单元 ?1D 单元

HMD Intro, 2017.2示例 跟着示范做 (…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. HMD Intro, 2017.2 1D单元介绍 ?1D单元是节点之间简单连接,允许精确模拟连接关系(例如螺栓)和类似的杆 状或杆状对象,这些对象在FEA模型中可以建模为简单的线 ?可以从以下面板创建1D单元: ?目前支持的1D单元包括: bar2s, bar3s, rigid links, rbe3s, plots, rigids, rods, springs, welds, gaps and joints. ?显示单元可以在以下面板中创建: Edit Element, Line Mesh, Elem Offset, Edges, or Features panel.

?RIGID 刚性连接用于传递从主节点到从节点的运动. ?Rigids面板允许创建rigid 和rigid link 单元.

基于PROE,HyperMesh,ANSYS的有限元分析

基于PROE,HyperMesh,ANSYS的有 限元分析 作者: 张瑞,琚建民 1.介绍: 目前,ANSYS软件在有限元分析方面被广泛的应用,但是他的预加工功能是如此的复杂以至于我们必须耗费大量的精力和时间,特别是分析复杂模型的时候。根据这种状况,我们将用PROE,HyperMash,和ANSYS商业软件进行建模,创建网格,计算和分析。各种有限元分析软件的综合运用可以发挥他们各自的优势,使有限元分析更加有效率。 2.关于PROE,HyperMash,和ANSYS的介绍 a.ProE是美国PTC公司开发的3D的CAD/CAM/CAE软件。他的几何建模功能是最杰出的。我们建立复杂的模型更多的会去运用PROE而非ANSYS和HyperMash。然而他的划分网格,计算,分析和后续处理是十分差劲的 b.HyperMash 是美国Atair公司开发的产品。它的主要优势在以下几个方面:划分网格变得更容易和迅速;我们更容易可以控制和指定原理特征,操作时非常的方便。因此可以使原理特征和网格工程分析要求更容易吻合;HyperMash有常规CAD和CAE软件界面。HyperMash的建模功能没有PROE那么强,它的计算分析功能也并没有ANSYS那样好。因为它有很少的材质和元素种类,并且设定解决方法是非常不便的。 c.ANSYS是最有影响力的一有限元分析软件在世界上,因为它的强大计算和分析能力。但它的预处理功能相对薄弱。首先,在ANSYS中建模时低PROE一等的,因此对复杂建模是很困难的。此外, 运用ANSYS进行网格划分和修改元素和HyperMesh相比并不容易。所以很难确保元素特性使计算成功。用它进行预处理将会浪费更多时间,严重的影响工作效率。 3. ProE; HyperMesh; ANSYS在有限元分析上的综合应用 a.工作过程 我们的目的是要通过综合利用软件来发挥 每个软件各自的优点。根据三个软件的特点, 我们可以通过PROE建模,通过HyperMesh 划分网格,通过ANSYS求解。通过这个方法, 整个有限元分析过程会更加有效准确。整个 分析过程见图1 b.常见问题及解答:1)简化建模:通常通过 PROE的建模过程是用立体建模的方法然后 提取表面,大量的错误和修改工作将会在划 分网格式出现。因此,我们可以用表面建模 [1],忽略几个细节(例如小孔和倒角)和附 件。2)模型的分类管理:有许多几乎不受约 束的表面互相遮掩。许多表面不同样式的混 合在一起时我们管理起来十分不便。因此, 有着相同特征的表面一定要被定义成相同 的组成,名字和颜色,然后我们可以通过组

Hypermesh和Abaqus的接口分析实例

Hypermesh和Abaqus的接口分析实例(三维接触分析) In this tutorial, you will learn how to: ?Load the Abaqus user profile and model ?Define the material and properties and assign them to a component ?View the *SOLID SECTION for solid elements ?Define the *SPRING properties and create a component collector for it ?Create the *SPRING1 element ?Assign a property to the selected elements Step 1: Load the Abaqus user profile and model A set of standard user profiles is included in the HyperMesh installation. They include: RADIOSS (Bulk Data Format), RADIOSS (Block Format), Abaqus, Actran, ANSYS, LS-DYNA, MADYMO, Nastran, PAM-CRASH, PERMAS, and CFD. When the user profile is loaded, applicable utility menu are loaded, unused panels are removed, unneeded entities are disabled in the find, mask, card and reorder panels and specific adaptations related to the Abaqus solver are made. 1. From the Preferences drop down menu, click User Profiles.... 2. Select Abaqus as the profile name. 3. Select Standard3D and click OK. 4. From the File drop down menu, select Open… or click the Open .hm file icon. 5. Select the abaqus3_0tutorial.hm file. 6. Click Open. Step 2: Define the material properties HyperMesh supports many different material models for Abaqus. In this example, you will create the basic *ELASTIC material model with no temperature variation. The material will then be assigned to the property, which is assigned to a component collector. Follow the steps below to create the *ELASTIC material model card: 1. From the Materials drop down menu, select Create. 2. Click mat name = and enter STEEL. 3. Click type= and select MATERIAL. 4. Click card image = and choose ABAQUS_MATERIAL. 5. Click create/edit. The card image for the new material opens. 6. In the card image, select Elastic in the option list.

Hypermesh有限元流程

1 导入几何模型到hypermesh中 首先在UG中打开几何模型,单击文件按钮,选择导出setp格式文件 2打开hypermesh,单击导入按钮,选择导入格式为step,文件

3抽取中面 在右侧的Geom工具栏中,单击抽取中面按钮 选择要抽取的部件,单击抽取 4进行几何清理 在右侧Geom工具栏中选择快速编辑按钮 使用相关功能进行几何清理,

5划分网格 在右侧2D面板中选择,设置网格类型,尺寸 6检查网格质量,修改不合格的网格 在右侧2D面板中选择检查网格质量 利用按钮对不合格的网格进行优化 7对模型进行连接 点击connector 选择Area connector panel, 选择要连接的单元和部件,设置连接类型和距离,进行连接 更正: 8建立材料

单击,输入名字,类型,卡片类型, 单击输入材料相关参数,建立材料 9创建部件属性 单击,输入名字,类型,材料建立属性等 更正:2D,PSHELL,stell,create/edit,T输入厚度 10将创建的属性赋予部件 单击,assign然后单击comps选择要附属性的部件,单击assign赋予部件相关属性信息

更正:update 11创建边界条件 单击输入名字,选择卡片类型 然后单击,编辑卡片相关参数】 11,创建载荷步loadstep(分析类型) 在右侧分析面板中选择输入名字,选择相应的分析类型,选择相应的收集器,创建loadstep 更正:自由模态nomal modes ,SPC不勾 静力分析linear static,spc约束,load载荷

12进行分析 在右侧分析面板中选择选择文件的储存位置,在run options选项中选择analysis(一般来说应该先进行check 检查有限元模型是否正确),单击optistruct进行分析 更正:选择Radioss 静力分析:all改为custom 13分析完成后,单击查看计算结果

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

基于hypermesh的客车车体有限元分析

基于Hypermesh的客车车身有限元分析 沈兵,靳春宁,胡平 大连理工大学汽车工程学院,大连(116024) E-mail:279987329@https://www.doczj.com/doc/b415515836.html, 摘要:有限元方法和理论对现代车身设计具有重要的实际意义。综合现有的建模方案,提出了用壳单元建立有限元模型的方法;针对三种工况,应用有限元软件Hypermesh对模型进行后处理,找出了应力、位移分布情况;对轻量化设计提供了可靠的依据。 关键词:客车车身;壳单元;有限元分析 中图分类号TG404;TH114;TB115 1. 引言 当前国内对客车车身的有限元建模方法大致有三种,即采用梁单元、壳单元和体单元。采用梁单元可使计算量大大降低,但由于简化太多,导致一些关键受力截面无法正确表达,使得可信度不高,很难起到指导作用。采用体单元构建的客车骨架跟现实情况很接近,但建模时间太长,不宜采用。而壳单元弥补了梁单元与体单元的不足,是比较理想的建模方法。本文正是采用壳单元构建了客车车身模型,并按照实际使用条件进行车载负荷计算,对车体进行结构分析。 2.模型的建立 目前UG具有强大的曲面造型功能,在航空和汽车行业应用非常广泛;而Hypermesh 是世界上领先的有限元前后处理软件,它与UG等许多软件都有良好的接口。本文采用UG 对客车车身进行何造型设计,然后在Hypermesh中进行网格划分以及前后处理工作。 车架的实际工况复杂多变,建立有限元模型时对CAD模型的简化是十分必要的。其原则是:最大限度地保留零件的主要力学特征;将小面合并成大面,并且相邻面应共用一条轮廓线,以保证各个面上划分出来的网格在边界处是共用节点,避免在边界处出现节点错开的现象。具体的简化如下: (1)忽略非承载件。有些部件(如保险杠、踏板支架等)是为了满足构造或使用上的要求而设置的,对于分析车身模态影响很小,这里将其忽略掉。 (2)忽略蒙皮、玻璃等附件。 (3)忽略圆角以及梁截面形状的简化。考虑到圆角对网格计算的来说比较费时,将模型中的圆角忽略掉;本文中梁简化成矩形钢和槽型钢。 图1圆角的忽略

基于Hypermesh的吊钩有限元结构分析

摘要 本文旨在对吊钩进行仿真计算和分析,得到其应力和位移变化的分布云图,从理论上对吊钩的危险截面进行了分析研究,为吊钩进一步的结构设计和优化提供了必要的理论依据。 本文使用三维建模软件Creo创建吊钩的三维模型,以格式吊钩.stp导入有限元软件hypermesh中绘制网格,进行前处理,继而进行求解得到后处理中的应力和位移云图。 本文通过分析有限元后处理的应力和位移云图,得到吊钩的最大等效应力位于吊钩主弯曲面内侧部位,应力大小为213.2MPa;吊钩整体最大变形位于吊钩钩头位置,变形量为0.08061mm。 本文对比最大等效应力和所给材料30号钢的屈服强度295MPa,分析得到吊钩在给定工作载荷下安全的结论,由此求得5t载荷下的安全系数应小于等于1.284;通过静刚度分析,计算得到吊钩在承载方向上的静刚度为3.1839×108N/m。 关键词:hypermesh;吊钩;应力;安全系数

1.Creo软件建立吊钩三维模型 1.1Creo软件简介 Creo是美国PTC公司于2010年10月推出CAD设计软件包。Creo是整合了PTC公司的三个软件Pro/Engineer的参数化技术、CoCreate的直接建模技术和 ProductView的三维可视化技术的新型CAD设计软件包,是PTC公司闪电计划所推出的第一个产品。 Creo是一个整合Pro/ENGINEER、CoCreate和ProductView三大软件并重新分发的新型CAD设计软件包,针对不同的任务应用将采用更为简单化子应用的方式,所有子应用采用统一的文件格式。 Creo目的在于解决CAD系统难用及多CAD系统数据共用等问题。 1.2创建吊钩模型 1.打开Creo软件,新建类型:零件,不勾选使用默认模版,确定;选择模版类型为: mmns_part_solid,确定,进入零件绘制界面(图1.1,图1.2,图1.3) 图1.1 零件命名图1.2 模板选择 2.草绘吊钩弯曲部分的轨迹图绘制 (1)选择FRONT平面,点击草绘,进入草绘界面(图1.3,图1.4) 图1.3 FRONT平面的选择图1.4 吊钩草绘界面

Abaqus与HyperMesh联合仿真有限元分析核心技术培训

Hypermesh 作为目前综合能力最强的前处理平台,可以很方便的为各种大型CAE 软件完成几乎所有的常见前处理工作,操作极其灵活方便操作极其灵活方便,,例如几何清理例如几何清理、、网格划分网格划分、、材料属性建立材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等参数和输出等,,全部都可以在Hypermesh 中高效的完成中高效的完成。。几何模型越复杂几何模型越复杂,,装配体零件越多装配体零件越多,,这种优势越明显这种优势越明显。。 Abaqus 作为业内公认的最强的非线性求解软件作为业内公认的最强的非线性求解软件,,自学入门不易自学入门不易,,成为高手更加成为高手更加艰难艰难艰难。。Abaqus 行业应用广泛行业应用广泛,,最近几年在国内越来越火爆几年在国内越来越火爆,,所以掌握abaqus 势在必行势在必行。。Abaqus 行业应行业应用差异较大用差异较大用差异较大,,但基本的软件操作和软件应用技巧是大同小异的是大同小异的。。Hypermesh 中除了几何清理中除了几何清理、、网格划分外网格划分外,,其余的操作例如材料属性建立其余的操作例如材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等全部与Abaqus 息息相关息息相关,,需要对abaqus 的一套理论有很深的认识才能更好的发挥Hypermesh 的强大前处理功能的强大前处理功能。。 本人擅长在Hypermesh 中完成所有的Abaqus 前处理操作前处理操作,,然后提交计算然后提交计算,,后处理在abaqus 和hyperview 中完成。本人领域为电子产品跌落碰撞本人领域为电子产品跌落碰撞,,例如平板电脑例如平板电脑、、台式机台式机、、移动终端等等显式动力学分移动终端等等显式动力学分析析,同时也擅长各种连接器同时也擅长各种连接器、、弹片弹片、、端子等正向力端子等正向力、、插拔力插拔力、、屈服等隐式非线性分析屈服等隐式非线性分析。。 希望通过一些核心培训能让更多的人学会Hypermesh 这个软件的操作技巧这个软件的操作技巧,,同时快速的为Abaqus 建立CAE 模型。本次培训本次培训希望能以学员的模型为主希望能以学员的模型为主希望能以学员的模型为主,,模型越复杂越好(实际培训会适当简化),同时采用自己搜集的3D 模型模型,,通过网络培训例如QQ 群视频等或者自己录制视频的方式群视频等或者自己录制视频的方式,,完整的为大家讲解Hypermesh 和abaqus 的核心应用技巧的核心应用技巧。。 最近在QQ 群陆续为一些同行做了大概10来个例子来个例子,,感觉很多人普遍水平偏低感觉很多人普遍水平偏低,,问的问题千奇百怪,很多人急需一次较深入的培训需一次较深入的培训。。本人第一次尝试做培训做培训,,本次培训大概10次,每次2个小时个小时,,收费2500元.如果觉得培训不合适,可考虑视频录制的方式视频录制的方式,,有问题大家及时和我沟通。 本人QQ :499975874 建立一个专门用作培训建立一个专门用作培训、、技术交流技术交流的群的群的群::470131908 初步培训提纲如下初步培训提纲如下:: 1、Hypermesh 针对abaqus 的基本流程介绍 1.1.如何选取求解器类型?隐式还是显式?在Hypermesh 里面,隐式和显式存在哪些差异性? 1. 2.用一个简单的案例讲解Hypermesh 完成Abaqus 所有前处理的流程和操作; 2、Hypermesh 几何清理技巧 2.1 自由边、烂面、圆角、Logo 、小面等处理技巧,尤其是圆角和特征很多的时候如何处理? 2.2 很多复杂变圆角在Hypermesh 中无法移除的其它处理技巧; 2.3 各种切割面、切割体、添加硬点、临时节点、补面等技巧 3、Hypermesh 网格划分技巧,技巧太多,描述有些困难 3.1 以四边形为主的网格划分技巧 3.2 三角形网格划分技巧、弦长法的设定技巧 3.3 如何保证单元数量尽可能少,同时网格质量高,同时与几何贴近度高 3.4 六面体网格划分技巧 3.5 四面体网格划分技巧 3.6网格质量提高改善技巧 3.7 使用ANSA 划分正交性更高的四边形网格技巧 3.8针对收敛性问题的网格处理技巧 3.9刚体网格的划分技巧 4、Hypermesh 为Abaqus 建立材料、界面属性的技巧 4.1 Abaqus 常用的材料本构模型介绍 4.2 常用的Abaqus 材料模型在Hypermesh 中的设置技巧 4.3 Abaqus 常用的截面类型介绍 4.4常用的Abaqus 截面属性在Hypermesh 中的设置技巧 5、Hypermesh 为Abaqus 赋予单元类型 5.1 常用的abaqus 单元类型介绍 5.2 显式和隐式的单元类型差异

hypermesh梁壳单元混合建模实例

HyperMesh梁单元与壳单元的混合建模 本文根据工程实例,应用有限元软件HyperMesh 11、0进行梁单元与壳单元的混合建模,并在其中详细论述,梁单元在与壳单元混合建模的过程中如何对梁单元进行偏置处理,保证梁单元与壳单元的所有节点完全耦合。 在焊接工艺中,梁单元与壳单元的使用可以大大提高整体焊接结构的抵抗变形能力,避免单独使用壳单元时强度与刚度的不足。HyperMesh软件中提供了大量标准梁的截面,也可以通过实际应用需求单独创建梁截面。 在1D面板中点选HyperBeam选项,如图1所示。 图1 1D面板中的HyperBeam选项 HyperBeam中提供了大量的梁截面,如图2所示。 图2 HyperBeam下的各种梁截面 图2中红色箭头所指的就是各种标准梁截面的属性,包括H型梁,L型梁,工型梁等等。可以根据实际需求进行选择,而且可以自己独立进行尺寸编辑。图2中的shell section可以建立独立的壳截面,solid section可以建立独立的实体截面。在建立完成各种梁的截面属性之后,可以通过edit section进行梁截面属性的修改。

以上主要介绍了1D梁单元的使用情况,下面将根据工程实例对壳单元与梁单元的混合建模进行详细的介绍。图3就是梁单元与壳单元焊接之后的三维图,图4就是图3中梁单元以1D显示的情况。二者之间的切换功能键如图5所示。 图3 梁单元与壳单元焊接之后梁单元以3D显示 图4 梁单元与壳单元焊接之后梁单元以1D显示 图5 梁单元1D与3D之间的切换功能键

下面介绍梁单元的具体创建方法,不再讲述壳单元的建立方法。首先建立Beam Section,在软件左侧右键create--Beam Section,在出现的对话框窗口中对Bean进行命名。具体的过程如图6所示。 图6 Beam的建立过程 之后进入1D--HyperBeam面板,选择Standard section选择Standard Channel面板,打开面板后对各个参数进行修改,如图7所示。左侧的红色框内的区域就是进行具体尺寸的修改,修改的结果会以直观的形式显示在图形界面中,右侧的红色方框就是梁界面的各个力学参数。注意梁的方向,梁的长度方向就是X 轴,图形中的就是梁的Y轴与Z轴。在梁的方向的选取过程中Y轴为第一方向。 图7 梁的各个参数的修改 之后建立梁的属性,同样在软件左侧位置右键创建属性,弹出属性创建的选项卡片,在Type中选择1D,在Card image中选择PBEAM,单击确定按钮,如图8所示。

【HM内建模】Hypermesh典型例子了解HW

Hypermesh网格划分简单介绍。 这一章主要介绍hypermesh的流程,通过一个简单的例子让大家了解hypermesh的功能,使大家对hypermesh不再陌生。 这一章涉及到了几何建模,2D网格的生成,3D网格的生成,集合器collectors,删除等一些主要的功能。通过这一章,可以对hypermesh有一个基本的认识。 几何建模 1,启动hypermesh 2,点击Geom/create nodes面板,默认输入,点击create,在(0,0,0)处制作一个节点。3,点击永久菜单中的f键,观察所生成的节点,在屏幕中心处有一个黄色的小圆圈 4,点击Geom/circle ,选择center&radius子面板。点击制作的节点,选中之后黄色的圆圈变为白色。 5,选择z方向为法向,选择制作的节点,这个节点由白色变为紫色。 6,在后面的指针开关中选择circle 7,在radius=后面的输入框内,输入1,点击create,作一个半径为1的圆。 8,点击永久菜单中的f键,观察所生成的圆,按住ctrl键,同时按住鼠标左键,移动鼠标左键。旋转观察所生成的圆 9,点击return,退出这个面板。 2D网格的生成 1,点击2D/spline,选择创建的圆 2,选择keep tangentcy前面的方框,使其里面有一个对勾,

3,点击keep tangentcy上面的有一个三角形的键,选择mesh ,dele surf,点击create,出现一个选择,选择yes,生成2D网格。 4,在elem density=后面的输入框中,输入14,点击elem density=左面的最下面的那个绿色的set all to

Hypermesh大全

Hypermesh操作大全 1.Geom 1.1 Node节点 (1)xyz坐标创建节点,可以选择坐标系,as node在节点上 (2)On Geometry在几何上创建节点,可以在硬点、线、表面、平面上创建节点 (3)Arc Center在圆弧圆心创建节点,可以在节点、线与硬点组成的圆弧中心创建节点,可以设定容差(默认忽略容差) (4)Extract Parametric在线、面上以输入参数阵列节点,定义阵列区域大小(百分比)与阵列节点数目 Extract on Line在线上阵列节点,可以输入阵列节点数目,间隔算法有线性、指数与曲率控制(中间稀疏两边密或者中间密两边稀疏),可以输入间隔密度(5)Interpolate Nodes插值节点,输入在节点之间插值节点的数目以及算法,算法有线性、指数与曲率控制可以输入间隔密度 Interpolate on Line在线上插值节点 Interploate onSurface在面上的节点之间插值节点 (6)Intersect交叉,在交叉处创建节点,可以创建【向量、线】与【线、实体、表面、平面】交叉处生成节点 1.2 Node edit 编辑节点 (1)associate关联节点,作用是把节点关联到【面、点、线、实体】,可以设置容差 (2)move node移动节点,但是节点必须在面上 (3)place node重置节点,将节点移动到选择目标面上,应对个别节点在平面外(4)remap在线上重新排布节点 (5)align node 对齐节点,选中两个节点后,将其他节点移动到选中的两个节点的连线上(直线,无线延伸) 1.3 temp nodes临时节点 1.4 distance 测距 (1)two nodes两节点测距 (2)three nodes 三节点测距 (3)two point 两硬点测距 (4)three point三硬点测距 1.5 Point创建硬点 (1)XYZ坐标创建硬点 (2)Arc Center 圆心创建硬点,可以在节点、线与硬点组成的圆弧中心创建节点,可以设定容差(默认忽略容差) (3)Extract Parametric在线、面上以输入参数阵列硬点,定义阵列区域大小(百分比)与阵列硬点数目 (4)Intersect交叉,在交叉处创建节点,可以创建【向量、线】与【线、实体、表面、平面】交叉处生成硬点 1.6 Lines 创建线 (1)XYZ两点创建直线 (2)Linear Nodes 以节点创建折线,可以选择封闭

hypermesh运用实例

运用HyperMesh软件对拉杆进行有限元分析问题的描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下的应力和变形。 图1-1 拉杆结构图 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。 模型创建过程 CAD模型的创建 拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 CAE模型的创建 CAE模型的创建工程为: 将三维CAD创建的模型保存为文件。 (1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh 程序窗口。主界面如图1-3所示。 (2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入的几何模型 (4)几何模型的编辑。根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应的面板 图1-6 solids按钮命令对应的弹出子面板

基于HyperMesh和ANSYSLS-DYNA软件铸造过程有限元分析---吴香菊

基于HyperMesh和ANSYS/LS-DYNA软件 锻造过程有限元分析 吴香菊王伟吴会萍蔡梅王照坤李根 沈阳黎明航空发动机(集团)有限责任公司 海军驻沈阳地区航空军事代表室 沈阳发动机设计研究所

基于HyperMesh和ANSYS/LS-DYNA软件 锻造过程有限元分析 吴香菊1王伟2 吴会萍1 蔡梅1 王照坤1 李根3 1 沈阳黎明航空发动机(集团)有限责任公司 2 海军驻沈阳地区航空军事代表室 3 沈阳发动机设计研究所 摘要:针对在工程中应用单一软件完成有限元分析的过程复杂、效率不高问题,文中综合应用HyperMesh和ANSYS/LS-DYNA软件完成网格划分、分析计算到结果处理整个过程。实践表明,综合运用HyperMesh和ANSYS/LS-DYNA软件进行锻造过程有限元分析,有利于发挥二者的优点,提高有限元分析效率。 关键词:Hypermesh;ANSYS/LS-DYNA;锻造 1 概述 众所周知,CAE是先进制造技术的重要组成部分。在工程应用中,各类专用有限元软件在几何建模、网格划分、分析计算及结果处理方面各有特色。虽然很多情况下只需要某一软件就能完成整个有限元分析过程,但往往过程复杂。HyperMesh是世界领先的针对有限元主流求解器的高性能前后处理软件。它支持直接输入已有的三维CAD几何模型(UG,Pro/E,CATIA等),并且导入的效率和模型质量都很高,使得CAE分析工程师能够投入更多的精力和时间到分析计算中去。大型非线性有限元软件ANSYS/LS-DYNA是功能齐全的几何非线性、材料非线性和接触非线性程序,采用有限元动力显式算法。因此本文综合应用HyperMesh 和ANSYS/LS-DYNA的优点完成锻造过程仿真分析。 2 有限元模型的建立 有限元软件的综合运用,目的在于充分发挥各软件的长处,避免其不足,从而使软件几何建模、网格划分、分析计算及其结果处理的整个过程高速高效、条理清楚、不易出错,且容易操作和修改。 文中先使用UG软件进行几何建模,然后利用HyerMesh进行有限元网格划分,最后采用ANSYS/LS-DYNA进行计算分析及结果处理,可以大大提高整个分析过程的效率,其

HYPERMESH入门指南之7---Hypermesh网格划分实例

仿真在线提供 https://www.doczj.com/doc/b415515836.html, 作者 yidixunmeng 简明目录 第一章INTRUCTION 第二章永久菜单 第三章macro菜单 第四章Geom面板 第五章2D/3D面板 第六章tools面板 第七章网格划分实例 实例1介绍 现在介绍一个画网格的实例,这个例子是仿真论坛上面的一个2.5分(满分5分)的题目,今天介绍一下我自己的方法,希望大家有更好的方法,画出更高质量的网格。 第一步当然是几何清理,在vis opts上面点击3,在这个模型中有有重合边,还有缺损的面。在去除重合边的时候,以vis opts,3显示可以很容易就做到。你选择delete面板,选择surf,点击一个面,有和没有重合的面显示起来是不一样的。可以比较一下。 有重合的面。如下图

没有重合的面如下图。 可见如果没有重合的面,显示是全部光亮的,如果有的话,显示就不同了。还有一个办法,就是用delete删掉一个面,然后看一下是不是还留下一个面,如果有就删对了,如果没有了,就reject 就可以了。由于这个模型时对称的,所以要切开一半。在面上画一条线。如下图:

将模型切开。首先将线拉伸成面,在用surface edit/trim with surf切开。 切开后,保留其中一半,将另一半删除或隐藏掉。现在删掉一半。删掉后的图

然后补面,用2D/spline。补好后如下图,图中的黄线是由于三个面共用一条边,不用去掉 几何清理好了之后,就需要画图了。先做几个collector。由于图中的(1)边所在的面最小,所以要先从他画起。,还要考虑靠节点连续,所以要将其他的面也切开。

基于Hypermesh的分析数据提取与处理方法

南京工程学院 本科毕业设计(论文) 题目:基于Hypermesh的分析数据提取与 处理方法 专业:车辆工程 班级:车辆工程111 学号:21511638 学生姓名:张云 指导教师:陈伟讲师 起迄日期:2015.3.2~2015.5.15 设计地点:车辆工程实验中心

Graduation Design (Thesis) Extraction and Analysis of data processing method based on Hypermesh By Zhang Yun Supervised by Instructor. CHEN Wei Nanjing Institute of Technology June, 2015

摘要 目前世界各大著名客车公司都已经将有限元分析方法应用于客车的设计中,从最初的概念设计到最终的产品成型阶段始终贯穿有限元分析方法。通过实践证明,运用有限元分析软件对客车的车身骨架进行结构分析可以得到更加准确的精确度,由于这一方法具有减低客车研发的成本,缩短客车研发周期等优点,基本上所有的客车公司已将有限元方法作为客车研发过程中的一个重要方法。 本论文针对有限元分析软件虽然可以得出详细而精确的分析结果,但却没有对于这些结果文件进行数据提取与分析的情况,开发出基于Hypermesh d的数据提取与处理方法。本文深入介绍了有限元法以及常用有限元分析软件,并通过具体实例,掌握Hypermesh的基本操作。同时通过查阅资料与实操演练,掌握Fortran编译器Intel Visual Fortran的基本操作,最后通过对有限元分析软件Hypermesh等的结果文件zhidonggaijin.bdf和zhidonggaijin.f06进行分析,设计出以Fortran语言为基础的的数据提取与分析处理程序,最终生成可执行文件,并且能够生成所需文件。程序输出的文件可直接作为后期车身改良与优化的数据依据。 关键词:车身;数据提取分析;有限元;Fortran;二次开发

Hypermesh学习教程

1.1 实例:创建、编辑实体并划分3D网格 本实例描述使用HyperMesh分割实体,并利用Solid Map功能创建六面体网格的过程。模型如图5-1所示。 图5-1 模型结构 本实例包括以下内容。 ●导入模型。 ●通过面生成实体。 ●分割实体成若干个简单、可映射的部分。 ●使用Solid Map功能创建六面体网格。 打开模型文件。 (1)启动HyperMesh。 (2)在User Profiles对话框中选择Default(HyperMesh)并单击OK按钮。 (3)单击工具栏()按钮,在弹出的Open file… 对话框中选择solid_geom.hm 文件。 (4)单击Open按钮,solid_geom.hm文件将被载入到当前HyperMesh进程中,取代进程中已有数据。 使用闭合曲面(bounding surfaces)功能创建实体。 (1)在主面板中选择Geom页,进入solids面板。 (2)单击()按钮,进入bounding surfs子面板。 (3)勾选auto select solid surfaces复选框。 (4)选择图形区任意一个曲面。此时模型所有面均被选中。 (5)单击Create按钮创建实体。状态栏提示已经创建一个实体。注意:实体与闭合曲面的区别是实体边线线型比曲面边线粗。

(6)单击return按钮返回主面板。 使用边界线(bounding lines)分割实体。 (1)进入solid edit面板。 (2)选择trim with lines子面板。 (3)在with bounding lines栏下激活solids选择器。单击模型任意位置,此时整个模型被选中。 (4)激活lines选择器,在图形区选择如图5-2所示线。 (5)单击trim按钮产生一个分割面,模型被分割成两个部分,如图5-3所示。 图5-2 选择边线图5-3 分割实体 使用切割线(cut line)分割实体。 (1)在with cut line栏下激活solids选择器,选择STEP 3创建的较小的四面体,如图5-4所示。 (2)单击drag a cut line按钮。 (3)在图形区选择两点,将四面体分为大致相等的两部分,如图5-5所示。 图5-4 (1)中所选实体图5-5 定义切割线

hypermesh运用实例讲课讲稿

h y p e r m e s h运用实例

运用HyperMesh软件对拉杆进行有限元分析 1.1 问题的描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度 L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下的应力和变形。 图1-1 拉杆结构图 1.2 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。

1.3 模型创建过程 1.3.1 CAD模型的创建 拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。 图1-2 拉杆三维模型 1.3.2 CAE模型的创建 CAE模型的创建工程为: 将三维CAD创建的模型保存为lagan.igs文件。 (1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh程序窗口。主界面如图1-3所示。 (2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“lagan01.igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。

图1-3 hypermesh程序主页面 图1-4 导入的几何模型 (4)几何模型的编辑。根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。

相关主题
文本预览
相关文档 最新文档