当前位置:文档之家› 功率放大电路知识梳理

功率放大电路知识梳理

功率放大电路知识梳理
功率放大电路知识梳理

J

o

o 图5

功率放大电路知识梳理

一、功率放大电路的特点、基本概念和类型

1、特点:

(1)输出功率大

(2)效率高

(3)大信号工作状态

⑷功率BJT 的散热

-工作点Q 处于放大区,基本在负载线的中间,见图 5.1

-在输入信号的整个周期内,三极管都有电流通过

?导通角为360度。

缺点:

效率较低,即使在理想情况下,效率只能达到 50% 由于有I CQ 的存在,无论有没有信号,电源始终不断地输送功率。 当没

有信号输入时,这些功率全部消耗在晶体管和电阻上, 并转化为

2、功率放大电路的类型

(1)甲类功率放大器

x Q mF 数

特点:

热量形式耗散出去;当有信号输入时,其中一部分转化为有用的输出功率。

作用:

通常用于小信号电压放大器;也可以用于小功率的功率放大器。

(2)乙类功率放大器

?工作点Q处于截止区。

?半个周期内有电流流过三极管,导通角为180度。

?由于I c(=0,使得没有信号时,管耗很小,从而效率提高。

缺点:

波形被切掉一半,严重失真,如图 5.2所示。

作用:

用于功率放大。

(3)甲乙类功率放大器

图5.3

特点:

?工作点Q处于放大区偏下。

?大半个周期内有电流流过三极管,导通角大于180度而小于360 度。

?由于存在较小的I CQ所以效率较乙类低,较甲类高。

缺点:

波形被切掉一部分,严重失真,如图 5.3所示。

作用:

用于功率放大。

返回第三节乙类双电源互补对称功率放大电路

一、电路组成

在图5.4所示电路中,两晶体管分别为NPN管和PNP管,由于它们的特性相近,故称为互补对称管。

图54

静态时,两管的l cc=0;有输入信号时,两管轮流导通,相互补

充。既避免了输出波形的严重失真,又提高了电路的效率。

由于两管互补对方的不足,工作性能对称,所以这种电路通常称为互补对称电路

團5.5

二、分析计算

1.输出特性曲线的合成

因为输出信号是两管共同作用的结果,所以将「、壬合成一个

能反映输出信号和通过负载的电流的特性曲线。合成时考虑到:

(1) V i =0 时,V cEQ=V Cc ,-V CEQ=V Cc,因此Q l=Q。

(2)由流过R.的电流方向知i ci与i c2方向相反。即两个纵坐标轴

相反。

(3)特性的横坐标应符合:V CE+V EC=V C C-(-V cc)=2V cc

V CE1的原点与-V CE2=2V C点重合;-V CE2的原点与+V CE=2V Cc点重合。

由以上三点,得两管的合成曲线如图 5.6所示。这时负载线过

V CC点形成一条斜线,其斜率为-/R L。显然,允许的i c的最大变化范围为21cm V CE的变化范围为2( V C C-V CES)=2V Cem=2I cm F l。如果忽略BJT的饱和压降V C ES, V cem=|cn R V C C。

2.计算输出功率P o

在输入正弦信号幅度足够的前提下,即能驱使工作点沿负载线在截止点与临界饱和点之间移动。如图 5.6所示波形。输出功率用输出电压有效值V)和输出电流l 0的乘积来表示。设输出电压的幅值为

p _ nr r -叫択丄畑=rr T

…耳-片你——遵」叫

V om,贝y —■

£ ~心这恰好是图5.6中厶ABQ的面积。因为l om=V/R L,所以:

图5.5中的T1、T2可以看成工作在射极输出器状态,Aw 1。当输入信号足够大,使V m二V>m= V cem= V CC- V CES?V CC和l on=l cm时,可获得p

M g

* JI

最大的输出功率

由上述对P o的讨论可知,要提供放大器的输出功率,可以增大电

源电压Me或降低负载阻抗F L。但必须正确选择功率三极管的参数和施加必要的散热条件,以保证其安全工作。

3.BJT的管耗P T

= — f (曲)=—f - %〕才矶少q

2ff J 勿:R L

=丄k% - J sm遡

% :祖k伽)上疔5 %討瞥2-和宀叫)

2血几

心索

4、电源提供的功率

三、功率BJT的选择

1、最大管耗和最大输出功率的关系

令礬丸则垒

若卩闵咕 rniip -空g

CL 圳J巧5?

5、效率n

一耳二吨■

2心矶几

~4

%

-闵78.5%

F“珀十弘=

(3) P °m =9W 时的 P v (4) BJT 的 P CM (5) V i 的有效值

故G 二聖3%

JT

上式表明:当V Om " 0.6V CC 时,BJT 具有最大的管耗,

护%泊曲 邮

因此,功率三极管的选择应满足以下条件:

①2 %罰亿

⑵々财饵°卜莎处

⑶3字

例题:P220, 523 已知:v 为正弦波,R L =8Vy V CE ^O , Rm=9W 求 (1)± V CC 的最小值,

(2) BJT 的 I

CM

共发射极放大电路理论分析与计算

共发射极放大电路理论分析与计算 理论计算与分析是实现电子电路的非常好的设计手段,这方面是职业学校同学们的弱点,适当地学习一些计算与分析的方法,更能使你的动手能力如虎添翼,节约时间与成本. 1.共发射极放大电路 电路组成 £? £? + + £ + £+U C C R b1 R c R b2 R e R L + £ C 1C 2 u i u o U B C e (a) C e : 射极旁路电容,ê1发射极交流接? 静态工作点的估算 R U U I U R R R U E BE BQ EQ CC b b b BQ -= +≈2 12 ) (R R I U U I I I I e c CQ CC CEQ CQ BQ EQ CQ +-≈=≈β 动态分析 1)画出H 参数微变等效电路如下:

r be R b +£ u i u o r i r o β i b R c R L + £ i b i c b c (a) 2)共发射放大电路基本动态参数的估算 (1)电压放大倍数 ' -='-=R i R i u L b L c o β r i u R R R be b i L C L ==' // r R r i R i A be L be b L b u ' - ='- =ββ (2)输入电阻r i r R I u r be b i i i //== )//(21R R R b B b = (3)输出电阻r 0 R r C o = (4)源电压放大倍数 r r R u u A be s L s o us +' -==β

下面是对图示共发射极放大电路的计算分析,可以和仿真分析进行对比; 设晶体管的 =100,'bb r =100Ω。(1)求电路的Q 点、u A &、R i 和R o ;(2)若电容C e 开路,则将引起电路的哪些动态参数发生变化如何变化 解:(1)静态分析: V 7.5)( A μ 10 1mA 1 V 2e f c EQ CEQ EQ BQ e f BEQ BQ EQ CC b2b1b1 BQ =++-≈≈+=≈+-==?+≈R R R I V U I I R R U U I V R R R U CC β 动态分析: Ω ==Ω≈++=-≈++-=Ω≈++=k 5k 7.3])1([7.7)1()(k 73.2mV 26) 1(c o f be b2b1i f be L c EQ bb'be R R R r R R R R r R R A I r r u ββββ∥∥∥& (2)R i 增大,R i ≈Ω;u A &减小,e f ' L R R R A u +-≈&≈-。

实验三功率放大电路实验报告

实验三功率放大电路实验 报告 The following text is amended on 12 November 2020.

集成功率放大电路一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1)测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz的正弦频率信号;Vi置最小 (Vi<20mV);在放大器的输出端街上示波器和毫伏表,逐渐增大Vi, 使示波器显示出最大不失真波形,用毫伏表测出电压有效值mox O V,则最大不失真输出功率为: (2)测量功率放大器的效率 : 在保持Vo为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc的输出电流E I,此时电源Vcc提供的直流输出功率为: 注:此处Vcc应为正负电源之差。 功率放大器的效率为:

集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC、-V EE) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E

3、将电流表换至较高档位,接入输入信号v i,按后面要求进行测量。 负载电阻R L=时, 按表分别用示波器测量输出电压峰值为2V和4V时的电流I E,计算输出功率P O、电源供给功率P E和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax和电流I E,并计算此时的输出功率P O,电源供给功率P E 和效率η,填表。 实验需要测量的数值有I E和V omax ,P O,P E ,η由实验数据计算得到,计算公式如下: 实验注意事项: 功率放大器输出大电压大电流,工作在极限状态,产热较多,需要谨慎操作防止烧毁功放; I时刻监视电流表防止电流超过电流表在测量最大不失真电压时的E 量程; V时,一定使输入电压Vi置最小,然后逐渐测量最大不失真电压max O 慢慢增大输入Vi 。

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

放大电路基础知识介绍

1差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 21 v v v =-=, =-=C2 1C v v I 2 1 v A v 放大器双端输出电压 o v = I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 be c I I I O v d r R A v v A v v A V v β-==== 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 c d CMR v v A A K = 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

共射极基本放大电路分析汇总讲解

教案首页

一、组织教学(3分钟) 二、复习旧课5分钟) 三、导入新课(5分钟) 1.检查学生出勤情况、安全文明生产情况; (包括工作服,绝缘鞋等穿戴情况) 2.课前安全教育;按操作规程要求正确操作电器设备的运行。 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是 为了避免产生非线性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎 样计算放大器的放大能力呢? 引入新课题:必须学习如何分析放大电路。 课题:§2-2共发射极低频电压放大电路的分析 强调 安全用电 线 路 板 接 通 电 源 连 接 示 波 器 调 R B 观察示波器中输出电压的波形是否失真, 思考,回答 思 考 , 回 答 讲 授 法 讲 授 法 讲 授 法 稳定课堂秩序,准备上课。 巩固已学知识,为本次课程学习新知识作铺垫。 通过实际生产中的问题引入课程内容,激发学生的求知欲望,达到更好的教学效果。 +U CC + + V C 1 C 2 R B R C u i u o 放大电路的分析方法: 近似估算法; 图解分析法 教师活动 教学方法 设计目的 教学内容与过程 学生活动

四、讲授新课(20分钟) 1、分析静态工作点的估算。 (1) 静态工作点要估算的物理量。 提问:什么是静态工作点? 回答:当静态时,直流量I B 、I C 、U CE 在晶体管输出特性曲线上 所对应的点称为静态工作点。 提问:要确定静态工作点,必须要计算什么量? 回答:I B 、I C 、U CE 。 (2) 计算静态工作点的解题步骤。 启发提问:怎样计算I B 、I C 、U CE 呢? 以例2.1为例子,具体讲解静态的分析解题步骤。 ① 学生阅读例题;(例2.1) ② 画图:共发射极基本放大电路; ③ 提问:什么是直流通路? 回答:直流电流通过的路径。 ④画出放大器的直流通路。 方法:电容视为开路,其余不变 画图:放大器的直流通路 ⑤ 计算I B ; 适度引导板书课 题 讲解 学生阅读例题; 学生自己画出直流通路 +U CC V R B R C I CQ I BQ U BEQ U CEQ

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

电子电路基础知识点总结

电子电路基础知识点总结 1、 纯净的单晶半导体又称本征半导体,其内部载流子自由电子空 穴的数量相等的。 2、 射极输出器属共集电极放大电路,由于其电压放大位数约等于 1,且输出电压与输入电压同相位,故又称为电压跟随器 ( 射极跟随器 )。 3、理想差动放大器其共模电压放大倍数为 0,其共模抑制比为乂。 般情况下,在模拟电器中,晶体三极管工作在放大状态,在 数字电器中晶体三极管工作在饱和、截止状态。 限幅电路是一种波形整形电路, 因它削去波形的部位不同分为 4、 5、 上限幅、 下限幅和双向限幅电路。 6、 主从 JK 触发器的功能有保持、计数、置 0、置 1 。 7、 多级放大器的级间耦合有阻容耦合、直接耦合、变压器耦合。 8、 带有放大环节串联稳压电路由调整电路、基准电路、取样电路 和比较放大电路分组成。 9、 时序逻辑电路的特点是输出状态不仅取决于当时输入状态,还 与输出端的原状态有关。 10、 当PN 结外加反向电压时,空间电荷区将变宽。反向电流是由 少数载流子形成的。

11、 半导体具有热敏性、光敏性、力敏性和掺杂性等独特的导电 特性。 12、 利用二极管的单向导电性,可将交流电变成脉动的直流电。 13、 硅稳压管正常工作在反向击穿区。在此区内,当流过硅稳压 管的电流在较大范围变化时,硅稳压管两端的电压基本不变。 电容滤波只适用于电压较大,电流较小的情况,对半波整流 电路来说,电容滤波后,负载两端的直流电压为变压级次级电压的 倍,对全波整流电路而言较为倍。 15、处于放大状态的NPN 管,三个电极上的电位的分布必须符合 UC>UB>UE 而PNP 管处于放大状态时,三个电极上的电位分布须符合 UE>UE>UC 总之,使三极管起放大作用的条件是:集电结反偏,发射 结正偏。 16、 在 P 型半导体中,多数载流子是空穴,而 N 型半导体中,多 数载流子是自由电子。 晶体管放大器设置合适的静态工作点,以保证放大信号时, 三极管应始终工作在放大区。 般来说,硅晶体二极管的死区电压大于锗管的死区电压。 14、 17、 二极管在反向截止区的反向电流基本保持不变。 18、 当环境温度升高时,二极管的反向电流将增大。 19、 20、

短学期(功率放大器电路图设计及Proteus仿真)

电子线路安装实验 —功率放大器电路图设计及Proteus仿真 一、仿真目的 (1)学习proteus仿真和调试 (2)理论结合实际,很好地与电路调试结合; 二、仿真内容 1、话筒放大电路静态工作点、输入输出波形、计算放大倍数、频率响应(幅频特性曲 线和相频特性曲线) (1)静态工作点 由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20kΩ(亦有低输出阻抗的话筒如20Ω,200Ω等),所以话音放大器的作用是不失真地放大声音信号(最高频率达到10kHz)。其输入阻抗应远大于话筒的输出阻抗。 放大电路由一个共射放大电路和一个共集放大电路组成,根据理论计算得到:Q1的静态工作点:ub1=0.64v,ue1=0.04 v,uc1=2.14 v Q2的静态工作点:ub2=2.14 v,ue2=1.44 v,uc2=4.29 v 由实际仿真电路图中的电压探针可知: 晶体管Q1 : UBQ1=0.692,UCQ1=2.171,UEQ1 =0.042, IBQ1=1.632uA,ICQ 1=0.415mA, IEQ1=0.417mA, 晶体管Q2: UBQ2=2.171,UCQ2=4.300,UEQ2=1.516, IBQ2=1.950uA,ICQ 2=0.504mA, IEQ2=0.506mA, β =255倍

可见,实际与理论误差不大,因此该电路能正常工作在放大区。图中C 3 是为了滤掉直流电的叠加,使输出结果仅受交流正弦波影响。 经过proteus调试得出输入、输出波形图如图所示:当电路工作在放大区时, 经理论计算得出,Au=-βR 4/[r be +(1+β)R 2 ]=30 在实际电路中,令输入电压Ui= 5mv,输出电压U0=175mv 得电压放大倍数Au=30,非常接近理论值。 (2)输入输出波形

电子电路基础知识点总结

知识| 电子电路基础知识点总结 1、纯净的单晶半导体又称本征半导体,其内部载流子自由电子空穴的数量相等的。 2、射极输出器属共集电极放大电路,由于其电压放大位数约等于1,且输出电压与输入电压同相位,故又称为电压跟随器(射极跟随器)。 3、理想差动放大器其共模电压放大倍数为0,其共模抑制比为∞。 4、一般情况下,在模拟电器中,晶体三极管工作在放大状态,在数字电器中晶体三极管工作在饱和、截止状态。 5、限幅电路是一种波形整形电路,因它削去波形的部位不同分为上限幅、下限幅和双向限幅电路。 6、主从JK触发器的功能有保持、计数、置0、置1 。 7、多级放大器的级间耦合有阻容耦合、直接耦合、变压器耦合。 8、带有放大环节串联稳压电路由调整电路、基准电路、取样电路和比较放大电路分组成。 9、时序逻辑电路的特点是输出状态不仅取决于当时输入状态,还与输出端的原状态有关。 10、当PN结外加反向电压时,空间电荷区将变宽。反向电流是由少数载流子形成的。 11、半导体具有热敏性、光敏性、力敏性和掺杂性等独特的导电特性。 12、利用二极管的单向导电性,可将交流电变成脉动的直流电。 13、硅稳压管正常工作在反向击穿区。在此区内,当流过硅稳压管的电流在较大范围变化时,硅稳压管两端的电压基本不变。 14、电容滤波只适用于电压较大,电流较小的情况,对半波整流电路来说,电容滤波后,负载两端的直流电压为变压级次级电压的1倍,对全波整流电路而言较为1.2倍。15、处于放大状态的NPN管,三个电极上的电位的分布必须符合UC>UB>UE,而PNP 管处于放大状态时,三个电极上的电位分布须符合UE>UE>UC。 总之,使三极管起放大作用的条件是:集电结反偏,发射结正偏。

实验三功率放大电路实验报告

集成功率放大电路 一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功 率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1) 测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值 mox O V ,则最大不失真输出功率为: 2max max O O L V P R = (2)测量功率放大器的效率 η: 在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为: ×E E CC P I V = 注:此处Vcc 应为正负电源之差。

功率放大器的效率为: max = O E P P 集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC 、-V EE ) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E 3、将电流表换至较高档位,接入输入信号v i ,按后面要求进行测量。 负载电阻R L = 时, 按表分别用示波器测量输出电压峰值为2V 和4V 时的电流I E ,计算输出功率P O 、电源供给功率P E 和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax 和电流I E ,并计算此时的输出功率P O ,电源供给功率P E 和效率η,填表。 峰值 I E P O P E η

基本放大电路知识题目解析

习 题 2.1基本要求 1.熟练掌握三种组态的BJT 基本放大电路的构成、工作原理;熟练估算其直流工作点、交流指标。 2.熟悉三种组态的BJT 基本放大电路的性能差异。 3.熟练掌握BJT 放大电路的模型分析法:会根据BJT 的直流模型作静态分析;根据交流小信号模型作动态分析。 4.熟悉图解法。 5.了解射极偏置电路稳定工作点的原理、作电流源的原理以及电流源的应用 2-1 在共射基本放大电路中,适当增大R C ,电压放大倍数和输出电阻将有何变化。 A .放大倍数变大,输出电阻变大; B .放大倍数变大,输出电阻不变 C .放大倍数变小,输出电阻变大; D .放大倍数变小,输出电阻变小 解:共射放大电路C be //(L u R R A r β =-,o C r R = 所以选择a 2-2 电路如图2-35所示,已知V CC =12 V ,R C =2 k Ω,晶体管的β=60,U BE =0.3 V, I CEO =0.1 mA,要求: (1) 如果欲将I C 调到1.5 mA,试计算R B 应取多大值?(2) 如果欲将U CE 调到3 V ,试问R B 应取多大 值? 图2-35 题2-2图

解:1)C B 1.5I βI mA == B 0(12)0.3 1.5/600.025B I mA R ---=== 所以B 468R k =Ω 2)C 3 123 4.5210 I mA -= =?,B 0(12)0.34.5/600.075B I mA R ---===所以B 156R k =Ω 2-3 电路图2-36所示,已知晶体管的β=60,r be k =1Ω,BE U =0.7 V ,试求:(1)静态工作点 I B , I C ,U CE ;(2) 电压放大倍数;(3) 若输入电压 mV sin 210i t u ω=,则输出电压U o 的有效值为多少? V 解:1)计算电路的静态工作点: B 120.7 0.04270 I mA -= = C B 0.0460 2.4I I mA β==?= CE 12 2.43 4.8U V =-?= 2)对电路进行动态分析 o L u i be 6031801 U βR A U r '-?= =-==- 3)0180101800u i U A U =?=?=V 所以输出电压的有效值为1800V 1.放大器中的信号是交、直流共存的。交流信号是被放大的量;直流信号的作用是使放大器工作在放大状态,且有合适的静态工作点,以保证不失真地放大交流信号。 2.若要使放大器正常地放大交流信号,必须设置好工作状态及工作点,这首先需要作直流量的计算;若要了解放大器的交流性能,又需要作交流量的计算。而直流量与交流量的计算均可采用模型分析法,并且是分别独立进行的。切不可将两种信号混为一谈。放大器的直流等效电路用于直流量的分析;交流小信号等效电路用于交流量的分析。 3.BJT 是非线性器件,不便直接参与电路的计算。一般需将其转换为模型,来代替电路中的三极管。在放大器直流等效电路中,采用BJT 的直流放大模型;在放大器交流小信号等效电路中,采用BJT 的

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

高频谐振功率放大器仿真实训报告书

高频功率放大器仿真实训作业 班级 姓名 教师 时间

一、实验目的 1、Multisim常用菜单的使用; 2、熟悉仿真电路的绘制及各种测量仪器设备的连接方法; 3、学会利用仿真仪器测量高频功率放大器的电路参数、性能指标; 4、熟悉谐振功率放大器的三种工作状态及调整方法。 二、实验内容及步骤 1、利用Multisim软件绘制高频谐振功率放大器如附图1所示的实验电路。 附图1 高频谐振功率放大器实验电路 2、谐振功率放大器的调谐与负载特性调整 (1)调节信号发生器,使输入信号f i=465KHz 、U im=290mV,用示波器观察集电极和R1上的电压波形,调节负载回路中的可变电容C1,得到波形如下: 此时,功率放大器工作在状态。

(2)维持输入信号的频率不变,逐步减小R2,使R1上的电压波形为最大的尖顶余弦脉冲,得到波形如下: 此时,功率放大器工作在状态。 3、集电极调制特性 输入信号维持不变、V1、R2均维持不变,将VCC由小变大: (1)将VCC设置为9V,按下仿真电源开关,双击示波器,即可得到波形如下: (2)将VCC设置为12V,按下仿真电源开关,双击示波器,即可得到波形如下: (3)将VCC设置为18V,按下仿真电源开关,双击示波器,即可得到波形如下: 总结:

4、基极调制特性 (1)输入信号维持不变、VCC、R2均维持不变,将V1由小变大: 1)将V1设置为350mV,按下仿真电源开关,双击示波器,即可得到如下波形: 2)将V1设置为400mV,按下仿真电源开关,双击示波器,即可得到如下波形: 3)将V1设置为415mV,按下仿真电源开关,双击示波器,即可得到如下波形: 总结: (2)V1、VCC、R2均维持不变,将输入信号由小变大: 1)将输入信号设置为280mv,按下仿真电源开关,双击示波器,即可得到如下波形: 2)将输入信号设置为290mV,按下仿真电源开关,双击示波器,即可得到如下波形: 3)将输入信号设置为300mV,按下仿真电源开关,双击示波器,即可得到如下波形:

基本共射极放大电路电路分析

基本共射极放大电路电路分析 基本共射放大电路 1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。 2.电路组成:(1)三极管T; (2)VCC:为JC提供反偏电压,一般几~几十伏; (3)RC:将IC的变化转换为Vo的变化,一般几K~几十K。 VCE=VCC-ICRC RC,VCC同属集电极回路。 (4)VBB:为发射结提供正偏。 (6)Cb1,Cb2:耦合电容或隔直电容,其作用是通交流隔直流。 (7)Vi:输入信号 (8)Vo:输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公

共端之间的电位差。图中各电压的极性是参考极性,电流的 参考方向如图所示。 3.共射电路放大原理 4.放大电路的主要技术指标 放大倍数/输入电阻Ri/输出电阻Ro/通频带 (1)放大倍数

(2)输入电阻Ri (3)输出电阻Ro

(4)通频带 问题1:放大电路的输出电阻小,对放大电路输出电压的稳定性是否有利? 问题2:有一个放大电路的输入信号的频率成分为100Hz~10kHz,那么放大电路的通频带应如何选择?如果放大电路的通频带比输入信号的频带窄,那么输出信号将发生什么变化? 放大电路的图解分析法 1.直流通路与交流通路 静态:只考虑直流信号,即Vi=0,各点电位不变(直流工作状态)。 动态:只考虑交流信号,即Vi不为0,各点电位变化(交流工作状态)。 直流通路:电路中无变化量,电容相当于开路,电感相当于短路。 交流通路:电路中电容短路,电感开路,直流电源对公共端短路。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 直流通路

相关主题
文本预览
相关文档 最新文档