当前位置:文档之家› 永磁同步电机新型滑模观测器无传感器矢量控制调速系统_鲁文其

永磁同步电机新型滑模观测器无传感器矢量控制调速系统_鲁文其

永磁同步电机新型滑模观测器无传感器矢量控制调速系统_鲁文其
永磁同步电机新型滑模观测器无传感器矢量控制调速系统_鲁文其

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 学院班级信电工程学院13自动化 专业名称电气工程及其自动化 指导教师肖理庆 2016年6月14日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (2) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (3) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) .. 7 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13) 附录2 (13)

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

异步电机矢量控制仿真

2.5异步电机基于磁场定向的矢量控制系统仿真 学号:S16085207020 姓名:李端凯 图1 矢量控制仿真模型整体结构图 图2 id*求解模块 图3 iq*求解模块

图4 DQ到ABC坐标转换模块 图5 求解转子磁链角模块 图6-1 ABC到DQ坐标转换模块 在这一部分转换中包含两种变换——3/2变换和旋转变换。在交流电动机中三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效,三相静止坐标系和两相静止坐标系的变换则建立了磁动势不变情况下,三相绕组和两相绕组电压、电流和磁动势之间的关系。图1绘出了ABC 和αβ两个坐标系中的磁动势矢量,按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在α、β轴上的投影都应相等,于是得:

()233332333cos60cos6011 ()22 sin 60sin 602a b c a b c b c b c N i N i N i N i N i i i N i N i N i N i i αβ=--=--=-=+ 写成矩阵形式: 图6-2 ABC 和αβ两个坐标系中的磁动势矢量 111220a b c i i i i i αβ???-- ?????=??????????? 再就是旋转变换,两相静止坐标系和两相旋转坐标系的变换(简称2s/2r 变换),两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势。从两相静止坐标系到两相旋转坐标系的变换,称为两相旋转-两相静止变换,简称2s/2r 变换。其变换关系为: cos sin sin cos d q i i i i αβφφφφ-??????=???????????? 由此整理得到: 111cos sin 22sin cos 0a d b q c i i i i i φφφφ????-- ????????=?????-?????????? 同理可得:DQ 到ABC 坐标转换则是其逆变换。 图7 求解磁链模块

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

电机调速控制系统设计

一、问题描述 针对电机调速控制系统,设计计算机可实现的PID 控制器,利用simulink 平台实验研究,确定最佳的离散周期并给出实验结果分析和与连续PID 控制器的比较。离散控制器输出连续的受控过程时加零阶保持器。 有余力的同学可尝试设计最小拍无波纹控制器。 二、理论方法分析 离散控制系统所特有的一个参数就是采样周期。可以说离散控制系统的采样周期的选择的基本原则是活的最高的体统性能性价比。 由于采样周期的选择是众多因素的折中考虑,所以一般中有一些近似的计算公式和经验数值可以利用。 在PID 整定完的系统中,对于输入阶跃响应信号可以用两种方法计算出采样周期; ⑴考虑系统阶跃响应的上升时间r t ,则有采样周期24 r s r t T t ≤≤;r t 表示系统的反映速度。 ⑵知道系统是有自平衡的过程,采用过程时间常数 95T ,95T 定义为阶跃响应)(t y 从0变到95%)(∞y 的时间,它综合反映了过程的自平衡能力,其经验公式为 95 9517.007.0T T T s ≤≤。 三、实验设计与实现 搭建Simulink 图后,观测输出波形,发现,上升至95%所需时间约为0.268s

因为959517.007.0T T T s ≤≤。故取Ts 为0.02. 再搭建离散控制系统Simulink 图 四、实验结果与分析 PID 控制器与离散控制比较。见下图:

比较后发现:利用离散控制系统设计的系统性能指标能够达到PID所要求的水平。 五、结论与讨论 利用离散控制系统设计方法设计的离散控制系统与PID整定法设计的连续控制系统性能基本接近。 但在某些场合,特别是现代的工业过程控制中,利用数字电子元件设计的系统有诸多优势:例如方便与计算机相连,便于历史、实时数据存储和传输等 事后感: 由于这部分理论知识学习的不扎实,实验过程中似有“云里雾里”之感…… 参考文献: [1] 杨平等编著,自动控制原理实验与实践. 北京:中国电力出版社,2005 [2] 杨平等编著,自动控制原理理论篇. 北京:中国电力出版社,2009

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路 输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

永磁同步电机矢量控制

永磁同步电机矢量控制 1 引言 永磁同步电机(PMSM)体积小,重量轻,转子无发热问题,具有损耗低、电气时间常数小、响应快等特点,因此在高控制精度与高可靠性等方面显示出优越的性能,永磁同步电动机调速系统正在成为近代交流调速领域中研究的一个热门课题。 2 基本原理 (1) PMSM 的数学模型 dq0 坐标系中,永磁同步电动机的基本电压方程通常可以表示为 d s d d q q s q q d u R i p u R i p ψωψψωψ=+-=++ 式中u d ,u q 为定子电压的直、交轴分量;R s 为定子绕组电阻;p 为微分算子;ω为电动机转子角频率。 定子磁链方程为 d d d f q q q L i l i ψψψ=+= 式中ψd ,ψq 为转子坐标系下直、交轴磁链;L d ,L q 为PMSM 的直轴、交轴电感;i d ,i q 为定子电流的直、交轴分量;ψf 为转子磁钢在定子上的耦合磁链。 永磁同步电机的转矩方程为 ()()33 22 e m d q q q m f q d q d q T p i i p i L L i i ψψψ??= -=+-?? 式中p m 为永磁同步电机的极对数。 (2) PMSM 的转子磁场定向控制策略 PMSM 的电磁转矩基本上取决于定子交轴分量和直轴电流分量,在矢量控制下,采用按转子磁链定向(i d =0)控制策略,使定子电流矢量位于q 轴,而无d 轴分量,既定子电流全部用来产生转矩,此时,PMSM 的电压方程可写为: d q q s q q d u u R i p ωψψωψ==++ 电磁转矩方程为: 3 2 e m f q T p i ψ= 此种控制方式最为简单,只要准确地检测出转子空间位置(d 轴),通过控制逆变器使三相定子的合成电流(磁动势)位于q 轴上,那么,PMSM 的电磁转矩只与定子电流的幅值成正比,即控制定子电流的幅值就能很好地控制电磁转矩,此时PMSM 的控制就类似于直流电机的控制。图1给出PMSM 调速控制系统原理框图。

基于PLC的电机调速控制系统

控制系统课程设计 项目名称:以西门子S7-200为核心的电机速度监控 系统 学生姓名 / 学号: 卢泽涛 1307300108 吴钟森 1307300105 夏杰东 1307300107 指导老师:黄峥 班级电气133 专业名称电气工程及其自动化 提交日期 2016 年 12月 15 日 答辩日期 2016 年 12月 15日

一、系统整体功能说明及软硬件选型 1、通过PLC控制变频器,实现远程方式控制控制鼠笼式异步电动机的正反转及速度。 2、将编码器中与转速相对应的输出电压采集到PLC中。 3、通过PLC编写PID控制程序,控制电机的转速。 4、应用触摸屏组态软件设计控制系统的界面,与PLC进行动态连接,可在界面中控制电机的转速,显示变频器的频率、电机的正反转状态、实际转速等。 5、设置电机的正常转速范围(上、下限),当电机转速超出正常范围时,停机并报警,并可复位报警信号。 6、软硬件选型说明表如下: 二、 I/O点与输入输出设备对应关系表 PLC与变频器对应接线表

组态软件与PLC通信关系表 另外,变频器U、V、W端口分别接电机A、B、C三相,如图: 三、系统的原理图,包括主电路和控制电路。

四、软硬件相关设置的说明 1、软件相关设置:MCGS组态软件与西门子s7-200PLC连接相关设置如下: 2、欧姆龙变频器参数设置:n01=08;n02=01;n03=02;n32=0.4

五、程序功能的详细说明 1、MCGS组态设计,设计的界面以及功能如下: (1)电机运转前必须先输入转速(例如800 r/min)然后点击正转或反转按钮,为了安全,在电机转向切换时,先按停止,待电机停下再进行转向变换。 (2)该组态设置了电机转速报警,大于上限值(例如|1200| r/min)时停机报警。 (3)该组态可精准转换编码器转速对应频率。 (4)PID控制参数于PLC程序中编好,采用效果最好的一组。 (5)各参数设置详见上文第四硬件设置部分。 2、西门子s7-200PLC原程序详细说明如下:(见下页)

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

永磁同步电机矢量控制原理

永磁交流同步电机矢量控制理论基础 0、失量控制的理论基础是两个坐标系变换,这是每一个学习过交流调速的人应 该熟记的两种变换。介于目前市面上流行的各类书籍的这一部分总有些这里那里的问题(也就是错误)。为了自己不被误导,干脆自己推导一边,整理如下。所有的推导针对3相永磁同步电机的矢量控制。 1、永磁交流同步电机的物理模型。 首先看几张搜集的图/照片,图1~7: 现分别说明如下: a.图1~3可以看出电机定子的情况。我和大家都比较熟悉圆圈中间加个“叉” 或者“点”的定子,通过这几张图应该比较清楚地认识定子的结构了。 b.图1中留出4个抽头,其中一个应该是中线,但是,在伺服用的永磁同步 电机,只连接3根线的。 c.图2是一个模型,红蓝黄三色代表三相绕组,在定子齿槽中上下穿梭,形 成回路的。 d.定子绕线连接可以从图7很清楚地看到,从A进入开始,分别经过1(上), 7(下),2(上),8(下),14(上),8(下),13(上),7(下),

13(上),19(下),14(上),20(下),2(上),20(下),1(上), 19(下)然后到X。一相绕组经过8个齿槽,占全部齿槽的1/3,每个齿 槽过两次,但每次方向是相同的。最后上上下下的方向如同图6所示。 e.三相绕组通电后,形成如同图6所示的电流分布,每相邻的6根是电流同 方向的。这样,如果把1和24像纸的里面拉,将这一长排围城一个圆, 则,1和7之间向里形成N(磁力线出)极的中心,12和13之间形成S (磁力线入)极的中心。这里,个人认为图6中的N、S分段有些错误, 中心偏移了,不知道是不是理解错误,欢迎指正,这图是我找的,不是我 画的,版权不属我:)。 f.同极磁场的分布有中心向两侧减弱的,大家都说是正弦分布,我是没分析 过,权且认同吧,如图5所示。 g.如图1同步电机的运转就是通过旋转定子磁场,转子永磁磁极与定子的磁 极是对应的N、S相吸,可以同步地运行。 h.实际电机定子槽数较多,绕线方式也有不同。旋转磁场的旋转是通过如图 6中的一个磁极6个齿槽一起向右/左侧移位 2、永磁同步电机数学模型 这才是本文的重点。学习这部分,先不要考虑电机,直接死记两种变换。 这两个变换都是定子侧的电流旋转,旋转的原则是,不论怎么变换都是其实都是一种假想的坐标系,一种变换游戏,都只有原始的三相绕线,通三相电流。 变换的目的是从中找出另外一个与电机转矩又直接关系的“状态量”——转矩电流,来控制转矩。实际矢量控制时,这一切变换都是在计算机里完成,最后又通过控制三相电流的,但此时的三相电流给定值可以保证这个“状态量”是我想要的那个数值。为什么非要变换?因为要对电机进行控制(速度控制),使电机按照你的意图运转,必须控制加到电机转子上的转矩,而转矩与三相电流之间的直接对应关系是没法直接写出来的,(如同质量与重量之间的关系,速度与位移之间的关系这么简单)。只有通过变换,才可以清楚地找出这个对应关系,其实, 图8定子静止三相到静止两图9 静止两相到旋转两相的变换

电机调速控制设计

系统设计专题之电机调速控制设计 学院:自动化与电气工程学院 班级:******** 姓名:***** 学号:******* 日期:*******

1CPLD系统简介 1.1CPLD简介 CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL 和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。 1.2CPLD系统的基本构架 主要包括有处理器、外围电路及接口和外部设备三大部分其中外围电路一般包括有时钟、复位电路、。程序存储器、数据存储器和电源模块等部件组成。外部设备一般应配有USB、显示器、键盘和其他等设备及接口电路。在一片CPLD 微处理器基础上增加电源电路、时钟电路和存储器电路,就构成了一个CPLD核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1.3CPLD系统的特点 采用32位EPM3032A微处理器和实时操作系统组成的CPLD控制系统,与传统基于单片机的控制系统和基于PC的控制方式相比,具有以下突出优点:性能方面:采用32位RISC结构微处理器,主频从30MHz到1200MHz以上,接近PC机的水平,但体积更小,能够真正地“嵌入”到设备中。 实时性方面:CPLD机控制器内嵌实时操作系统(RTOS),能够完全保证控制系统的强实时性。 人机交互方面:CPLD控制器可支持大屏幕的液晶显示器,提供功能强大的图形用户界面,这些方面的性能也接近于PC,优于单片机。 系统升级方面:CPLD控制器可为控制系统专门设计,其功能专一,成本较低,而且开放的用户程序接口(API)保证了系统能够快速升级和更新。 1.4CPLD技术的应用领域 CPLD技术可应用在:工业控制;交通管理;信息家电;家庭智能管理;网络及电子商务;环境监测;机器人等领域。 在工业和服务领域中,大量CPLD技术也已经应用于工业控制、数控机床、智能工具、工业机器人、服务机器人等各个行业,正在逐渐改变着传统的工业生产和服务方式。例如,飞机的电子设备、城市地铁购票系统等都可应用CPLD系统来实现。

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

用单片机控制的电机交流调速系统设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 用单片机控制的电机交流调速系统设计 摘要 单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,HEF4752大规模集成电路,保护电路,Intel系列单片机,Intel8253定时记数器,Intel8255可编程接口芯片,Intel8279通用键盘显示器,IO接口芯片,CD4527比例分频器和测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。非传统的CMOS变革了存储器技术。直到现在,我们仍然依靠DRAM 作为主要的存储体。不幸的是,随着芯片的缩小,只有芯片外围速度上的增长——处理器芯片和它相关的缓存速度每两年增加一倍。这就是存储器代沟并且是人们焦虑的根源。存储技术的一个可能突破是,使用一种非传统的CMOS管,在计算机整体性能上将导致一个很大的进步,将解决大存储器的需求,即缓存不能解决的问题。 关键词:MCS-51单片机;HEF4752;8253定时器;晶闸管;整流器

Exchange the speed of adjusting to design systematically with the electrical machinery that the one-chip computer controls ABSTRACT Frequency conversion that one-chip computer control transfer speed systematic design philosophy with transfer to difference frequency control. Achieve the goal of controlling rotational speed through changing the procedure . Because the motor is not big in power in the design, the rectifier can not adopt controlledly the circuit, the condenser strains waves; Going against the becoming device adopts three phases of the electric transistor to go against the becoming device. The systematic ensemble architecture is by the main return circuit mainly, drive the circuit, the photo electricity isolates the circuit, HEF4752 large scale integrated circuit, protects the circuit, the Intel series one-chip computer, Intel8253 timing count device of,Intel8255 programmable interface chip,Intel8279 keyboard not in common use display, IO interface chip, CD4527 proportion frequency division device and tests the speed such composition as the generator ,etc.. Have the dependability that can make the whole system operate of measuring and protecting the circuit to the return circuit.Unconventional CMOS could revolutionalize memory technology. Up to now, we DRAMs for main memory. Unfortunately, these are only increasing in speed marginally as shrinkage continues, whereas processor chips and their associated cache memory continue to double in speed every two years. The result is a growing gap in speed between the processor and the main memory. This is the memory gap and is a current source of anxiety. A breakthrough in memory technology, possibly using some form of unconventional CMOS, could lead to a major advance in overall performance on problems with large memory requirements, that is, problems which fail to fit into the cache.

相关主题
文本预览
相关文档 最新文档