当前位置:文档之家› 多元时间序列建模分析

多元时间序列建模分析

多元时间序列建模分析
多元时间序列建模分析

应用时间序列分析实验报告

实验过程记录(含程序、数据记录及分析和实验结果等):时序图如下:

单位根检验输出结果如下:

序列x的单位根检验结果:

序列y的单位根检验结果:

序列y和序列x之间的相关图如下:

协整模型为:

1ln 0.99179ln 0.69938t t t t y x εε-=+-

误差修正模型为:

1ln 0.9786ln 0.22395t t t y x ECM -?=?-

SAS 程序如下:

data example6_4; input x y; t=_n_; cards ; 1950 20.0 21.3 1951 24.2 35.3 1952 27.1 37.5 1953 34.8 46.1 1954 40.0 44.7 1955 48.7 61.1 1956 55.7 53.0 1957 54.5 50.0 1958 67.0 61.7 1959 78.1 71.2 1960 63.3 65.1 1961 47.7 43.0 1962 47.1 33.8 1963 50.0 35.7 1964 55.4 42.1 1965 63.1 55.3 1966 66.0 61.1 1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1

1989 1956.0 2199.9

1990 2985.8 2574.3

1991 3827.1 3398.7

1992 4676.3 4443.3

1993 5284.8 5986.2

1994 10421.8 9960.1

1995 12451.8 11048.1

1996 12576.4 11557.4

1997 15160.7 11806.5

1998 15223.6 11626.1

1999 16159.8 13736.5

2000 20634.4 18638.8

2001 22024.4 20159.2

2002 26947.9 24430.3

2003 36287.9 34195.6

2004 49103.3 46435.8

2005 62648.1 54273.7

2006 77594.6 63376.9

2007 93455.6 73284.6

2008 100394.9 79526.5

run;

proc gplot;

plot x*t=1 y*t=2/overlay;

symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run;

proc arima data=example6_4;

identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run;

proc arima;

identify var=y crrosscorr=x;

estimate methed=ml input=x plot; forecast lead=0id=t out=out;

proc aima data=out;

identify varresidual stationarity=(adf=2); run;

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

平稳时间序列的模型

目录 摘要 (1) 第一章绪论 (2) 1.1 时间序列模型的发展及其作用 (2) 1.2 什么是时间序列模型 (2) 1.3 本文研究的主要方法和手段 (2) 1.4 本文主要研究思路及内容安排 (2) 第二章 ARMA模型 (4) 2.1 ARMA模型的基本原理 (4) 2.2 样本自协方差函数、自相关函数和偏相关函数 (4) 2.3 ARMA模型识别方法 (5) 2.4 模型参数估计 (6) 第三章实例分析 (7) 3.1 题目 (7) 3.2 问题分析 (7) 3.3 问题求解 (8) 3.3.1数据的观测 (8) 3.3.2数据处理 (8) 3.3.3求解自相关和偏相关函数 (8) 3.4 模型的识别及求解 (9) 3.5 结论 (11) 参考文献 (12) 附录 (12) 评阅书 (15)

《随机过程》课程设计任务书

摘要 ARMA模型是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。ARMA模型广泛应用在经济、工程等各个领域得益于其在具体预测方面的优势。在许多方面用该模型所作出的预测比其他传统经济计量方法更加精确。平稳时间序列模型主要有自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)等,这些线性模型考虑因素较简单。自回归滑动平均模型(ARMA)计算简单,易于实时更新数据。 本文描述了ARMA模型的原理、自相关函数和偏相关函数的计算过程、模型的识别方法以及ARMA模型的计算过程。并给出一组平稳时间序列的数据,对数据进行分析和处理,求出自相关系数和偏相关,并利用MATLAB软件画出自相关系数和偏相关图形,有图可知它们都是拖尾的,因此可以确定是) ARMA模 p , (q 型。接下来就是确定) ARMA的阶数,本文采用了AIC准则确定模型的阶数, p , (q 在实际问题中,为使线性模型简单起见,通常p与q的数值被取得较小,却需都不为零。确定阶数后,就用我们学过的求解方法解出未知的参数,这样我们就得到了混合模型的表达式。 关键字:) ARMA模型,自相关函数,偏相关函数 p , (q

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析与建模简介

第五章时间序列分析与建模简介 时间序列建模( Modelling viatime series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box和Jenkins。本章扼要介绍吴宪民和Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型ARMA (n,m) 为Φ(z-1)xk= θ(z-1)a k式

(5-1-1) 其中:Φ (z -1) = 1- φ1 z -1-…- φn z-n θ (z -1) = 1- θ1 z -1-…- θm z-m 离散传函 式(5-1-2) 为与参考书符号一致,以下用B表示时间后移算子 即: B xk = x k -1 B即z -1,B 2即z -2… Φ (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;θ(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数Gi 格林函数G i 用以把x t 表示成a t 及at 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.A R(1): xt - φ1x t-1 = a t x B B B a B B a a t t t j t j j ==-=+++=-=∞∑θφφφφφ()()()1111112210 )()()(111---=z z z G φθ∑∞=-=0j j t j t a G x

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

平稳时间序列模型及其特征

第一章平稳时间序列模型及其特征 第一节模型类型及其表示 一、自回归模型(AR) 由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型: X t=φX t-1+εt(2.1.1)常记作AR(1)。其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。 如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t- X t-p在内的p阶自回归模型来加以刻画。P阶自回归模型的一1 ,…… 般形式为: X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(2.1.2)为了简便运算和行文方便,我们引入滞后算子来简记模型。设B 为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。利用这些记号,(2.1.2)式可化为: X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt 从而有: (1-φ1B-φ2B2-……-φp B p)X t=εt 记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表

示成 φ(B)X t=εt (2.1.3) 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt 二、滑动平均模型(MA) 有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即 X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.4) 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。相应的序列X t称为滑动平均序列。 使用滞后算子记号,(2.1.4)可写成 X t=(1-θ1B-θ2B2-……- θq B q)q t=θ(B)εt (2.1.5) 三、自回归滑动平均模型 如果序列{X t}的当前值不仅与自身的过去值有关,而且还与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为: X t=φ1X t-1+φ2X t-2+……+φp X t-p+εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.6) 简记为ARMA(p, q)。利用滞后算子,此模型可写为 φ(B)X t=θ(B)εt(2.1.7)

时间序列建模案例VAR模型分析报告与协整检验

传统的经济计量方法是以经济理论为基础来描述变量关系的模型。但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构性方法来建立各个变量之间关系的模型。本章所要介绍的向量自回归模型(vector autoregression ,VAR)和向量误差修正模型(vector error correction model ,VEC)就是非结构化的多方程模型。 向量自回归(VAR)是基于数据的统计性质建立模型,VAR 模型把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而将单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。VAR 模型是处理多个相关经济指标的分析与预测最容易操作的模型之一,并且在一定的条件下,多元MA 和ARMA 模型也可转化成VAR 模型,因此近年来VAR 模型受到越来越多的经济工作者的重视。 VAR(p ) 模型的数学表达式是 t=1,2,…..,T 其中:yt 是 k 维内生变量列向量,xt 是d 维外生变量列向量,p 是滞后阶数,T 是样本个数。k ?k 维矩阵Φ1,…, Φp 和k ?d 维矩阵H 是待估计的系数矩阵。εt 是 k 维扰动列向量,它们相互之间可以同期相关,但不与自己的滞后值相关且不与等式右边的变量相关,假设 ∑ 是εt 的协方差矩阵,是一个(k ?k )的正定矩阵。 11t t p t p t t --=+???+++y Φy Φy Hx ε

注意,由于任何序列相关都可以通过增加更多的yt 的滞后而被消除,所以扰动项序列不相关的假设并不要求非常严格。 以1952一1991年对数的中国进、出口贸易总额序列为例介绍VAR 模型分析,其中包括;① VAR 模型估计;②VAR 模型滞后期的选择;③ VAR 模型平隐性检验;④VAR 模型预侧;⑤协整性检验 VAR 模型佑计 数据 εε εε

时间序列分析简介与模型

第二篇 预测方法与模型 预测是研究客观事物未来发展方向与趋势的一门科学。统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。 预测包含定性预测法、因果关系预测法和时间序列预测法三类。本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。 第五章 时间序列分析 在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。本章介绍其中的时间序列分析预测法。此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。 第一节 时间序列简介 所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。它的时间单位可以是分钟、时、日、周、旬、月、季、年等。

一、时间序列预测法 时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。 二、时间序列数据的特点 通常,时间序列经过合理的函数变换后都可以看作是由三个部分叠加而成,这三个部分是趋势项部分、周期项部分和随机项部分。 1. 趋势性 许多序列的一个最主要的特征就是存在趋势。这种趋势可能是向下的也可能是向上的,也许比较陡,也许比较平缓,或者是指数增长,或者近似线性。总之,时间序列的趋势性是依据时间序列进行预测的本质所在。 2. 季节性/周期性 当数据按照月或季观测时,通常的情况是这样的:时间序列会呈现出明显的季节性。对季节性也不存在一个非常精确的定义。通常,当某个季节的观测值具有与其它季节的观测值明显不同的特征时,就称之为季节性。 3. 异常观测值 异常观测值指那些严重偏离趋势围的特殊点。异常观测值的出现往往是由于某些不可抗 1958 年自然灾害和1966年左右“文化大革命”对我国经拒的外部条件的影响。如1960 济的影响,造成经济指标陡然下降现象;1992年,我国银行紧缩政策造成的房地产业泡沫破灭,而使得房地产业的经济数据发生突然变化的例子等等。 4. 条件异方差性 所谓条件异方差性,表现出来就是异常数据观测值成群地出现,故也称为“波动积聚性”。由于方差是风险的测度,因此波动存在的积聚性的预测对于评估投资决策是很有用的,对于期权和其它金融衍生产品的买卖决策也是有益的。 5. 非线性 对非线性的最好定义就是“线性以外的一切”。非线性常常表现为“机制转换”(regime witches)或者“状态依赖”(State pendence)。其中状态依赖意味着时间序列的特征依赖于其现时的状态;不同的时刻,其特征不一样。当时间序列的特征在所有的离散状态都不一样时,就成为机制转换特性。 三、时间序列的分类 1. 按研究的对象的多少可分为单变量时间序列和多变量时间序列。 如果所研究的对象是一个变量,如某个国家的国生产总值,即为单变量时间序列。果所研究的对象是多个变量,如按年、月顺序排列的气温、气压、雨量数据,为多变量时间序列。多变量时间序列不仅描述了各个变量的变化规律,而且还表示了各变量间相互依存关系的动态规律性。 2. 按时间的连续性可将时间序列分为离散时间序列和连续时间序列。 如果某一序列中的每一个序列值所对应的时间参数为间断点,则该序列就是一个离散时间序列。如果某一序列中的每个序列值所对应的时间参数为连续函数,则该序列就是一个连续时间序列。 3. 按序列的统计特性可分为平稳时间序列和非平稳时间序列两类。

平稳时间序列的ARMA模型

第五讲(续) 平稳时间序列的ARMA模型 1

2 1 平稳性 有一类描述时间序列的重要随机模型受到了人们的广泛关注,这就是所谓的平稳模型。这类模型假设随机过程在一个不变的均值附近保持平衡。其统计规律不会随着时间的推移发生变化。平稳的定义分为严平稳和宽平稳。 定义1(严平稳) 设{},t x t T ∈是一个随机过程,t x 是在不同的时刻t 的随机变量,在不同的时刻t 是不同的随机变量,任取n 个值1,,n t t 和任

3 意的实数h ,则1,,n x x 分布函数满足关系式 1111(,,;,)(,,;,) n n n n n n F x x t t F x x t h t h =++ 则称{},t x t T ∈为严平稳过程。 在实际中,这几乎是不可能的。由此考虑到是否可以把条件放宽,仅仅要求其数字特征(数学期望和协方差)相等。 定义2(宽平稳) 若随机变量{},t x t T ∈的均值(一阶矩)和协方差(二阶矩)存在,且满足:

4 (1)任取t T ∈,有()t E x c =; (2)任取t T ∈,t T τ+∈,有 [(())(())]()E X t a X t a R ττ-+-= 协方差是时间间隔的函数。则称{},t x t T ∈ 为宽平稳过程,其中()R τ为协方差函数。 2 各种随机时间序列的表现形式

白噪声过程(white noise,如图1)。属于平稳过程。y t = u t, u t~ IID(0, σ2) 3 white noise 2 1 -1 -2 -3 140160240260 图1 白噪声序列(σ2=1) 5

实验三 SPSS 多元时间序列分析方法

实验三多元时间序列分析方法 1.实验目的 了解协整理论及协整检验方法;掌握协整的两种检验方法:E-G两步法与Johansen方法;熟悉向量自回归模型VAR的应用;掌握误差修正模型ECM的含义及检验方法;掌握Granger因果关系检验方法。 2.实验仪器 装有EViews7.0软件的微机一台。 3.实验内容 【例6-2】 时间与M2之间的关系首先用单位根检验是否为平稳序列。原假设为H0:非平稳序列H1:平稳序列。用Eviews软件解决该问题,得到如下结果:Null Hypothesis: M2 has a unit root Exogenous: None Lag Length: 3 (Automatic - based on SIC, maxlag=13) t-Statistic Prob.* Augmented Dickey-Fuller test statistic 5.681169 1.0000 Test critical values: 1% level -2.579052 5% level -1.942768 10% level -1.615423

*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 04/16/13 Time: 10:36 Sample (adjusted): 1991M05 2005M01 Included observations: 165 after adjustments Variable Coefficien t Std. Error t-Statistic Prob. M2(-1) 0.013514 0.002379 5.681169 0.0000 D(M2(-1)) -0.490280 0.074458 -6.584611 0.0000 D(M2(-2)) 0.070618 0.083790 0.842797 0.4006 D(M2(-3)) 0.387086 0.073788 5.245935 0.0000 R-squared 0.480147 Mean dependent var 1440.03 7 Adjusted R-squared 0.470461 S.D. dependent var 1509.48 9 S.E. of regression 1098.447 Akaike info criterion 16.8651 3

时间序列分析实例分析上机报告

《时间序列分析》期末上机实践报告 课程名称:时间序列分析 学期: 学院: 专业: 姓名: 学号: 日期:

《时间序列分析》期末课程上机报告 一、ARMA模型 1.数据来源及其背景: 澳门整体建筑工人平均日薪的同期变动率,1988第一季度至2003第二季度,并利用ARMA模型建模及预测未来5个季度的同期变动率。 2.时序图: 如图所示:该序列没有明显的不平稳性 3.白噪声: P值小于0.05属于非白噪声序列 4.样本自相关图 自相关系数基本0值附近波动,可以认为有短期相关性。序列平稳。

5.样本偏自相关图 此图为截尾 6.预测 可得出之后5个季度的同期变动率:14.22 10.82 13 16.35 17.59 7.模型检验 P值小于0.05 建模成功拟合模型为AR(2)模型

8.拟合预测图 图形拟合得十分不错 9.程序 data nicole1_1; input cjj@@; time=_n_; cards; 20.71 25 23.23 3.3 18 14.94 12.19 46.13 84.03 124.32 -7.1 -77 -48.26 25.01 24.92 47.81 23.78 4.25 3.92 10.09 31.39 36.09 24.78 7.56 17.95 20.54 8.97 7.42 5.31 0.1 -2.52 -2.69 6.61 9.46 14 20.15 11 4.1 1.78 -3.54 11.76 5 9.67 16.68 5.82 15.84 26 33.91 50 16.16 16.08 20.75 4.69 25.99 11.5 15.45 2.51 28.42 22.99 ; proc gplot data=nicole1_1; plot cjj*time=1; symbol1c=red I=join v=star; proc arima data= nicole1_1; identify var=cjj nlag=14; estimate p=2; forecast lead=5id=time out=results; proc gplot data=results; plot cjj*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;

时间序列分析与建模简介

时间序列分析与建模简介 Prepared on 22 November 2020

第五章时间序列分析与建模简介时间序列建模( Modelling via time series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box 和 Jenkins。本章扼要介绍吴宪民和 Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{ x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型 ARMA (n,m) 为(z-1) x k = (z-1) a k式(5-1-1) 其中: (z-1) = 1-1 z-1-…-n z-n (z-1) = 1-1 z-1-…-m z-m

式(5-1-2) 为与参考书符号一致,以下用B 表示时间后移算子 即: B x k = x k-1 B 即z -1,B 2即z -2… (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数G i 格林函数G i 用以把x t 表示成a t 及a t 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.AR(1): x t - 1x t-1 = a t 即: G j = 1j (显示) 例2.ARMA (1,1): x t - 1x t-1 = a t - 1a t G 0= 1 ; G j = (1- 1) 1j-1 ,j 1 (显示) 例3.ARMA (2,1) (1 - 1B - 2 B 2)x t = (a t - 1 B ) a t 得出:G 0= 1 G 1 = 0G 0- 1 G 2 = 1G 1+ 2G 0 ∑∞ =-=0j j t j t a G x

多元时间序列建模分析

多元时间序列建模分析 应用时间序列分析实验报告

实验过程记录(含程序、数据记录及分析与实验结果等): 时序图如下: 单位根检验输出结果如下: 序列x的单位根检验结果: 序列y的单位根检验结果: 序列y与序列x之间的相关图如下:

1968 57、6 50、9 1969 59、8 47、2 1970 56、8 56、1 1971 68、5 52、4 1972 82、9 64、0 1973 116、9 103、6 1974 139、4 152、8 1975 143、0 147、4 1976 134、8 129、3 1977 139、7 132、8 1978 167、6 187、4 1979 211、7 242、9 1980 271、2 298、8 1981 367、6 367、7 1982 413、8 357、5 1983 438、3 421、8 1984 580、5 620、5 1985 808、9 1257、8 1986 1082、1 1498、3 1987 1470、0 1614、2 1988 1766、7 2055、1 1989 1956、0 2199、9 1990 2985、8 2574、3 1991 3827、1 3398、7 1992 4676、3 4443、3 1993 5284、8 5986、2 1994 10421、8 9960、1 1995 12451、8 11048、1 1996 12576、4 11557、4 1997 15160、7 11806、5 1998 15223、6 11626、1 1999 16159、8 13736、5 2000 20634、4 18638、8 2001 22024、4 20159、2 2002 26947、9 24430、3 2003 36287、9 34195、6 2004 49103、3 46435、8 2005 62648、1 54273、7 2006 77594、6 63376、9 2007 93455、6 73284、6 2008 100394、9 79526、5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2);

平稳时间序列的ARMA模型

第五讲(续) 平稳时间序列的 ARMA模型1 平稳性

有一类描述时间序列的重要随机模型受到了人们的广泛关注,这就是所谓的平稳模型。这类模型假设随机过程在一个不变的均值附近保持平衡。其统计规律不会随着时间的推移发生变化。平稳的定义分为严平稳和宽平稳。 定义1(严平稳) 设{},t x t T ∈是一个随机过程,t x 是在不同的时刻t 的随机变量,在不同的时刻t 是不同的随机变量,任取n 个值1,,n t t K 和任意的实数h ,则1,,n x x K 分布函数满足关系式 1111(,,;,)(,,;,)n n n n n n F x x t t F x x t h t h =++L L L L

则称{},t x t T ∈为严平稳过程。 在实际中,这几乎是不可能的。由此考虑到是否可以把条件放宽,仅仅要求其数字特征(数学期望和协方差)相等。 定义2(宽平稳) 若随机变量{},t x t T ∈的均值(一阶矩)和协方差(二阶矩)存在,且满足: (1)任取t T ∈,有()t E x c =; (2)任取t T ∈,t T τ+∈,有 [(())(())]()E X t a X t a R ττ-+-=

协方差是时间间隔的函数。则称{},t x t T ∈ 为宽平稳过程,其中()R τ为协方差函数。 2 各种随机时间序列的表现形式 白噪声过程(white noise ,如图 1 )。属于平稳过程。y t = u t , u t IID(0, 2 )

图1 白噪声序列(2=1) 随机游走过程(random walk,如图11)。属于非平稳过程。y t = y t-1 + u t, u t IID(0, 2) 图2 随机游走序列(2=1) 图3 日元兑美元差分序列

时间管理-时间序列分析(数学建模)

第二讲 时间序列分析 1

1 时间序列成分分析 1.1 时间序列的构成因素 时间序列中的数据(也称为观测值),总是由各种不同的影响因素共同作用所至;换一句话说,时间序列中的数据,总是包含着不同的影响因素。我们可以将这些影响因素合并归类为几种不同的类型,并对各种类型因素的影响作用加以测定。对时间序列影响因素的归类,最常见的是归为3类: z长期趋势(SPSS的名称为Smoothed Trend-Cycle, 2

缩写stc),长期趋势是一种对事物的发展普遍和长期起作用的基本因素。受长期趋势因素的影响,事物表现出在一段相当长的时期内沿着某一方向的持续发展变化。这种变化最常见的是一种向上的发展,对于经济现象而言,通常由各种经济投入(如技术进步、劳动力、资金等)所引起,因此,长期趋势有时也可视作经济成长的因素。 3

z季节周期因子(SPSS的名称为Season Factors Component), 缩写saf,季节周期也称为季节变动,是一种现象以一定时期(如一年、一月、一周等)为一周期呈现较有规律的上升、下降交替运动的影响因素。 通常表现为现象在一年内随着自然季节的更替而发生的较有规律的增减变化(如某些季节性商品的销售额、旅游客流量、各月的降雨量等)。形成季节周期的原因, 4

除了自然因素,也有人为和社会因素。 z不规则变动因子(SPSS的名称为Irregular Component, 缩写err)。不规则变动是一种偶然性、随机性、突发性因素。受这种因素影响,现象呈现时大时小、时起时伏、方向不定、难以把握的变动。这种变动不同于前三种变动,它完全无规律可循,无法控制和消除,例如战争、自然灾害等。 5

典型时间序列模型分析.

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

相关主题
文本预览
相关文档 最新文档