当前位置:文档之家› 常微分方程和偏微分方程的数值解法教学大纲

常微分方程和偏微分方程的数值解法教学大纲

常微分方程和偏微分方程的数值解法教学大纲
常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院

《常微分方程和偏微分方程的数值解法》教学大纲

一、课程基本信息

课程名称(中文):常微分方程和偏微分方程的数值解法

课程名称(英文):Numerical Methods for Ordinary and Partial

Differential Equations

课程代码:MA300

学分 / 学时:4学分 / 68学时

适用专业:致远学院与数学系相关专业

先修课程:偏微分方程,数值分析

后续课程:相关课程

开课单位:理学院数学系计算与运筹教研室

Office hours: 每周二19:00—21:00,地点:数学楼1204

二、课程性质和任务

本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。

三、教学内容和基本要求

第一部分:常微分方程数值解法

1 引论

1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

1.2 Euler方法:显/隐Euler方法,改进的Euler方法

1.3 单步法和多步方法的定义、局部截断误差、整体截断误差,零-稳定性

1.4 Euler方法稳定与收敛性分析

2 单步法和Runge-Kutta方法的构造与分析

2.1 Taylor展开法

2.2 单步法的稳性与收敛性分析

2.3显式Runge-Kutta方法与绝对稳定性

2.4 隐式Runge-Kutta方法

3 线性多步法的构造与分析

3.1 待定系数法

3.2 数值积分法(Adams方法)

3.3 多步方法的实际使用技巧

3.4 线性多步法的稳性与收敛性分析

4 常微分方程组和高阶常微分方程的数值方法简介

4.1 刚性常微分方程组

4.2 高阶方程化为一阶方程组

第二部分:偏微分方程数值解法

1 椭圆型方程的差分方法

1.1 从一个简单例子谈起

1.2 矩形域上Poisson方程的五点差分格式与快速求解

1.3 离散极值原理和最大模估计与误差分析

1.4 求解矩形域上Poisson方程的九点差分格式

2 发展方程有限差分方法的基本概念和理论

2.1 区域的离散和微分方程的离散

2.2 差分格式的相容性、收敛性及稳定性

2.3 Fourier稳定性判别准则

2.4 Von-Neumann稳定性判别准则及性质

2.5 多层差分格式稳定性判别方法

2.6 构造差分方法和分析稳定性的其它方法

3 双曲型方程的差分方法

3.1 一阶双曲型方程的差分方法

3.2 CFL条件

3.3 利用特征线构造差分方法

3.4 差分格式的余项效应分析

3.5 变系数方程的差分方法与能量积分稳性分析3.6 一维守恒型方程守恒律与计算(*)

3.7 二阶双曲型方程的差分方法

4 抛物型方程差分方法

4.1 常系数抛物型方程初值问题的差分方法

4.2 初边值问题的处理

4.3 对流扩散方程的差分方法

4.4 Richardson外推法

4.5 变系数方程的差分方法

4.6 高维抛物型方程初值问题的基本差分方法

4.7 分数步方法

5 变分原理

5.1 变分问题与典型示例

5.2 变分问题的Euler-Langrange方程及守恒律

5.3 二次函数极值问题

5.4 一维变分问题

5.5 高维变分问题

5.6 变分问题的近似计算

6 有限元方法

6.1 一维椭圆问题的线性有限元方法

6.2 一维线性有限元方法的理论分析

6.3 二维椭圆问题的线性有限元方法

6.4 形成有限元线性代数方程组的子结构方法

四、考核及成绩评定方式

最终成绩由平时作业、课堂表现、大作业、期中期末成绩综合而得。各部分所占比例如下:

●平时作业和上课参与程度:20分。

●大作业:10分。

●期中考试:30分。

●期末考试:40分。

为了强化学风与纪律,在试听期间后上课过程中任课老师将随机点名,如无故缺席者每缺一次扣1分,直至扣满10分,扣分归类在平时作业和上课参与程度栏目。如果某一同学缺课率超过学校的规定,将取消其该们课程成绩。

五、教材及参考书目

课程教材:

【1】李立康、於崇华、朱政华,微分方程数值解法,复旦大学出版社,上海,1999。

【2】偏微分方程数值解法(第二版),陆金甫、关治,清华大学出版社,北京,2004。

参考书目:

【1】李荣华,冯果忱,微分方程数值解(第三版),高等教育出版社,北京,1996。【2】李治平,偏微分方程数值解讲义,北京大学出版社,北京,2010。

【3】有限元方法讲义,应隆安,北京大学出版社,1988。

【4】 S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods (Third Edition), Springer, New York, 2008.

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

偏微分方程数值解

偏微分方程数值解 偏微分方程地构建科学、工程学和其他领域的数学模型的主要手段。一般情况下,这些模型都需要用数值方法去求解。本书提供了标准数值技术的简明介绍。借助抛物线型、双曲线型和椭圆型方程的一些简单例子介绍了常用的有限差分方法、有限元方法、有限体方法、修正方程分析、辛积分格式、对流扩散问题、多重网络、共轭梯度法。利用极大值原理、能量法和离散傅里叶分析清晰严格地处理了稳定性问题。本书全面讨论了这些方法的性质,并附有典型的图像结果,提供了不同难度的例子和练习。 本书可作为数学、工程学及计算机科学专业本科教材,也可供工程技术人员和应用工作者参考。 偏微分方程数值解---学习总结(2) 关于SobolveSobolve空间的几个重要定理 迹定理 : ΩΩ是 RdRd 的一个有界开子集,具有李普希茨连续边界?Ω?Ω, s>12s>12, 则 a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v ∣∣?Ω,?v∈Hs(Ω)∩C0(Ωˉˉˉˉ), b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω).(1)(2)(1)a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v|?Ω,?v∈

Hs(Ω)∩C0(Ωˉ),(2)b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω). 迹定理把区域内部与边界联系起来. 上面定理中边界?Ω?Ω当被它的一个子集ΣΣ代替时,结论依然成立. S=1时, γ0:H1(Ω)→H12(?Ω)?L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||?v||0).γ0:H1(Ω)→H12(?Ω)? L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||? v||0). 注意几个范数 ||?||k||?||0||?||1||??||0=||?||k,2=||?||L2=||?||1,2=(||?||20+||??||20)12=|?|1.(3)(4)(5)(6)(3)||?||k=||?||k,2(4)||? ||0=||?||L2(5)||?||1=||?||1,2=(||?||02+||??||02)12(6)||?? ||0=|?|1. 庞加莱不等式(Poincare inequality): 假设ΩΩ是 RdRd 的一个有界联通开子集,ΣΣ是边界?Ω?Ω的一个非空的李普希茨连续子集. 则存在一个常数 CΩ>0CΩ>0满足 ∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈H1Σ(Ω),其中H1Σ(Ω)={v ∈H1(Ω),γΣv=v∣∣Σ=0}.∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈HΣ1(Ω),其中HΣ1(Ω)={v∈H1(Ω),γΣv=v|Σ=0}.

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

常微分方程教学大纲

《常微分方程》课程教学大纲 课程代码: 090131009 课程英文名称:Ordinary Differential Equations 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:信息与计算科学 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是信息与计算科学专业的一门专业基础课,通过本课程的学习,可以使学生获得关于常微分方程的基本理论知识,掌握普通的线性微分方程的求解办法,为对非线性微分方程的求解打下一定的基础,同时,使学生能够简单地利用数学手段去研究自然现象和社会现象,或解决工程技术问题, 是进一步学习偏微分方程、微分几何、泛函分析等后继课程的基础。 通过本课程的学习,学生将达到以下要求: 1. 掌握一阶线性微分方程的初等解法及理论、高阶线性微分方程的解法及理论,线性微分方程组理论,着重培养学生解决问题的基本技能。 2. 熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:要求学生掌握一阶微分方程的初等解法;一阶微分方程解的存在唯一性定理、解对初值的连续性和可微性定理及解的延拓;高阶微分方程理论、常系数线性微分方程的解法、以及高阶微分方程的降阶和幂级数解法;求矩阵指数,求解常系数线性微分方程组;非线性微分方程的稳定性、V函数方法。 2.基本理论和方法:掌握一阶和高阶线性微分方程以及方程组的求解方法,理解解的存在唯一性定理及解的延拓、解对初值的连续依赖定理等理论,并能应用到具体的证明题中。了解非线性微分方程的基本理论,会对稳定性等做出讨论。培养学生逻辑推理能力和抽象思维能力;对微分方程的建模、求解的分析能力;利用微分方程理论解决实际问题的能力。 3.基本技能:使学生获得求解一阶和高阶微分方程、线性微分方程组的运算技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业基础课,在教学中采用多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有数学分析3、高等代数2。 (五)对习题课、实践环节的要求 1. 至少两章安排一次习题课,总学时在6学时左右。 2. 习题课的教学内容要配合主讲课程的教学进度,由老师和同学在课堂上通过讲、练结合的方式进行。主讲教师通过批改学生的作业,将作业情况反馈给学生,要补充有一定难度和综合度的练习题,以拓宽同学们的思路。

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程课程教学大纲

《概率论与数理统计选讲》课程教学大纲 适用专业:数学与应用数学 执笔: 审定: 批准执行: 南京财经大学应用数学系

《概率论与数理统计选讲》教学大纲 课程代码:120012 英文名:Selected Topics in Probability and Mathematical Statistics 课程类别:专业限定选修课 适用专业:数学与应用数学 前置课:数学分析,高等代数,概率论,数理统计,常微分方程 学分:3学分 课时:54课时 主讲老师:万树文等 选定教材:茆诗松等,概率论与数理统计教程(第二版) 北京:高等教育出版社,2011 课程概述: 《概率论与数理统计选讲》课程主要是针对数学与应用数学专业的重要专业课概率论和数理统计进行全面复习。复习的主要内容有随机事件和概率,随机变量及其分布,多维随机变量及其分布,大数定律与中心极限定理,统计量及其分布,参数估计,假设检验等。 教学目的: 通过本课程的学习,使学生进一步了解概率论与数理统计的基本原理和方法,强化学生解决问题的能力,更熟练地掌握概率论与数理统计各种问题的解决,为学生的考研和深造提供帮助。 教学方法: 以课堂讲述为主,适当辅以多媒体教学,安排课堂讨论和习题课,课后学生做练习题。

每讲教学要求及教学要点 第一讲概率的定义与性质 课时分配:3课时 教学要求: 掌握概率的不同定义与计算 教学内容: 概率的公理化定义,古典概型,几何概型以及相关计算 第二讲概率的基本公式与计算 课时分配:3课时 教学要求: 掌握概率论的一些基本公式与计算 教学内容: 概率的加法公式,概率的乘法公式,条件概率,事件之间的关系和运算 第三讲全概率和贝叶斯公式 课时分配:3课时 教学要求: 掌握全概率和贝叶斯公式 教学内容: 全概率和贝叶斯公式以及相关的不同难度的题型分析 第四讲随机变量的概念与分类 课时分配:3课时 教学要求: 掌握变量的准确定义和分类 教学内容: 变量的定义,变量的分类,变量的概率分布,变量的分布函数与性质

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.doczj.com/doc/b410590445.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

常微分方程教学大纲试用

《常微分方程与泛函分析》 课程教学大纲 课程编号:72073 制定单位:统计学院 制定人(执笔人):徐慧植 审核人:刘庆 制定(或修订)时间:2016年 8 月 31 日 江西财经大学教务处

《微分方程与泛函分析》课程教学大纲 一、课程总述 本课程大纲是以2015年统计学本科专业人才培养方案为依据编制的。 课程名称 微分方程与泛函分析 课程代码 72073 英文名称 Differential equation and functional analysis 课程性质 主干 先修课程 数学分析、高等代数 总学时数 48 周学时数 3 开课学院 统计学院 任课教师 徐慧植 编 写 人 徐慧植 编写时间 2016.08.31 课程负责人 刘庆 大纲主审人 刘庆 使用教材 王高雄,周之铭,朱思铭,王寿松编,常微分方程,高等教育出版社 教学参考资料 [1]张棣主编,常微分方程,西北大学出版社 [2]叶彦谦编,常微分方程讲义,高等教育出版社 [3]王柔坏,伍卓群编,常微分方程讲义,人民教育出版社 [4]东北师范大学数学系微分方程教研室编,常微分方程,高等教育出版社 课程教学目的 通过该课程的学习,要使学生系统地获得常微分方程的基本知识、基本理论,培养和训练学生运算技能及解决问题的能力;要求学生具有熟练的计算推导能力,逻辑推理能力,空间想象能力及综合运用所学知识分析和解决问题的能力;同时为学习后继课程奠定必要的基础。 课程教学要求 通过该课程的学习,要使学生系统地获得常微分方程的基本知识、 基本理论,掌握一阶、二阶微分方程胡解法及其应用。 本课程的重点和难点 一阶微分方程解的存在定、高阶微分方程、线性微分方程组 课程考试 院考,闭卷,平时成绩20%,期末成绩80%

常微分方程课程教学大纲知识分享

常微分方程课程教学 大纲

常微分方程课程教学大纲 英文名称:Ordinary differential equation 课程类 型: 专业基础课 理论学时:64实验学 时: 学分: 4 开课学 期: 第3学期 适用对象:数学与应用数学专业本科生考核方 式: 考试 先修课 程: 数学分析、高等代数与解析几何 一、课程简介 常微分方程是数学系本科生的必修课.通过本课程的学习,利用数学分析、高等代数的一些工具,牢固掌握微分方程学科最基本的内容,如一阶常微分方程、高阶微分方程与线性微分方程组的基本理论与解法,初步掌握其在实际问题中的应用及微分方程定性和稳定性理论的基本概念和重要结果,一般了解一阶线性偏微分方程. 二、课程教学目标 本门课程的主要任务是:通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力;使学生掌握常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础. 三、教学内容及要求 第一章绪论 主要内容: 1、常微分方程基本概念; 2、导出微分方程的实例; 3、微分方程的几何意义。 基本要求和教学重点:

1、了解常微分方程的基本概念; 2、领会常微分方程所讨论问题的基本内容; 3、了解常微分方程的实际背景及应用。 第二章初等积分法 主要内容: 1、变量分离方程; 2、齐次方程; 3、一阶线性方程与常数变易法; 4、全微分方程与积分因子; 5、一阶隐式微分方程。 基本要求和教学重点: 1、熟练地掌握一阶方程各种类型的初等解法. 2、学会根据所给方程的特点,引进适当的变换,增强解题能力; 3、能够合理的处理某些一阶微分方程的求解问题。 第三章一阶微分方程的解的存在定理主要内容: 1、解的存在性与唯一性定理 2、解的延拓 3、解对初值和参数的连续依赖性 4、解对初值和参数的可微性 基本要求和教学重点: 1、熟悉和理解定理证明方法; 2、掌握逐步逼近法。 第四章高阶线性微分方程 主要内容: 1、高阶线性微分方程的一般理论; 2、高阶常系数线性齐次方程的解法; 3、高阶常系数线性非齐次方程的解法; 4、变系数线性微分方程。 5、幂级数解法 基本要求和教学重点: 1、理解和掌握关于线性方程解的基本性质;

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

微分几何教学大纲

《微分几何》课程教学大纲 课程名称:《微分几何》 课程编码:074112303 适用专业及层次:数学与应用数学(本科) 课程总学时:72学时 课程总学分:4 一、课程的性质、目的与任务等。 1、微分几何简介及性质 微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间----流形。微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。 2、教学目的: 通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。 3、教学内容与任务: 本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(Gauss-Bonnet)公式。重点让学生把握理解本教材的前二章。 二、教学内容、讲授大纲与各章的基本要求 第一章曲线论 教学要点: 本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对

空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题 教学时数:22学时。 教学内容: 第一节向量函数 1.1 向量函数的极限 1.2 向量函数的连续性 1.3 向量函数的微商 1.4 向量函数的泰勒(TayLor)公式 1.5 向量函数的积分 第二节曲线的概念 2.1 曲线的概念 2.2 光滑曲线、曲线的正常点 2.3 曲线的切线和法面 2.4 曲线的弧长、自然参数 第三节空间曲线 3.1 空间曲线的密切平面 3.2 空间曲线的基本三棱形 3.3 空间曲线的曲率、挠率和伏雷内(Frenet)公式 3.4 空间曲线在一点邻近的结构 3.5 空间曲线论的基本定理 3.6 一般螺线 考核要求: 1、理解向量函数的极限、连续性、微商、泰勒(TayLor)公式和积分等概念,能

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

常微分方程初值问题数值解法

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

相关主题
文本预览
相关文档 最新文档