当前位置:文档之家› 磁性纳米粒子

磁性纳米粒子

磁性纳米粒子
磁性纳米粒子

Fe

3O

4

@SiO

2

@PMMA纳米微球合成及其应用

纳米磁性材料不仅具有磁性材料的特性还具有纳米材料特有的尺寸效应、表面效应和体积效应以及一些生物特性。近年来,纳米磁性材料因其特性,备受关注,其在药物运载以及细胞分离等方面具有广阔的应用前景。与数据库联用的基质辅助的激光解吸/离子化质谱(MALDI-ToF MS)用以标记多肽图谱是近年最常用的生物体蛋白质分析方法。尽管时间质谱对于微量的蛋白质或者多肽具有很灵敏的响应,但是这并不能满足实际分析测试的要求,因为这些蛋白质/多肽不仅仅是浓度很低,其质谱信号很容易受到外界干扰,在制备样品过程中痕量的污染也会造成很大的误差。磁性纳米材料是近来发展起来的一种用于标记待测蛋白质的新材料。因为其强大的磁性性质可以被用来于标靶蛋白质结合并实现其与主体溶液的分离纳米磁性材料目前主要被应用于富集痕量蛋白质/多肽。例如,C8改性的纳米磁性粒子,目前已经被应用于多肽的富集于分离。目前已经合成除了具有高度有序的介孔结构的磁性硅胶纳米微球,并利用其于尺寸选择性用于分离生物体蛋白质。尽管在使用磁性纳米粒子富集生物蛋白/多肽的领域已经取得了一些成就,但是设计合成具有特定孔结构、表面结构的具有一定功能的磁性纳米粒子仍然是目前的一个研究热点。

聚甲基丙烯酸甲酯(PMMA)是在工业上很经常用到的一种聚合物材料。近来的研究表明PMMA具有很好的生物相容性,可以吸附很多蛋白质/多肽,这以性质可以被用于蛋白质/多肽的富集。所以,合成表面用PMMA修饰的磁性纳米粒子是开发快速富集蛋白质/多肽材料的一个热门方向。本文将介绍一种双层核壳结构的磁性纳米粒子Fe3O4@SiO2@PMMA。利用溶液-凝胶和水相自由基聚合的方法合成的这种纳米粒子可以被用于蛋白质的质谱分析。

具体的合成过程为(图1),首先,利用溶液-凝胶合成具有核壳结构的Fe2O4@SiO2纳米微球,在Fe3O4微球上附着一层无定型太的SiO2。然后用3 - 甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)修饰Fe2O4@SiO2纳米微球表面。MPS 是一种可聚合的硅烷偶联剂。最后再用制得的Fe3O4@SiO2-MPS纳米微球与甲基丙烯酸甲酯(MMA)进行水相自由基聚合从而得到Fe3O4@SiO2@PMMA这一具有双层核壳结构的磁性纳米微球。

图一

由于Fe3O4@SiO2@PMMA纳米微球具有强磁性核心以及可PMMA这一有机疏水外壳可与蛋白质/多肽发生吸附,其可以被应用于蛋白质的快速磁性分离以

及富集过程。事实上Fe3O4@SiO2@PMMA纳米微球所具有的某些特性对于蛋白质的质谱分析具有很大的意义。

Fe3O4纳米微球的TEM照片显示其具有球形的外形,平均直径为170纳米左右(图二a)。高分辨率TEM照片显示了每个磁性纳米微球还有许多更小的微球组成(图二b)。Fe3O4@SiO2的TEM照片显示了黑色的Fe3O4微球核心外部附着

了一层厚度为35nm的灰色的SiO2外壳(图三)。Fe3O4@SiO2@PMMA的TEM照片显示了Fe3O4@SiO2@PMMA纳米微球具有很好的分散度,其平均直径为270nm (图四)。

图二

图三图四

SEM照片表明Fe3O4@SiO2微球具有很好的球形外形,其平均直径为240nm (图五a)。当聚合了PMMA后得到的Fe3O4@SiO2@PMMA微球的直径略微的变大(图五b),外形也有一些不规则的变化趋势。

图五

值得注意的是,在整个合成过程中,在Fe3O4表面覆盖一层SiO2是很有必要的,因为SiO2涂层可以使其在使用有机硅烷修饰磁性核心时更加容易与有效,同时在Fe3O4@SiO2@PMMA微球的实际应用中可以起到保护磁性Fe3O4核心的作用。粒子的磁性特征在300K条件下使用超导量子干涉仪(SQUID)测量。Fe3O4@SiO2-和Fe3O4@SiO2@PMMA的磁化值(magnetizationvalues)分别为49.5和36.7 emug-1。由于纳米粒子的尺寸效应,两种粒子都表现出了超顺磁性质(图六)。Fe3O4@SiO2-和Fe3O4@SiO2@PMMA粒子悬浊液的稳定性很好,在静置8h后没有发生明显的聚沉。这是因为纳米微粒都带是电负性的,由于电荷互斥从而使悬浊液稳定。这一稳定的分散特性使其具有很高的吸附表面积。而另一方面来说,由于具有很高的顺磁性的核心,这些粒子在外加磁场的作用下又可以很迅速的从其分散液中分

离出来。这两方面的性质使这一纳米粒子可以用于蛋白质的快速富集于分离。

图六a)Fe3O4@SiO2;b)Fe3O4@SiO2@PMMA

使用Fe3O4@SiO2@PMMA微球分离蛋白质有一下几个方面的优势:

1)最主要的优点在于Fe3O4@SiO2@PMMA微球可以有效的吸附富集多肽和蛋白质,这些被吸附在微球上的目标物质可以被直接用于质谱分

析而不受任何干扰。

2)第二个优点在于这一快速吸附富集过程不需要经过反复的超速离心,只需要外加一定强度的磁场即可。纳米微球的Fe3O4核心使微球具有

很好的顺磁性,当靶蛋白被纳米微球吸附后,在磁场的作用下,蛋白

质-微球配合物可以在0.5min内完成聚沉,从而实现蛋白质的快速分

离。

3)第三个优点在于这一以Fe3O4@SiO2@PMMA微球为媒介的多肽/蛋白质富集过程可以避免无机盐类的富集,从而减少了后续质谱分析时的

干扰。

总的来说,本文介绍了利用溶液-凝胶以及水相自由基聚合的方法合成具有双层核壳结构的Fe3O4@SiO2@PMMA纳米微球。这一纳米微球具有磁性核心、有机疏水外壳以及很好的水相分散性质。可以被用于蛋白质的快速富集与分离。另一方面,通过这种纳米微球的设计与合成过程可以看到,使用不同的磁性核心于有机聚合物外壳可以合成不同的纳米微球用于生物蛋白分离。

参考文献

[1] Yan J M, Zhang X B, Han S, et al. Iron‐Nanoparticle‐Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for Chemical Hydrogen Storage[J]. AngewandteChemie International Edition, 2008, 47(12): 2287-2289.

[2]Chen H, Deng C, Zhang X. Synthesis of Fe3O4@ SiO2@ PMMA Core–Shell–Shell Magnetic Microspheres for Highly Efficient Enrichment of Peptides and Proteins for MALDI‐ToF MS Analysis[J]. AngewandteChemie International Edition, 2010, 49(3): 607-611.

[3] Xu X, Deng C, Gao M, et al. Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry[J]. Advanced Materials, 2006, 18(24): 3289-3293.

[4] Cheng W, Tang K, Sheng J. Highly Water‐Soluble Superparamagnetic Ferrite Colloidal Spheres with Tunable Composition and Size[J]. Chemistry-A European Journal, 2010, 16(12): 3608-3612.

[5] Deng Y, Wang C, Shen X, et al. Preparation, Characterization, and Application of Multistimuli‐Responsive Microspheres with Fluorescence‐Labeled Magnetic Cores and Thermoresponsive Shells[J]. Chemistry-A European Journal, 2005, 11(20): 6006-6013.

存档日期:存档编号:

北京化工大学

研究生课程论文

课程名称:高等无机化学___

课程代号:_Chem508________

任课教师:__杨文胜________

完成日期:_2013 _年_11_月_30_日专业:__化学_________

学号:__2013200938______

姓名:__范国凌________

成绩:_____________

纳米晶软磁材料的应用

纳米晶软磁材料的应用 【摘要】本文首先回顾了纳米晶软磁材料的发展过程,介绍了纳米晶软磁材料的组织结构与磁特性,并介绍了纳米晶软磁合金的应用。 【关键词】纳米晶;软磁材料;铁芯;铁基合金 引言 八十年代以来,由于计算机网络和多媒体技术、高密度记录技术和高频微磁器件等的发展和需要,越来越要求所用各种元器件高质量、小型、轻量,这就要求制造这些器件所用的软磁合金等金属功能材料不断提高性能,向薄小且高稳定性发展[1]。正是根据这种需要,1988年日本的Yoshizawa等人首先发现,在Fe—Si—B非晶合金的基体中加人少量Cu和M(M=Nb,Fa,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有b.c.c结构的超细晶粒(D 约10nm)软磁合金[2]。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为Fe73.5CuNb3Si13.5B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe—M—B (M=Zr,Hf,Ta)系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[3]。由于Co基和Ni基易于形成K、λs、同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。故本文主要介绍铁基纳米晶软磁合金。铁基纳米晶合金是以铁元素为主,加人少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为l0—20纳米的微晶,弥散分布在非晶母体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8万)、低Hc(0.32A/M),高磁感下的高频损耗低(P0.5T/20kH=30W/kg),电阻率为80微欧厘米,比坡莫合金(50—60微欧厘米)高,经纵向或横向磁场处理,可得到高Br(0.9T)或低Br值(1000Gs)。是目前市场上综合性能最好的材料。 1 纳米晶软磁合金的性能 1.1 软磁合金的磁特性 对于纳米晶软磁合金,按性能要求,常分为高Bs型、高0型等。 (1)高型纳米晶合金,其成份至今局限于FeSiB系。以FeCuNbSiB系磁性最佳,其性能参数达到:在磁场0.08A/m下,相对磁导率达14万以上,矫顽力最低已达0 .16A/m,饱和磁感Bs高达135T,在频率lOOkHz和磁感0.2T下铁损低达250kW/1T。值得研究的是饱和磁致伸缩系数21×10-6,而不是0左右。 (2)高Bs型铁基纳米晶合金,其Fe含量在88at%以上,Bs值可达16~1.72T,典型成份为FeMB(M=Zr,Hf等)。对于FeZrB系合金,典型成份为

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

高频磁性纳米材料的电磁性能调控及其在磁性电子器件中的应用

项目名称:高频磁性纳米材料的电磁性能调控及其 在磁性电子器件中的应用 首席科学家:薛德胜兰州大学 起止年限:2012.1至2016.8 依托部门:教育部

一、关键科学问题及研究内容 本项目根据电子信息技术中对GHz频段的高性能、微型化薄膜电感和近场抗电磁干扰器件用高频磁性纳米材料的迫切要求,通过磁性纳米材料与纳米结构的可控制备,突破Snoek理论极限的制约,探索提高磁性纳米材料高频性质的新机制,突破传统微波磁性材料不能同时保持高共振频率和高磁导率的瓶颈,获得1-5 GHz波段内高磁导率的高频磁性纳米材料;并针对高频磁性纳米材料在1-5 GHz电子信息传输和近场抗电磁干扰技术中的具体应用,探索保持优良高频磁性基础上的电磁匹配机制,突破电磁波的连续介质理论,设计并实现具有良好电磁匹配的可工作在1-5 GHz的微型化薄膜电感和近场抗电磁干扰器件。 针对GHz频率下,同时提高磁性纳米材料的共振频率和磁导率,以及获得优异性能的薄膜电感和近场抗电磁干扰器件,拟解决的关键科学问题包括: ●自然共振机制下,同时提高磁性纳米材料共振频率和磁导率的机制,以及双 各向异性控制下大幅度调控高频磁性的机制及磁化强度的动力学过程。 ●非自然共振机制下,提高磁性纳米材料共振频率和磁导率的机制,以及有效 各向异性和体积共同作用下的超顺磁阻塞共振频率对高频磁性的影响机制。 ●描述磁性纳米材料电磁性质的有效理论,以及核/壳结构的形态、相构成和 各相的体积分数对新型磁性/介电纳米材料的高频电磁耦合机制和匹配关系的宽范围调控机制。 ●分离介质对电磁波传输特性的影响机制,以及高性能薄膜电感和抗电磁干扰 器件的设计理论和器件研制。 主要研究内容包括: ●以高饱和磁化强度M s的铁基和钴基铁磁金属及合金为基础,制备磁性纳米 薄膜、颗粒膜及多层膜。通过溅射时外加磁场、倾斜溅射、反铁磁钉扎、衬底修饰等手段,在样品平面内产生单轴或单向磁各向异性。通过薄膜的微结构优化,降低矫顽力H c,提高磁导率 ;改变面内各向异性,探索大范围调控磁性纳米薄膜高频磁性的规律。 ●制备线度比(aspect ratio)大的片状软磁纳米颗粒,调整静态磁矩分布在薄 片平面内,利用形状调控垂直片状纳米颗粒平面的各向异性场,用磁场热处理、应力、取向等方式在片状纳米颗粒平面内产生和调节各向异性场。研究这两个各向异性场的比值与材料高频磁性的关系。寻找大幅度提高双各向异性片状磁性纳米颗粒的规律,探索提高高频磁性的新机制。 ●采用高温热解或还原的方法制备单分散、表面活性剂分子包覆的不同形状的

磁性纳米粒子的制备与应用.

磁性纳米粒子的制备与应用 孙超 (上海大学环境与化工工程学院,上海200444) 摘要:磁性纳米材料(magnetic nanoparticle)是由Fe,Co,Ni等过渡金属及其氧化物组成的打下尺度介于1~100nm间的一种新型功能材料,磁性纳米材料具有磁性特征,还具有纳米材料的独特效应和生物亲和性,因而成为目前生物医学研究的热点之一。本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳米颗粒在医用载药方面的研究进展。 关键词:磁性纳米材料;氧化铁;载药 Preparation and Application of Magnetic Nanoparticles Sunchao (School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China) Abstract: Magnetic nanoparticles are a kind of magnetic material with diameter of l~1 00nm,which are made of transition metal and their oxide such as Fe、Co、Ni and so on.They are new type of functional materials with characterization of special effect,magnetic responsibility and bioaffinity,and have been one of hot spots in recent biomedicine research.This paper introduces the preparation of magnetic nanoparticles and some recent studies about drug loading of magnetic nanoparticles in medicine。 Key words: Magnetic nanoparticles;Iron oxide;Drug loading 1.引言

高频磁性纳米材料的电磁性能调控及其在磁性电子器件中的应用

项目名称:高频磁性纳米材料的电磁性能调控及其在磁性电 子器件中的应用 首席科学家:薛德胜兰州大学 起止年限:2012.1至2016.8 依托部门:教育部 一、关键科学问题及研究内容 本项目根据电子信息技术中对GHz频段的高性能、微型化薄膜电感和近场抗电磁干扰器件用高频磁性纳米材料的迫切要求,通过磁性纳米材料与纳米结构的可控制备,突破Snoek理论极限的制约,探索提高磁性纳米材料高频性质的新机制,突破传统微波磁性材料不能同时保持高共振频率和高磁导率的瓶颈,获得1-5 GHz波段内高磁导率的高频磁性纳米材料;并针对高频磁性纳米材料在1-5 GHz电子信息传输和近场抗电磁干扰技术中的具体应用,探索保持优良高频磁性基础上的电磁匹配机制,突破电磁波的连续介质理论,设计并实现具有良好电磁匹配的可工作在1-5 GHz的微型化薄膜电感和近场抗电磁干扰器件。 针对GHz频率下,同时提高磁性纳米材料的共振频率和磁导率,以及获得优异性能的薄膜电感和近场抗电磁干扰器件,拟解决的关键科学问题包括: ●自然共振机制下,同时提高磁性纳米材料共振频率和磁导率的机制,以及双各向异性控制下大 幅度调控高频磁性的机制及磁化强度的动力学过程。 ●非自然共振机制下,提高磁性纳米材料共振频率和磁导率的机制,以及有效各向异性和体积共 同作用下的超顺磁阻塞共振频率对高频磁性的影响机制。 ●描述磁性纳米材料电磁性质的有效理论,以及核/壳结构的形态、相构成和各相的体积分数对 新型磁性/介电纳米材料的高频电磁耦合机制和匹配关系的宽范围调控机制。 ●分离介质对电磁波传输特性的影响机制,以及高性能薄膜电感和抗电磁干扰器件的设计理论和 器件研制。 主要研究内容包括: ●以高饱和磁化强度M s的铁基和钴基铁磁金属及合金为基础,制备磁性纳米薄膜、颗粒膜及多 层膜。通过溅射时外加磁场、倾斜溅射、反铁磁钉扎、衬底修饰等手段,在样品平面内产生单轴或单向磁各向异性。通过薄膜的微结构优化,降低矫顽力H c,提高磁导率 ;改变面内各向异性,探索大范围调控磁性纳米薄膜高频磁性的规律。 ●制备线度比(aspect ratio)大的片状软磁纳米颗粒,调整静态磁矩分布在薄片平面内,利用形 状调控垂直片状纳米颗粒平面的各向异性场,用磁场热处理、应力、取向等方式在片状纳米颗粒平面内产生和调节各向异性场。研究这两个各向异性场的比值与材料高频磁性的关系。寻找大幅度提高双各向异性片状磁性纳米颗粒的规律,探索提高高频磁性的新机制。 ●采用高温热解或还原的方法制备单分散、表面活性剂分子包覆的不同形状的铁基磁性纳米颗

超顺磁性纳米颗粒治疗肿瘤的应用进展_李慧

中国组织工程研究与临床康复 第13卷 第51期 2009–12–17出版 Journal of Clinical Rehabilitative Tissue Engineering Research December 17, 2009 Vol.13, No.51 ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH 101331 Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China; 2 Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu Province, China Li Hui ★, Studying for master’s degree, Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China lh99beautiful@ https://www.doczj.com/doc/bc4346725.html, Correspondence to: Wang Da-xin, Doctor, Professor, Chief physician, Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China daxinw2002@ https://www.doczj.com/doc/bc4346725.html, Received: 2009-10-11 Accepted: 2009-11-21 超顺磁性纳米颗粒治疗肿瘤的应用进展★ 李 慧1,王大新1,顾 健2 Application of superparamagnetic nanoparticles for cancer treatment Li Hui 1, Wang Da-xin 1, Gu Jian 2 Abstract BACKGROUND: In recent years, nanoparticles has been rapidly developing in tumor hyperthermia, genophore research, and targeted drug therapy, particularly nanoparticle containing drug delivery systems will become another breach in tumor therapy. OBJECTIVE: To summarize the application and mechanism of superparamagnetic nanoparticles for cancer treatment in the medical field. METHODS: A computer-based online search was conducted in Medline for English language publications containing the key words of “superparamagnetic, nanoparticles, targeting” from January 2000 to October 2009. Relevant articles were also searched from CNKI with the same key words in Chinese from January 2005 to October 2009. RESULTS AND CONCLUSION: A total of 123 articles about targeting role of magnetic nanoparticles were included, and there were 24 in Chinese and 108 in English. Articles published earlier, duplicated, and similarly were excluded, and 30 references were finally included. Superparamagnetic nanoparticles characterized by targeting role under external magnetic field, and crystal of ferroso-ferric oxide did not has toxicity to cells. As a gene carrier and drug carrier, superparamagnetic nanoparticles were widely used in medical research and they also provided novel evidences for cancer treatment. By an external magnetic field, how to avoid a comprehensive system of phagocytic endothelial phagocytosis and prevent the course of treatment such as drug-induced thrombus is still inadequate. Li H, Wang DX, Gu J.Application of superparamagnetic nanoparticles for cancer treatment. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2009;13(51):10133-10136. [https://www.doczj.com/doc/bc4346725.html, https://www.doczj.com/doc/bc4346725.html,] 摘要 背景:近年来纳米颗粒在肿瘤热疗、基因载体研究、靶向药物治疗等方面得到迅速发展,特别是纳米颗粒载药系统已成为肿瘤治疗的又一突破口。 目的:对超顺磁性纳米颗粒在医学领域特别是肿瘤治疗方面的应用及其机制进行概述。 方法:应用计算机检索Medline 数据库(2000-01/2009-10),以“Superparamagnetic ,Nanoparticles ,Targeting ”为检索词;应用计算机检索中国期刊网(CNKI)(2005-01/2009-10),万方数据库(2005-01/2009-10),以“磁性、纳米颗粒、靶向”为检索词。 结果与结论:共收集123篇关于磁性纳米颗粒靶向作用的文献,中文24篇,英文108篇。排除发表时间较早、重复及类似研究,纳入30篇符合标准的文献。超顺磁性纳米颗粒是指具有磁响应性的纳米级粒子,其直径一般小于30 nm ,当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超磁性状态。超顺磁性纳米颗粒除了通过血液循环进入炎症肿瘤相关部位外,还可被广泛存在于肝脏、脾脏、淋巴结的网状细胞-内皮吞噬系统(reticulo -eneothelial system ,RES)的细胞所识别。研究发现经过表面修饰的载药纳米颗粒,可跨血脑屏障转运,其机制可能与血脑屏障的连接结构——毛细血管,其内皮细胞通过低密度脂蛋白介导的胞吞作用有关。目前合成生物相容性磁性纳米颗粒的方法有很多,但最常用的合成生物相容Fe 3O 4磁性纳米颗粒的方法为共沉淀法。超顺磁性纳米颗粒在外加磁场的作用下可具有靶向性,且四氧化三铁的晶体对细胞无毒,其作为基因载体及药物载体被广泛应用于医学研究,为肿瘤的治疗开辟了新的途径。但对于外置磁场,如何全面的避开内皮吞噬系统的吞噬,防止治疗过程中药物性血栓的生成等尚存在不足。 关键词:超顺磁性;四氧化三铁;纳米颗粒;靶向;生物材料 doi:10.3969/j.issn.1673-8225.2009.51.028 李慧,王大新,顾健.超顺磁性纳米颗粒治疗肿瘤的应用进展[J].中国组织工程研究与临床康复,2009,13(51):10133-10136. [https://www.doczj.com/doc/bc4346725.html, https://www.doczj.com/doc/bc4346725.html,] 综 述

铁基纳米晶合金

铁基纳米晶合金 为了得到对共模干扰最佳的抑制效果,共模电感铁芯必须具有高导磁率、优良的频率特性等。从前绝大多数采用铁氧体作为共模电感的铁芯材料,它具有极佳的频率特性和低成本的优势。但是,铁氧体也具有一些无法克服的弱点,例如温度特性差、饱和磁感低等,在应用时受到了一定限制。 近年来,铁基纳米晶合金的出现为共模电感增加了一种优良的铁芯材料。铁基纳米晶合金的制造工艺是:首先用快速凝固技术制成厚度大约20-30微米的非晶合金薄带,卷绕成铁芯后经过进一步加工形成纳米晶。与铁氧体相比,纳米晶合金具有一些独特的优势: 1.高饱和磁感应强度:铁基纳米晶合金的Bs达1.2T,是铁氧体的两倍以上。作为共模电感铁芯,一个重要的原则是铁芯不能磁化到饱和,否则电感量急剧降低。而在实际应用中,有不少场合的干扰强度较大(例如大功率变频电机),如果用普通的铁氧体作为共模电感,铁芯存在饱和的可能性,不能保证大强度干扰下的噪声抑制效果。由于纳米晶合金的高饱和磁感应强度,其抗饱和特性无疑明显优于铁氧体,使得纳米晶合金非常适用于抗大电流强干扰的场合。 2.高初始导磁率:纳米晶合金的初始导磁率可达10万,远远高于铁氧体,因此用纳米晶合金制造的共模电感在低磁场下具有大的阻抗和插入损耗,对弱干扰具有极好的抑制作用。这对于要求极小泄漏电流的抗弱干扰共模滤波器尤其适用。在某些特定场合(如医疗设备),设备通过对地电容(如人体)造成泄漏电流,容易形成共模干扰,而设备本身又对此要求极严。此时使用高导磁率的纳米晶合金制造共模电感可能是最佳选择。此外,纳米晶合金的高导磁率可以减少线圈匝数,降低寄生电容等分布参数,因而将由于分布参数引起的在插入损耗谱上的共振峰频率提高。同时,纳米晶铁芯的高导磁率使得共模电感具有更高的电感量和阻抗值,或者在同等电感量的前提下缩小铁芯的体积。 3.卓越的温度稳定性:铁基纳米晶合金的居里温度高达570oC以上。在有较大温度波动的情况下,纳米晶合金的性能变化率明显低于铁氧体,具有优良的稳定性,而且性能的变化接近于线性。一般地,纳米晶合金在-50oC----130oC的温度区间内,主要磁性能的变化率在10%以内。相比之下,铁氧体的居里温度一般在250oC以下,磁性能变化率有时达到100%以上,而且呈非线性,不易补偿。纳米晶合金的这种温度稳定性结合其特有的低损耗特性,为器件设计者提供了宽松的温度条件。而图3为不同材料的饱和磁感应强度的温度特性。

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

磁性纳米材料制备

合肥学院 Hefei University 化学与材料工程系 题目:磁性纳米材料的合成 班级:13化工(3)班 组员:赵康智、蒋背背、朱英维、高宗强、 1303023045、1303023004、1303023039、学号: 1303023036、13030230

摘要 磁性纳米材料由于具有表面效应、量子尺寸效应,以及超顺磁性等优异的特性,引起了世界各国研究工作者的高度重视。磁性纳米材料的性能与其组成、结构及纳米粒子的稳定性密切相关,因此制备粒径均匀,组成、结构稳定的纳米粒子是其应用的关键。 关键词: 磁性纳米材料;化学合成 正文 一、磁性纳米材料的性能 磁性纳米材料具有纳米材料所共有的表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等。同时由于与磁相关的特征物理长度恰好处于纳米量级,如磁单畴尺寸、超顺磁性临界尺寸、交换作用长度、以及电子平均自由路程等。当磁性材料结构尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质,从而体现出与块体材料和原子团簇不同的特性。磁性纳米材料主要的磁特性可归纳如下:(1)饱和磁化强度;(2)矫顽力;(3)单磁畴结构;(4)居里温度;(5)超顺磁性。 二、磁性纳米材料的合成制备方法 当粒子尺寸减小到纳米量级时,颗粒的尺寸、形貌和晶体结构都会影响材料的性能和应用。而能够制备出尺寸、形貌和晶体结构可控的磁性金属纳米颗粒一直是人们研究的重点和难题。因此,探索通过简单的方法制备出满足应用需要的,尺寸、形貌及晶体结构可控的金属磁性纳米材料对推动纳米科技的发展的具有重要意义。常用的制备磁性金属纳米粒子的方法主要包括:溅射法、机械研磨法和化学合成方法。机械研磨法往往需要要高纯度的金属原材料,并消耗大量能量用于均匀化反应物,反应时间长,而且易引入杂质,所得晶粒不够完整,分散性不够好。同时,为弥补金溅射法属在熔化过程中的挥发损失,往往需要过量的稀土元素。化学方法在制备金属磁性纳米材料方面却能够有效减少成本,反应物易于均匀化,反应过程易于操作,且显著降低了反应所需温度。另外,化学合成法在控制产物组成和颗粒尺寸方面也具有一定的优越性。因此,化学合成法成为合成纳米材料的重要方法。

憎水性三金属纳米粒子的合成_表征及磁性

研究论文 憎水性三金属纳米粒子的合成、 表征及磁性 戴兢陶1,2,王新红2,孙玉凤2,沈 明1,3 (1.盐城师范学院江苏省滩涂生物资源与环境保护重点建设实验室,江苏盐城224051; 2.盐城师范学院化学化工学院,江苏盐城224051; 3.扬州大学化学化工学院,江苏扬州225002) 摘 要:以磺基琥珀酸二辛酯钠盐(AOT)为表面活性剂,采用反胶束法合成了憎水性CoFe/Au 纳米粒子,利用配体交换、水洗等去除AOT 并使纳米粒子分级.采用紫外 可见光谱(UV Vis)、透射电镜(TEM)、X 射线衍射(XRD)、X 射线电子能量散射(EDX)及等离子发射光谱(ICP)等对产物进行了表征,通过超导量子干涉仪(SQIUD)研究了纳米粒子的磁性质.结果表明,反胶束法合成的CoFe/Au 三金属纳米粒子具有较好的单分散性和稳定性,平均粒径约为4nm.当外磁场强度为 1.59 104A/m 时,阻塞温度T b 为65K,温度高于T b 时纳米粒子显示出超顺磁性,低于T b 时呈铁磁性,在5K 时其矫顽力(Hc)达4.67 104A/m. 关键词:反胶束;配体交换;CoFe/Au 纳米粒子;磁性质 文章编号:1674 0475(2010)03 0173 09 中图分类号:O61 文献标识码:A 磁性纳米合金复合材料因其独特的结构和磁性能,不仅在基本物理理论方面具有特殊的学术意义,而且在信息存储、石油化工、冶金、生物、医学、环保以及军事工业等领域都具有广泛的应用前景[1] .如在磁记录材料方面,磁性纳米颗粒可取代传统的微米级磁粉用作高密度、抗干扰磁记录介质[2];在生物技术领域,用磁性纳米颗粒制成的磁性液体可广泛用于磁性免疫细胞分离、核磁共振的造影成像,以及药物控制释放等[3].所以,有关磁性纳米颗粒的制备方法及性质研究受到广泛的重视. 近年来,关于磁性纳米颗粒研究主要集中在铁族金属纳米颗粒的制备、结构以及磁性方面[4],尤其是铁系金属及其合金纳米颗粒,因被认为是未来最有希望的高密度磁记录及吸波材料而备受关注[5,6].但由于含钴、铁纳米材料巨大的比表面和钴、铁的化学活收稿日期:2010 01 06;修回日期:2010 02 09.通讯联系人:沈 明,E mail:shenming@https://www.doczj.com/doc/bc4346725.html,. 基金项目:江苏省高校自然科学基础研究项目资助(08KJD150020);江苏省滩涂生物资源与环境保护重点建设 实验室项目资助(JLCBE09025,09003). 作者简介:戴兢陶(1964 ),女,博士,副教授,主要从事纳米材料的合成和性能研究,E mail:ycjtdai@https://www.doczj.com/doc/bc4346725.html,.173 第28卷 第3期 影像科学与光化学Vo l.28 N o.3 2010年5月Imaging Science and Photochemistry M ay,2010

(生物科技行业类)纳米磁性颗粒分类和选用

纳米磁性颗粒分类和选用(Ademtech) (Carboxyl-Adembeads) Ademtech 是法国一家研究并生产适用于体外诊断和生命科学领域的超顺磁性纳 米微粒(superparamagnetic nanoparticles)。在物理化学、多聚体化学、免疫学、细胞生物学以及病毒学多学科互补技术紧密结合的基础上,Ademtech公司研发了具有独特性状的纳米材料供世界高科技领域选用。Ademtech 提供的高质量多用途纳米磁性颗粒可使您应用于各个相关领域中用新技术进行蛋白磁性分离。 磁粒分类及应用 : 标准磁粒 : ?羧基纳米磁性颗粒(Carboxylic-Adembeads): 磁性直径包括200和300 nm两种,和蛋白,寡核苷酸及其它生物靶分子进 行高效偶联,表面羧酸功能基团活化 ?氨基纳米磁性颗粒(Amino-Adembeads): 磁性直径包括200和300 nm两种,和蛋白,寡核苷酸及其它生物靶分子进 行高效偶联,表面氨基功能基团活化 主要磁粒 : ?羧酸纳米磁性颗粒(MasterBeads Carboxylic Acid): 磁粒直径500nm和蛋白,寡核苷酸及其它生物靶分子进行高效偶联,表面氨 基功能基团活化 ?链霉亲和素磁性颗粒(MasterBeads Streptavidin) : 磁粒直径500nm,用来进行磁性分离或纯化生物素化的蛋白及核酸生物磁粒 : ?生物磁性颗粒蛋白A ( Bio-Adembeads Protein A) : ?适于小规模免疫球蛋白提取和免疫沉淀 ?开始样本可以是唾液, 血浆, 腹水和组织培养液或杂交瘤上清液 ?磁性技术产生一高特异性 (= 无色谱柱, 无离心) ?快速步骤 (<1小时) ?重组蛋白形式的蛋白A 不伴有白蛋白结合部位, 减少了共同纯化污染蛋 白, 只有Fc 片断结合部位存在 ?适用于大量免疫沉淀: 至 100/ ml ?生物磁性颗粒蛋白G ( Bio-Adembeads Protein G) : ?适于小规模免疫球蛋白提取和免疫沉淀 ?开始样本可以是唾液, 血浆, 腹水和组织培养液或杂交瘤上清液 ?磁性技术产生一高特异性 (= 无色谱柱, 无离心) ?快速步骤 (<1小时) ?重组蛋白形式的蛋白G无白蛋白结合部位和Fab结合和部位. ?适用于大量免疫沉淀: 至 100/ ml ?生物链霉亲合素纳米磁性颗粒:(Bio-Adembeads Streptavidin) 与重组蛋白形式的链霉亲合素相连接,作为多种应用的方便工具 : 免疫测定, 蛋白提纯, 细胞筛选, 或分子生物提纯 (如 mRNA 分离) 等. 细胞磁粒 ?人CD4+细胞磁性颗粒 (Human CD4+ Cell-Adembeads) :

磁性纳米氧化铁及其复合粒子的研究进展

磁性纳米氧化铁及其复合粒子的研究进展1 吴叶军,王军,诸越进,姚敏,徐传会,陈杰 宁波大学理学院,浙江宁波(315211) E-mail:wyj-0628@https://www.doczj.com/doc/bc4346725.html, 摘要:纳米氧化铁是一种重要的无机材料,具有优良的性能。磁性纳米氧化铁的复合材料是近几年的研究热点之一。本文介绍了以有机物为先驱体制备磁性纳米氧化铁及以聚合物、二氧化硅为基合成磁性纳米复合材料的研究进展。 关键词:磁性;氧化铁;复合粒子 1.引言 近年来,对纳米材料的研究已引起了多种研究领域的广泛兴起。磁性纳米氧化铁颗粒(FeO,γ-Fe2O3,Fe3O4)已被广泛研究。纳米氧化铁具有良好的耐候性、耐光性、磁性和对紫外线具有良好的吸收和屏蔽效应,是一种重要的无机材料。在催化、功能陶瓷、磁性材料和透明颜料等领域具有重要的应用。通过将磁性纳米颗粒分散在某种基体中制成磁性纳米复合材料可有效防止纳米颗粒间的相互团聚,有效地控制其颗粒尺寸。此外,磁性颗粒镶嵌在不能混合的介质中将导致一些奇异的物理和化学特征。 纳米氧化铁的制备方法有许多,传统方法可分为两大类:湿法和干法。湿法包括水热法、溶胶-凝胶法、微乳液法等;干法主要包括火焰热分解法、气相沉淀法、低温等离子化学气相沉淀法等,并已有不少文献报道了纳米氧化铁的各种制备工艺[1-4]。本文将介绍以有机物为先驱体制备磁性纳米氧化铁的研究进展,以及以聚合物、二氧化硅为基的磁性纳米氧化铁的复合材料的研究进展。 2.纳米氧化铁的制备 纳米氧化铁按晶体结构和组成的不同,可分许多种。FeO、γ-Fe2O3、Fe3O4都是常见的氧化物[5-7]。它们具有明显不同的磁特性。常温下,FeO是反铁磁性的,T c为183K;γ-Fe2O3是亚铁磁性,T c为865K;Fe3O4也是亚铁磁性,T c为849K。 羰基铁、醋酸铁、乙酰丙酮铁、油酸铁等是制备纳米氧化铁的常用的先驱体[8-15]。在这些先驱体中,五羰基铁是使用相对比较频繁的先驱体。以Fe(CO)5为先驱体制备纳米氧化铁可分为两步:Fe(CO)5受热分解,逐步转化为Fe(CO)4,Fe m(CO)n,Fe m(CO)n团聚成核,进一步分解形成无定形的纳米铁颗粒[30];纳米铁颗粒在氧化剂作用下,形成纳米氧化铁颗粒。不同的Fe(CO)5分散剂、表面活性剂和氧化剂,都影响着纳米粒子的尺寸和形貌[8-10]。 Hyeon等人以辛基醚为表面活性剂,(CH3)3NO为氧化剂,研究了Fe(CO)5在油酸中的分解反应[8]。将Fe(CO)5加到油酸和辛醚的混合溶液中,加热混合物且使之回流,100℃下保持1h。经1h陈化后,混合物颜色由橙色转变为黑色,生成无定形的纳米铁颗粒;冷却到室温后,加入氧化剂(CH3)3NO,在氩气的保护下,混合物在130℃保持2h,颜色变成棕色,纳米铁颗粒被氧化,得到γ-Fe2O3纳米颗粒。通过调节Fe(CO)5和油酸的摩尔比,颗粒尺寸可控制在4nm-16nm之间,颗粒呈六边形,尺寸均匀,结晶性良好(图1)。 Teng等人研究了不同的分散剂对纳米颗粒的影响[9]。采用和Hyeon等相似的方法,以硬脂酸代替油酸,温度控制在200℃,制得的γ-Fe2O3纳米颗粒尺寸非常均匀,粒度为3nm。 1本课题得到宁波自然科学基金(2007A610023)、浙江省教育局科学研究基金(20061635)和浙江中国自然科学基金(Y407267)的资助。

纳米磁性(1)

纳米磁性 1.磁性材料一直是国民经济、国防工业的重要支柱与基础,广泛地应用于电信、自动控制、通讯、家用电器等领域,在微机、大型计算机中的应用具有重要地位。信息化发展的总趋势是向小、轻、薄以及多功能方向进展,因而要求磁性材料向高性能、新功能方向发展。纳米磁性材料是指材料尺寸限度在纳米级,通常在1~100nm的准零维超细微粉,一维超薄膜或二维超细纤维(丝)或由它们组成的固态或液态磁性材料。当传统固体材料经过科技手段被细化到纳米级时,其表面和量子隧道等效应引发的结构和能态的变化,产生了很多独特的光、电、磁、力学等物理化学特能,有着极高的活性,潜在极大的原能能量,这就是“量变到质变”。纳米磁性材料的特殊磁性能主要有:量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。 2纳米磁性材料的研究概况 纳米磁性材料根据其结构特征可以分为纳米颗粒型、纳米微晶型和磁微电子结构材料三大类。 2.1纳米颗粒型 磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提升。纳米磁性微粒因为尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提升信噪比,改善图像质量。 纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提升密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。

磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫 在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁 体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束 在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿 命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在 电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已 普遍采用磁性液体的防尘密封。磁性液体还有其他很多用途,如仪器 仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造 影剂等等。 纳米磁性药物:磁性治疗技术在国内外的研究领域在拓宽,如治疗癌症,用纳米的金属性磁粉液体注射进人体病变的部位,并用磁体固定 在病灶的细胞附近,再用微波辐射金属加热法升到一定的温度,能有 效地杀死癌细胞。另外,还可以用磁粉包裹药物,用磁体固定在病灶 附近,这样能增强药物治疗作用。 电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。 因为纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这 种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得 红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测 器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标, 起到了隐身作用。 2.2纳米微晶型 纳米微晶稀土永磁材料:稀土钕铁硼磁体的发展突飞猛进,磁体磁性 能也在持续提升,目前烧结钕铁硼磁体的磁能积达到50MGOe,接近理 论值64MGOe,并已进入规模生产。为进一步改善磁性能,目前已经用 速凝薄片合金的生产工艺,一般的快淬磁粉晶粒尺寸为20-50nm,如作为粘结钕铁硼永磁原材料的快淬磁粉。为克服钕铁硼磁体低的居里温度,易氧化和比铁氧体高的成本价格等缺点,目前正在探索新型的稀

相关主题
文本预览
相关文档 最新文档