当前位置:文档之家› 机械振动课后习题集和规范标准答案第二章习题集和标准答案

机械振动课后习题集和规范标准答案第二章习题集和标准答案

机械振动课后习题集和规范标准答案第二章习题集和标准答案
机械振动课后习题集和规范标准答案第二章习题集和标准答案

2.1 弹簧下悬挂一物体,弹簧静伸长为δ。设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。

解:设物体质量为m ,弹簧刚度为k ,则: mg k δ=

,即:n ω== 取系统静平衡位置为原点0x =,系统运动方程为:

δ

?+=?

=??=?&&&00

020mx kx x x (参考教材P14)

解得:δω=()2cos n x t t

2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。

解:由题可知:弹簧的静伸长0.850.650.2()m =-=V

所以:7(/)n rad s ω=

== 取系统的平衡位置为原点,得到:

系统的运动微分方程为:20n x x ω+=&

& 其中,初始条件:(0)0.2

(0)0x x =-??=?& (参考教材P14)

所以系统的响应为:()0.2cos ()n x t t m ω=-

弹簧力为:()()cos ()k n mg

F kx t x t t N ω==

=-V

因此:振幅为0.2m 、周期为2()7

s π

、弹簧力最大值为1N 。

2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。

解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2

121()2T E m m x

=+& 212

U kx =

由()0T d E U +=可知:12()0m m x kx ++=&&

即:12/()n k m m ω=+

系统的初始条件为:?=??=-?+?&202012

2m g

x k m x gh m m (能量守恒得:2

21201()2

m gh m m x =

+&)

因此系统的响应为:01()cos sin n n x t A t A t ωω=+

其中

:ω?==??==??

&200

1n m g

A x x A

即:ωω=-2()(cos )n n m g x t t t k

2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。

解:取圆柱体的转角θ为坐标,逆时针为正,静平衡位置时0θ=,则当m 有

θ转角时,系统有:

2222111()()222T E I m r I mr θθθ

=

+=+&&& 21

()2U k r θ=

由()0T d E U +=可知:22()0I mr kr θ

θ++=&&

即:22/()n kr I mr ω=+ (rad/s )

2.5 均质杆长L、重G,用两根长h的铅垂线挂成水平位置,如图所示,试求此杆相对铅垂轴OO微幅振动的周期。

2.6 求如图所示系统的周期,三个弹簧都成铅垂,且21312,k k k k ==。

解:取m 的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2

12

T E mx =

& 22211115

226

U kx k x k x =+= (其中:1212k k k k k =+)

由()0T d E U +=可知:15

03mx k x +=&&

即:153n k m ω=rad/s ),1

325m

T k =(s )

2.7 如图所示,半径为r 的均质圆柱可在半径为R 的圆轨面内无滑动地、以圆轨面最低位置O 为平衡位置左右微摆,试导出柱体的摆动方程,求其固有频率。

解:设物体重量W ,摆角坐标θ如图所示,逆时针为正,当系统有θ摆角时,则: θθ=--≈-2

()(1cos )()

2

U W R r W R r

设?&为圆柱体转角速度,质心的瞬时速度: ()c R r r υθ?=-=&&,即:()R r r

?

θ-=&

& 记圆柱体绕瞬时接触点A 的转动惯量为A I ,则:

=+

=+222

12A C W W W I I r r r g g g

?θθ-=

==-&&&222221133()()()2224T A W R r W E I r R r g r g

(或者理解为:?θ=

+-&&22211()22T c W E I R r g ,转动和平动的动能) 由()0T d E U +=可知:θθ-+-=&&23()()02W R r W R r g

即:ω=

n rad/s )

2.8 横截面面积为A ,质量为m 的圆柱形浮子静止在比重为γ的液体中。设从平衡位置压低距离x (见图),然后无初速度地释放,若不计阻尼,求浮子其后的运动。

解:建立如图所示坐标系,系统平衡时0x =,由牛顿第二定律得:

()0mx Ax g γ+=&&,即:n Ag

m

γω=有初始条件为:{

==&000

x x x 所以浮子的响应为:()sin()2

Ag

x t x m γπ

=

2.9 求如图所示系统微幅扭振的周期。图中两个摩擦轮可分别绕水平轴

O 1,O 2转动,它们相互啮合,不能相对滑动,在图示位置(半径O 1A 与O 2B 在同一水平线上),弹簧不受力。摩擦轮可以看做等厚均质圆盘,质量分别为m 1,m 2。

解:两轮的质量分别为12,m m ,因此轮的半径比为: 1

1

2

2

r m r m = 由于两轮无相对滑动,因此其转角比为:

121212

r r θθθθ==&&

取系统静平衡时10θ=,则有:

222222111222121111111()()()22224T E m r m r m m r θθθ=+=+&&& 2221112221211111

()()()()222

U k r k r k k r θθθ=+=+

由()0T d E U +=可知:222121112111()()02

m m r k k r θθ+++=&&

即:n ω=

rad/s )

,=2T (s )

2.10 如图所示,轮子可绕水平轴转动,对转轴的转动惯量为I ,轮缘绕有软绳,下端挂有重量为

P 的物体,绳与轮缘之间无滑动。在图示位置,由水平弹簧维持平衡。半径R 与a 均已知,求微振动的周期。

解:取轮的转角θ为坐标,顺时针为正,系统平衡时0θ=,则当轮子有θ转角时,系统有: θθθ=

+=+&&&2222111()()222T P P E I R I R g g

θ=21

()2

U k a

由()0T d E U +=可知:θθ+

+=&&22

2()0P I R ka g

即:ω=

+22n ka P I R g

(rad/s ),故 π

πω+

==2

2

22n P I R g

T ka (s )

2.11 弹簧悬挂一质量为m 的物体,自由振动的周期为T ,如果在m 上附加一个质量m 1,则弹簧的静伸长增加l V ,求当地的重力加速度。 解:

224T m k T

π=∴=

Q 1211

4m g k l

k l m l g m T m π=∴==

Q V V V

2.12 用能量法求图所示三个摆的微振动的固有频率。摆锤重P ,(b )与(c )中每个弹簧的弹性系数为k /2。(1)杆重不计;(2)若杆质量均匀,计入杆重。

解:取系统的摆角θ为坐标,静平衡时0θ= (a )若不计杆重,系统作微振动,则有: θ=

&

221()2T P E L g

θθ=-≈

21

(1cos )2

U PgL PgL 由()0T d E U +=可知:θθ+=&&20P L PL g

即:ω=n g

L

rad/s )

如果考虑杆重,系统作微振动,则有:

θθθ=

+=+&&&2222221111()()()22323

L T L P P m E L m L L g g

θθθ=-+-≈+2

(1cos )(1cos )()222

L L L P m U PgL m g gL g

由()0T d E U +=可知:θθ+++=&&2(

)()032

L L P m P m L gL g g

即:ω=

n rad/s )

(b )如果考虑杆重,系统作微振动,则有:

θθθ=

+=+&&&2222221111()()()22323

L T L P P m E L m L L g g

θθ≈++?221()()()222222

L P m k L U gL g

即:ω=

n (rad/s )

(c )如果考虑杆重,系统作微振动,则有:

θθθ=

+=+&&&2222221111()()()22323

L T L P P m E L m L L g g

θθ≈-++?221()()()222222

L P m k L U gL g

即:ω=

n (rad/s )

2.13 求如图所示系统的等效刚度,并把它写成与x 的关系式。

答案:系统的运动微分方程222

0a b mx

kx a ++=&&

2.14 一台电机重470N,转速为1430r/min,固定在两根5号槽钢组成的简支梁的中点,如图所示。每根槽钢长1.2m,重65.28N,弯曲刚度EI=1.66 105N·m2。

(a)不考虑槽钢质量,求系统的固有频率;

(b)设槽钢质量均布,考虑分布质量的影响,求系统的固有频率;

(c)计算说明如何避开电机和系统的共振区。

2.15 一质量m固定于长L,弯曲刚度为EI,密度为的弹性梁的一端,如图所示,试以有效质量的概念计算其固有频率。

wL3/(3EI)

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹. ②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为:T=2π ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动. (2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关. (3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振. 共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波. (1)机械波产生的条件:①波源;②介质 (2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷). ②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部. [注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

《机械振动与噪声学》习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。 1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t+ B cos (n t+ ) = C cos (n t+ ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( +

) t之和。其中 << 。如发生拍的现象,求其振幅和 拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3(b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期= s,今在桌子上放W = 30 N 的重 物,如图2-1所示。已知周期的变化= s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚 度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面 作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动 微分方程。 图2-1 图2-2 图2-3

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

机械振动学习题解答大全

机械振动习题解答(四)·连续系统的振动 连续系统振动的公式小结: 1 自由振动分析 杆的拉压、轴的扭转、弦的弯曲振动微分方程 22 222y y c t x ??=?? (1) 此式为一维波动方程。式中,对杆,y 为轴向变形,c =;对轴,y 为扭转 角,c ;对弦,y 为弯曲挠度,c 令(,)()i t y x t Y x e ω=,Y (x )为振型函数,代入式(1)得 20, /Y k Y k c ω''+== (2) 式(2)的解为 12()cos sin Y x C kx C kx =+ (3) 将式(3)代入边界条件,可得频率方程,并由此求出各阶固有频率ωn ,及对应 的振型函数Y n (x )。可能的边界条件有 /00, 0/0p EA y x Y Y GI y x ??=??? ?'=?=????=???? 对杆,轴向力固定端自由端对轴,扭矩 (4) 类似地,梁的弯曲振动微分方程 24240y y A EI t x ρ??+=?? (5) 振型函数满足 (4)4420, A Y k Y k EI ρω-== (6) 式(6)的解为 1234()cos sin cosh sinh Y x C kx C kx C kx C kx =+++ (7) 梁的弯曲挠度y (x , t ),转角/y x θ=??,弯矩22/M EI y x =??,剪力 33//Q M x EI y x =??=??。所以梁的可能的边界条件有 000Y Y Y Y Y Y ''''''''======固定端,简支端,自由端 (8) 2 受迫振动 杆、轴、弦的受迫振动微分方程分别为 222222222222(,) (,), (,) p p u u A EA f x t t x J GI f x t J I t x y y T f x t t x ρθθ ρρ??=+????=+=????=+??杆:轴:弦: (9) 下面以弦为例。令1 (,)()()n n n y x t Y x t ?∞==∑,其中振型函数Y n (x )满足式(2)和式(3)。代入式(9)得 1 1 (,)n n n n n n Y T Y f x t ρ??∞ ∞ ==''-=∑∑ (10) 考虑到式(2),式(10)可改写为 21 1 (,)n n n n n n n Y T k Y f x t ρ??∞ ∞ ==+=∑∑ (11) 对式(11)两边乘以Y m ,再对x 沿长度积分,并利用振型函数的正交性,得 2220 (,)l l l n n n n n n Y dx Tk Y dx Y f x t dx ρ??+=???

机械振动习题及答案

机械振动 一、选择题 1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C ) ()A 小球在地面上作完全弹性的上下运动 ()B 细线悬挂一小球在竖直平面上做大角度的来回摆动 ()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动 ()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动 解析:A 小球不是做往复运动,故A 不是简谐振动。B 做大角度的来回摆动显然错误。D 由于球形是非线性形体,故D 错误。 2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。若从松手时开始计时,则该弹簧振子的初相位应为 图 一 ( D ) ()0A ()2 πB

()2 π-C ()πD 解析: 3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B ) ()63T A ()36T B ()T C 2 ()T D 6 解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。故由公式k m T π2=,可得此弹簧振子的周期为3 6T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振 幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B ) ()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上 振动 ()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动 ()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作 竖直振动

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

N考核《大学物理学》机械振动与机械波部分练习题(解答)

《大学物理学》机械振动与机械波部分练习题(解答) 一、选择题 1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 2.两个简谐振动的振动曲线如图所示,则有 ( A ) (A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。 3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D ) (A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。 4.分振动方程分别为13cos(50)4 x t π π=+ 和234cos(50)4 x t ππ=+ (SI 制)则它们的合 振动表达式为: ( C ) (A )5cos(50)4 x t π π=+ ; (B )5cos(50)x t π=; (C )1 15cos(50)2 7 x t tg π π-=+ +; (D )1 45cos(50)2 3 x t tg π π-=+ +。 5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为 ( B ) (A )2; (B )2; (C )1/2; (D )2/1。 6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。x =0处,质点振动曲线如图所示,则该波的表式为 (A ))2 20 2 cos( 2π π π + + =x t y m ; (B ))2 20 2 cos( 2π π π - + =x t y m ; (C ))2 20 2 sin( 2π π π + + =x t y m ; (D ))2 20 2 sin( 2π π π - + =x t y m 。 2 -

浙江大学《机械振动基础》期末试卷

诚信考试沉着应考杜绝违纪 浙江大学2013–2014学年夏学期 《机械振动基础》课程期末考试试卷A卷 开课学院:化工系,考试形式:闭卷,允许带 1张A4纸的笔记入场 考试时间: 2014 年 7 月 2 日, 下午14:00~16:00 ,所需时间: 120 分钟 考生姓名: __学号:专业:过程装备与控制工程 . 注意事项: (1)、考试形式为闭卷,允许带1页A4纸大小的参考资料、计算器和尺子。不允许带 PPT课件打印稿、作业本、笔记本草稿纸等纸质材料,不允许带计算机、IPad等智能电子设备。 (2)、第一、二大题答题内容写在试卷上,第三大题答题内容写在试卷所附答题纸上。试题(三个大题,共100分): 一、判断题(每题2分,共18分) 1.1 杆的纵向振动、弦的横向振动和轴的扭转振动虽然在运动表现形式上并不相同, 但它们的运动微分方程是同类的,都属于一维波动方程。() 1.2 稳态响应的振幅及相位只取决于系统本身的物理性质(m, k, c)和激振力的频率 及力幅,而与系统进入运动的方式(即初始条件)无关. () 1.3 在受到激励开始振动的初始阶段,振动系统的响应是暂态响应与稳态响应的叠 加。即使在零初始条件下,也有自由振动与受迫振动相伴发生。() 1.4 为减轻钢丝绳突然被卡住时引起的动张力,应适当减小升降系统的刚度。() 1.5 汽轮机等高速旋转机械在开、停机过程中经过某一转速附近时,支撑系统会发生 剧烈振动,此为转子系统的临界转速,即转子横向振动的固有频率。() 1.6 谐波分析法是将非周期激励通过傅立叶变换表示成了一系列频率为基频整数倍的 简谐激励的叠加,从而完成系统响应分析。 () 1.7阻尼自由振动的周期小于无阻尼自由振动的周期。 () 1.8叠加原理可用于线性和非线性振动系统。 () 1.9若将激振力 F(t) 看作一系列单元脉冲力的叠加,则线性振动系统对任意激振力的 响应等于激振力作用时间内各个单元脉冲响应的总和。 ()

机械振动学试题库

《机械振动学》课程习题库 第一章 1.1 何谓机械振动?表示物体运动特征的物理量有哪些? 1.2 按产生振动的原因分为几类?按振动的规律分为几类? 1.3 何谓线性系统、机械系统和等效系统? 1.4 如何理解瞬态振动、稳态振动、自由振动、强迫振动、纵向振动。横向振动、扭转振 动、参数振动和非线性振动? 1.5 写出频率、角频率、相位、幅值、有阻尼固有频率,并说明意义,注明单位值。 1.6 如何理解粘性阻尼系数、等效阻尼、临界阻尼系数、欠阻尼和过阻尼? 1.7 振动对机械产品有哪些影响? 1.8 利用振动原理而工作的机电设备有哪些?试举例说明。 1.9 重温非简谐的周期性振动傅里叶级数,时间函数为f(t),其周期为T ,表达式为: )s i n c o s ()(1 0t n b t n an a t f n n ωω++=?∞ = 式中:?= T dt t f T a 0 0)(1 ?=T n tdt n t f T a 0 cos )(2 ω ?=T n tdt n t f T b 0 sin )(2 ω 注:《手册》P9 1.10将下图所示的f(t)展成傅立叶级数。 参考答案:()∑∞== =5.2.1sin 1 440t n p t f n p b n b n n n ωππ 傅氏级数为奇数时,,当为偶数时,当 f(t) P 0 -P π/ω 2π/ω 3π/ω 4π/ω t

1.11今有一简谐位移x(t)(mm),其表达式为:()=8sin(24 -),3 x t t π 求: 1. 振动的频率和周期; 2. 最大位移、最大速度和最大加速度; 3. t=0时的位移、速度和加速度; 4. t=1.5s 时的位移、速度和加速度。 参考答案:24rad/s ,3.82Hz ,0.2618s ;192mm/s ,4608mm/s 2;-6.9282mm ,96mm/s ,3990.65 mm/s 2 ;-3.253mm ,175.4mm/s ,1874 mm/s 2 1.12一振动体作频率为50Hz 的简谐振动,测得其加速度为80 m/s 2 ,求它的位移幅值和 速度幅值。 参考答案:0.8/mm ,254.34mm/s 。 1.13 一简谐振动的频率为10Hz ,最大速度4.57m/s ,求它的振幅、周期和最大加速度。 参考答案:0.073m ,0.1s ,287.9m/s 2 1.14 求图中刚性杆的振动系统中自由度的数目,并规定出该系统中所用的广义坐标系。 1.15 分析如图所示的机械系统,试求所需的自由度数目,并规定出该系统中所用的坐标系。 1.16 在对所示机械系统进行分析时,试求所用到的自由度数目,并规定一套系统振动分析时所用到的广义坐标系。 题1.14 图 题1.15 图

高考物理专题16机械振动和机械波 真题分类汇编(教师版)

专题16 机械振动和机械波 1.(2019·新课标全国Ⅰ卷)一简谐横波沿x 轴正方向传播,在t = 2 T 时刻,该波的波形图如图(a )所示,P 、Q 是介质中的两个质点。图(b )表示介质中某质点的振动图像。下列说法正确的是 A .质点Q 的振动图像与图(b )相同 B .在t =0时刻,质点P 的速率比质点Q 的大 C .在t =0时刻,质点P 的加速度的大小比质点Q 的大 D .平衡位置在坐标原点的质点的振动图像如图(b )所示 E .在t =0时刻,质点P 与其平衡位置的距离比质点Q 的大 【答案】CDE 【解析】由图(b )可知,在2T t = 时刻,质点正在向y 轴负方向振动,而从图(a )可知,质点Q 在2 T t = 正在向y 轴正方向运动,故A 错误;由2 T t = 的波形图推知,0t =时刻,质点P 正位于波谷,速率为零;质点Q 正在平衡位置,故在0t =时刻,质点P 的速率小于质点Q ,故B 错误;0t =时刻,质点P 正位于波谷,具有沿y 轴正方向最大加速度,质点Q 在平衡位置,加速度为零,故C 正确;0t =时刻,平衡位置在坐标原点处的质点,正处于平衡位置,沿y 轴正方向运动,跟(b )图吻合,故D 正确;0t =时刻,质点P 正位于波谷,偏离平衡位置位移最大,质点Q 在平衡位置,偏离平衡位置位移为零,故E 正确。故本题选CDE 。 2.(2019·新课标全国Ⅱ卷)如图,长为l 的细绳下方悬挂一小球a 。绳的另一端固定在天花板上O 点处,在O 点正下方3 4 l 的O '处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时。当小球a 摆至最低位置时,细绳会受到铁钉的阻挡。设小球相对于其平衡位置的水平位移为x ,向右为正。下列图像中,能描述小球在开始一个周期内的x-t 关系的是

高考物理:机械振动和机械波知识点

高考物理:机械振动和机械波知识点 :高三就是到了冲刺的阶段,大家在大量练习习题的时候,也不要忘记巩固知识点,只有很好的掌握知识点,才能运用到解题中。接下来是小编为大家总结的高考物理知识点,希望大家喜欢。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。 (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。 ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。 ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。 (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图

像不是质点的运动轨迹。 ②特点:简谐运动的图像是正弦(或余弦)曲线。 ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。单摆是一种理想化模型。 (1)单摆的振动可看作简谐运动的条件是:最大摆角α5°。 (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。 ①在振幅很小的条件下,单摆的振动周期跟振幅无关。 ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关。 ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g‘等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A )6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4y A t πω=+ ,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大振幅2 A 处需最短时间为 [ B ] (A ) ;4T (B) ;6T (C) ;8T (D) .12 T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体,此三个系统振动周期之比为 (A);2 1:2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1:2:1 5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;3 4s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分,且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );1 1,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 2 1,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

高中物理选修3-4知识点机械振动与机械波解析

机械振动与机械波 简谐振动 一、学习目标 1.了解什么是机械振动、简谐运动 2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 二、知识点说明 1.弹簧振子(简谐振子): (1)平衡位置:小球偏离原来静止的位置; (2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械 运动,这样的系统叫做弹簧振子。 (3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑 振子的大小和形状的理想化的物理模型。 2.弹簧振子的位移—时间图像 弹簧振子的s—t图像是一条正弦曲线,如图所示。 3.简谐运动及其图像。 (1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 (2)应用:心电图仪、地震仪中绘制地震曲线装置等。 三、典型例题 例1:简谐运动属于下列哪种运动() A.匀速运动 B.匀变速运动 C.非匀变速运动 D.机械振动 解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。故A、B错,C正确。简谐运动是最简单的、最基本的机械振动,D正确。

答案:CD 简谐运动的描述 一、学习目标 1.知道简谐运动的振幅、周期和频率的含义。 2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。 二、知识点说明 1.描述简谐振动的物理量,如图所示: (1)振幅:振动物体离开平衡位置的最大距离,。 (2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。 (3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。 (4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。 (5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。 (6)相位:用来描述周期性运动在各个时刻所处的不同状态。 2.简谐运动的表达式:。 (1)理解:A代表简谐运动的振幅;叫做简谐运动的圆频率,表示简谐运动的快慢,且;(代表简谐运动的相位,是t=0时的相位,称作初相位或初相;两个具有相同频率的简谐运动存在相位差,我们说2的相位比1超前。 (2)变形: 三、典型例题 例1:某振子做简谐运动的表达式为x=2sin(2πt+6π)cm则该振子振动的振幅和周期为() A.2cm1s B.2cm2πs C.1cmπ6s D.以上全错 解析:由x=Asin(ωt+φ)与x=2sin(2πt+6π)对照可得:A=2cm,ω=2π=2πT,∴T=1s,A选项正确。 答案:A 例2:周期为2s的简谐运动,在半分钟内通过的路程是60cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为() A.15次,2cm B.30次,1cm

(完整版)机械振动单元测试题

(完整版)机械振动单元测试题 一、机械振动选择题 1.如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C、D两点之间做周期为T的简谐运动。已知在t1时刻物块的速度大小为v,方向向下,动能为E k。下列说法错误的是() T A.如果在t2时刻物块的速度大小也为v,方向向下,则t2~t1的最小值小于 2 B.如果在t2时刻物块的动能也为E k,则t2~t1的最小值为T C.物块通过O点时动能最大 D.当物块通过O点时,其加速度最小 2.某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会() A.偏大B.偏小C.一样D.都有可能 3.下列说法中不正确的是( ) A.将单摆从地球赤道移到南(北)极,振动频率将变大 B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变 D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变 4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。已知弹簧的劲度系数为k,则下列说法中正确的是()

A .细线剪断瞬间A 的加速度为0 B .A 运动到最高点时弹簧弹力为mg C .A 运动到最高点时,A 的加速度为g D .A 振动的振幅为 2mg k 5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是() A .甲、乙的振幅各为 2 m 和 1 m B .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1 C .乙振动的表达式为x= sin 4 π t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值 6.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212()8x x g L π- 7.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个 T 形支架在竖直方向振动, T 形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘 静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是( ) A .小球振动的固有频率是4Hz

大学物理教案 机械振动与机械波

教学目标 1.掌握简谐振动的定义、表达方式、简谐振动的合成方法;了解自由、阻尼、强迫等各类简谐振动的特点和规律。 2.掌握振动和波的关系、波的相干条件、叠加原理、驻波的形成条件、驻波的振幅、相位和能量的空间分布,半波损失。 3.学会建立波动方程。 教学难点 多自由体系的小振动 第十一章 机械振动 振动是指物体或系统在其平衡位置附近的往复运动。(例子:物体位置、电流强度、电压、电场强度、磁场强度等)。 物体或系统质点数是无穷的,自由度数也是无穷的,因此存在空间分布和时间分布,需要用偏微分方程描述 (如果一个微分方程中出现多元函数的偏导数,或未知函数与几个变量有关,而且未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。例如弦包含很多的质点,不能用质点力学的定律研究,但是可以将其细分成若干个极小的小段,每小段可以抽象成一个质点,用微分的方法研究质点的位移,其是这点所在的位置和时间变量的函数,根据张力,就可以建立起弦振动的偏微分方程) 。 一、简谐振动(单自由度体系无阻尼自由小振动) 虽然多质点的振动要用偏微分方程描述,但是我们可以简化或只考虑细分成的每一小段,那么就成为单质点单自由度(只需一个坐标变量)的振动。 2222 22222,,0 cos():0i i t F k k F kx a x m m m d x d x a x a x dt dt x A t Ae e i ,令特征方程特征根:?ωωωωω?λωλω=-= =-==-=∴+==+=+==±A (振幅)、?(初相位)都是积分常数,k 为倔强系数。 在微分方程中所出现的未知函数的导数的最高阶数称为这个方程的阶。 形如 ()()dx P t x Q x dt +=的方程为线性方程, 其特点是它关于未知函数x 及其导数dx dt 都是一次的。若()0Q x =,则()0dx P t x dt +=称为齐次的线性方程。 二阶常系数齐次线性微分方程的解法: ()() 1 2 121212121,212cos sin t t t t x c e c e x c c t e i x e c t c t λλλαλλλλλαβββ≠=+==+=±=+ 由cos()sin()x A t v A t ω?ωω?=+?=-+ 按周期定义, ()()cos()cos sin()sin A t A t T A t A t T ω?ω?ωω?ωω?+=++???? -+=-++???? ,同时满足以上两方程的T 的

机械振动2015试题及参考答案-1

中南大学考试试卷(A卷) 2015 - 2016学年上学期时间110分钟 《机械振动基础》课程 32 学时 2 学分考试形式:闭卷专业年级:机械13级总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上 1、简述机械振动定义,以及产生的内在原因。 (10分) 答:机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。(5分)产生机械振动的内在原因是系统本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。(5分) 2、简述随机振动问题的求解方法,随机过程基本的数字特征包括哪些? (10分) 答:随机振动问题只能用概率统计方法来求解,只能知道系统激励和相应的统计值(5分)。 随机过程基本的数字特征包括:均值、方差、自相关函数、互相关函数。(5分) 3、阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么? (10分) 答:阻尼消耗振动系统的能量,它使自由振动系统的振动幅值快速减小(5分)。增加黏性阻尼量,可使指针快速回零位(5分)。 4、简述求解周期强迫振动和瞬态强迫振动问题的方法。

(10分) 答:求解周期强迫振动时,可利用傅里叶级数将周期激励力转化为简谐激励力,然后利用简谐激励情况下的周期解叠加,可以得到周期强迫振动的解(5分)。求解瞬态强迫振动的解时,利用脉冲激励后的自由振动函数,即单位脉冲响应函数,与瞬态激励外力进行卷积积分,可以求得瞬态激励响应(5分)。周期强迫振动和瞬态强迫振动,也可以通过傅里叶积分变换、拉普拉斯积分变换来求解。 5、如图1所示,系统中质量m 位于硬质杆2L (杆质量忽略)的中心,阻尼器的阻尼系数为c ,弹簧弹性系数为k , (1)建立此系统的运动微分方程; (5分) (2)求出临界阻尼系数表示式; (5分) (3)阻尼振动的固有频率表示式。 (5分) 答:(1)可以用力矩平衡方法列写平衡方程,也可以用能量方法列写方程,广义坐标可以选质量块的垂直直线运动,也可以选择杆的摆角,以质量块直线运动坐标为例,动能212T E mx =&,势能21(2)2U k x =,能量耗散2 12 D cx =&,由222,,T T ij ij ij i j i j i j E D U m c k x x x x x x ???=== ??????,得到:40mx cx kx ++=&&&; (2 )e c == (3 )d n ω== 6、如图2所示系统,两个圆盘的直径均为r ,设I 12,k 12,k 3=3k , (1)选取适当的坐标,求出系统动能、势能函数; (5分) (2)求出系统的质量矩阵、刚度矩阵; (5分) (3)写出该系统自由振动时运动微分方程。 (5分)

机械振动学复习试题

(一) 一、填空题(本题15分,每空1分) 1、不同情况进行分类,振动(系统)大致可分成,( )和非线性振动;确定振动和( );( )和强迫振动;周期振动和( );( )和离散系统。 2、在离散系统中,弹性元件储存( ),惯性元件储存( ),( )元件耗散能量。 3、周期运动的最简单形式是( ),它是时间的单一( )或( )函数。 4、叠加原理是分析( )的振动性质的基础。 5、系统的固有频率是系统( )的频率,它只与系统的( )和( )有关,与系统受到的激励无关。 二、简答题(本题40分,每小题10分) 1、 简述机械振动的定义和系统发生振动的原因。(10分) 2、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。(10分) 3、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(10分) 4、 多自由系统振动的振型指的是什么?(10分) 三、计算题(本题30分) 1、 求图1系统固有频率。(10分) 2、 图2所示为3自由度无阻尼振动系统。 (1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分); (2)设1234t t t t k k k k k ====,123/5I I I I ===,求系统固有频率(10分)。 解:1)以静平衡位置为原点,设123,,I I I 的位移123,,θθθ为广义坐标,画出123,,I I I 隔离体,根据牛顿第二定律得到运动微分方程: 1111212222213233333243()0 ()()0()0 θθθθθθθθθθθθθ?++-=? +-+-=?? +-+=?t t t t t t I k k I k k I k k 图1 图2

相关主题
文本预览
相关文档 最新文档