当前位置:文档之家› 长玻璃纤维_聚丙烯复合材料粒料注塑制品的拉伸强度

长玻璃纤维_聚丙烯复合材料粒料注塑制品的拉伸强度

长玻璃纤维_聚丙烯复合材料粒料注塑制品的拉伸强度
长玻璃纤维_聚丙烯复合材料粒料注塑制品的拉伸强度

文章编号:1000-3851(2001)02-0041-05

收稿日期:2000-03-29;收修改稿日期:2000-06-23

作者介绍:咸贵军(1972),男,博士,主要人事树脂基复合材料界面的表征与改性,以及连续/长纤维增强热塑性树脂基复合材料的制备、加工 等方面的研究。

长玻璃纤维/聚丙烯复合材料粒料

注塑制品的拉伸强度

咸贵军1,益小苏1,2,卢晓林1,胡永明1

(1.浙江大学高分子复合材料研究所,杭州310027; 2.北京航空材料研究院先进复合材料国防科技重点实验室,北京100095)

摘 要: 利用自行研制的玻璃纤维(G F)增强聚丙烯(PP )预浸装置,制备了长玻纤增强聚丙烯(L GF RP )粒料,并通过普通注塑机注塑成型。研究了界面改性、粒料长度、浸渍程度及退火处理等对注塑试样拉伸强度的影响。试验发现,用接枝马来酸酐PP 作为界面相容剂,试样的拉伸强度明显提高。当接枝马来酸酐量占PP 量的0.3%左右时,试样强度达到最大值。长纤维粒料内纤维浸渍度越高,注塑试样的强度越好。15mm 和5m m 长纤维粒料注塑成型试样的拉伸强度均高于10mm 粒料注塑成型的试样。退火处理可较大程度地提高注塑试样的拉伸强度。关键词: 注塑成型;拉伸强度;长玻璃纤维增强聚丙烯中图分类号: T Q 327.3 文献标识码:A

TENSILE PROPERTIES OF INJECTION MOLDED LONG GLASS

FIBER REINFORCED POLYPROPYLENE PARTS

XIAN Gui-jun 1

,YI Xiao-Su 1,2

,LU Xiao-lin 1

,HU Yo ng -ming

1

(1.Institute o f Po ly mers Com po sites ,Zhejiang U niver sity ,Hangzhou 310027,China ;

2.N atio na l K ey L abor ato ry of A dvanced Co mpo sites,Beijing Institut e of A er onautical M ater ials Beijing 100095,China )

Abstract : Using an im pregnation/pultrusion device developed at our laboratory ,long glass fiber reinforced po lypropy lene (LGFRP)pellets w ere https://www.doczj.com/doc/b84299728.html, posites parts were injection mo ld-ed w ith the pellets by a conventional injection machine .Factors affecting the tensile streng th of the par ts w ere studied.Polypropylene g rafted w ith m aleic anhydride (PP-M AH)as surface-m odi-fier w as very efficient to im pro ve the tensile strength.T he tensile strength r eached a max imum value for a g rafted PP -M AH co ntent of 0.3%of PP .T he better the glass fiber in pellets w as im-pregnated ,the higher the strength w o uld be .T he tensile str ength of the par ts mo lded w ith 10mm long pellets w as low er than those w ith 5m m or 15mm long pellets.Annealing w as an effi-cient way to im pro ve the tensile strength.

Key words : injection m olding ;tensile strength ;lo ng g lass fiber reinfor ced poly pro py lene 长玻璃纤维增强粒料指的是纤维单向排布的粒料,其纤维长度与粒料长度相等,一般大于5mm 。这个品种的复合材料粒料在我国还处于研制阶段,缺少商业牌号。国外的品种主要有ICI 公司的Ver -to n,Hoechst-Celanese 公司的Celstr an 等。这种材料主要应用在力学性能比短切玻璃纤维粒料要求更高的场合,具有较重要的应用前景[1]

。由于这种材料的纤维较长,给常规的注塑成型带来一定的困难,因此,研究其注塑成型工艺与性能的关系受到越来越

多的重视[2]

非连续纤维增强复合材料的拉伸强度R 符合下式(3):

R =G 0

l i

S l i V i 2r +G 0∑l j >l c R f V j (1-l c

2l j )+R m (1-V f ),l c =

r R f

2S

式中,V i 和V j 分别为长度小于和大于纤维临界长度l c 的纤维体积含量;V f 为纤维的总体积含量;R f

复合材料学报

A CT A M A T ERIA E CO M PO SIT A E SIN ICA

第18卷 第2期 5月 2001年V o l.18 N o.2 M ay

 2001

为玻璃纤维的拉伸强度;R m为树脂的拉伸强度;l i、l j 分别指大于和小于l c的玻璃纤维长度;r为玻璃纤

维的半径;S为界面剪切强度。由上式可见,在纤维含量一定的情况下,随注塑材料内纤维长度增加,l c 降低以及纤维取向度的提高,复合材料的拉伸强度提高。通过界面改性、粒料长度变化、注塑工艺变化和模具设计,可改变注塑试样内纤维的长度、取向以及l c大小,从而影响其力学性能。上述公式是在纤维与基体完全混合的假设基础上推导得到的[3]。实际上,在具体实验和生产中,很难做到这一点。纤维与基体混合越均匀,纤维承受应力的效果越明显,材料的强度越高。

从上述分析可知,界面改性、纤维浸渍程度、粒料长度及注塑材料退火等将改变复合材料内纤维的长度、分布以及纤维/基体间的界面强度,从而影响材料的拉伸强度。本文将就此进行初步研究。

1 实验部分

1.1 实验设备

注塑机,浙江塑料机械厂出品,SZ-60/40。电子拉力机,长春市智能仪器设备研究所生产,WSM-2000型数字式试验机。

1.2 试验原料

南京玻纤院提供的玻璃纤维(GF),直径20 L m,表面处理409浸润剂(主要成分为KH560、KH570等),单股和三股并股两种。杭州新兴玻璃纤维厂提供的GF,直径为11L m,表面处理剂主要为KH550。聚丙烯,Q/sh C001-1998,锦州石化公司提供。接枝马来酸酐(M AH)改性的PP(PP-MAH),利用固相接枝方法自行制备,接枝率为1.5%和2.3%两种。双马来先亚胺(BM I)由北京航空材料研究院提供。

1.3 长玻璃纤维/聚丙烯粒料的制备

利用自行设计制造的连续纤维/热塑性树脂基复合材料浸渍装置[4],制备连续GF增强的PP予浸料,然后切割成长度为5m m、10m m、15m m的注塑用粒料。

长纤维粒料的特征是粒料内纤维单向排布,长度与粒料长度相同。

1.4 注塑模具及注塑工艺:

模具为两种不同浇口尺寸的哑铃形,大小浇口的尺寸分别为7.6

mm2和2.2mm2,前者称为“宽浇口”,后者称为“窄浇口”。喷嘴直径为5mm。哑铃形试样的厚度为4mm,其它尺寸如图1所示。

图1 哑铃形模具的形状与尺寸

Fig.1 Geometry and dimensions of th e dumb bell sh aped mold

注射机温度设置:210℃~240℃~230℃(加料斗到喷嘴),喷嘴温度约为220℃。模具温度为室温。注塑压力为0.7MPa。

1.5 试验方法

每组实验至少5个试样,实验结果取平均,并计算标准偏差S D=

∑(x-x-)2

n-1

。退火处理:真空条

件下150℃,处理1小时。按照GB/T1042进行拉伸强度测试。拉伸速度10mm/min。用日立公司S-570电子显微镜观察试样的断面。

除特殊说明外,本文中均采用杭州新兴玻璃纤维厂提供的玻璃纤维。纤维含量均为40w t%。除特殊说明外,粒料的长度均为15m m,且注塑试样均未进行退火处理。

2 结果与讨论

2.1 粒料的浸渍状况对拉伸强度的影响

实验所用玻璃纤维束有单股和3单股并成1股共两种规格,其中,3股合并的纤维束由于并股原因在分丝过程中至少有一股受不到张力,所以在浸渍过程中,它的纤维不能被很好地浸渍,也就是说,三股并纤维束长纤维粒料的浸渍效果要比单股纤维粒料差。

图2中A所用的玻璃纤维由南京玻纤院提供, 3股并1股,所用PP-M AH的接枝率为1.5%。B 纤维由杭州玻璃纤维厂提供,3股并1股,所用PP-M AH的接接枝率为2.3%。C纤维由南京玻纤院提供,单股,所用PP-MAH的接枝率为1.5%。从图4可以看出,单股GF粒料成型试样的拉伸强度随着PP-M AH用量的增加而提高,其规律与三股GF粒料成型的试样相同,但在相同PP-M AH用量情况下,其拉伸强度要高于3股GF粒料成型的试样。并且在3股纤维粒料成型试样的拉伸断口处发现有未充分浸渍的纤维束存在(图3),而在单股纤维粒料注塑试样断口未发现这种情况,这说明由于

?

42

?复 合 材 料 学 报

图2 接技马来酸酐含量对注塑试样拉伸强度的影响Fig.2 Effects of maleic anh ydride con tent on the tensile strength

在三股纤维粒料中纤维的浸渍不完全,注塑过程虽然使纤维得到进一步的浸渍,但纤维在试样中的分布仍不均匀,在粒料中未被浸渍的小股纤维束在试样中仍以束状形式存在,从而导致试样的拉伸强度

下降。

图3 三股玻璃纤维粒料注塑试样的拉伸断口S EM 照片

Fig.3 S EM fractograph of the s amp le molded

w ith 3rovin g glas s fiber pellets

2.2 界面改性对拉伸强度的影响

长玻璃纤维增强聚丙烯试样的拉伸强度随接枝PP 用量的增加而提高,当接枝MAH 含量达到0.3%时,强度达到最高值。此后再增加接枝PP 的用量,拉伸强度反而缓慢下降(如图2)。产生这个现象的原因可能是因为当接枝PP 用量较低时,随接枝PP 用量的增加,基体与纤维间的界面结合强度增加,试样的拉伸强度提高。但由于接枝PP 在接枝过程中发生部分降解,其强度降低,所以当接枝PP 用量较大时,导致复合材料试样拉伸强度的下降。 换用不同接枝率的PP -M AH 和不同类型的GF 制备长玻璃纤维增强聚丙烯试样,当接枝MAH 量占PP 总量的0.3%左右时,试样的拉伸强度都达

到最大值(图2),这说明当接枝M AH 含量为0.3

%左右时,PP 与GF 间的界面性能达到最佳效果。 作为PP /GF 复合材料的相容剂,BMI 曾在六、七十年代得到普遍使用[5]。本文也对此做了初步研究。加入BM I 可有效提高LGFRP 试样的拉伸强度,特别当BMI 与KH 550偶联剂配合使用时,效果更为明显(图4)。但同PP -M AH 相比BM I 对LGFRP 试样拉伸强度的改善作用较小,这可能是因为在界面处的BMI 虽然同GF 间形成了有效的物理作用和化学键结合,但由于BM I 的分子量较低,极性较大,容易与PP 产生相分离,从而影响了其相容作用。当BM I 用量增加时,BMI 与PP 间的相分离现象更为明显,材料的拉伸强度随之下降。

图4 BM I 及偶联剂对LGFRP 注塑试样拉伸强度的影响

(窄浇口模具,南京玻纤院GF,

3股并1股。A1=KH550,A2=KH570)Fig.4 Effect of BM I ad coupling agents on the tens ile s tr ength (narrow gate,GF d =11L m,3rovings ,A1=KH550,A 2=KH570)

2.3 粒料长度对拉伸强度的影响

LGFRP 试样的拉伸强度随粒料的长度变化而改变。不同模具浇口条件下,分别用长为5mm 和15m m 的粒料注塑试样,发现它们的强度均高于用10m m 粒料注塑的试样,如图5所示。这可能是

图5 粒料长度对拉伸强度的影响(宽、窄浇口模具,退火处理)

Fig.5 E ffect of pellet length on the tensile strength

(wide and narrow gate,annealed)

?

43?咸贵军,等:长玻璃纤维/聚丙烯复合材料粒料注塑制品的拉伸强度

因为在注塑过程中,较短粒料(如5m m )同长粒料相比,其中的纤维更容易分散,在注塑试样内的分布更为均匀,减少了应力集中现象。而较长粒料在注塑过程中纤维的分散比较困难,但注塑试样内纤维的平均保留长度较长,纤维的增强效果也较明显。2.4 退火处理对拉伸强度的影响

通过退火处理,长玻璃纤维增强聚丙烯试样的拉伸强度显著提高,如图6所示。究其原因,可能是在注塑成型过程中,由于长纤维与基体间产生较高的剪切作用和两者的热膨胀系数不同,使注塑试样内GF 与PP 界面间产生较大的残余应力,致使注塑试样内产生应力集中,导致拉伸强度显著下降[6]。而

退火处理可以有效地使残余应力得以松弛。

图6 退火处理对LGFRP 试样拉伸强度的影响Fig.6 Effect of annealing on the tensile strength

注塑成型过程中,纤维同基体间的剪切应力不能得到充分松弛,冷却后在试样内部产生残余应力。注塑用粒料越长,即纤维越长,纤维与基体间的剪切应力越大,相应试样内的残余应力就越大,经退火处理后,其拉伸强度的提高幅度也就越高(见表1)。 用不同尺寸的浇口注塑的试样,退火处理后,宽浇口试样的拉伸强度提高幅度较大,这是由于模具浇口尺寸不同,注塑时熔体的充模方式不同(见图7)。对于宽浇口模具,具有喷射充模特征,首先进入模腔的熔体快速冷却,与随后充模的熔体间产生较大的温差,导致试样内产生较高的残余应力,退火作用也就越明显。窄浇口模具充模时,熔体平推进入,熔体间的温差较小,产生的残余应力也较小,

退火作

图7 不同浇口尺寸所对应的注塑试样外观Fig.7 Effect of an nealing on the tens ile s trength

用也就相对较低。

3 结 论

(1)加入PP-MAH 可以显著提高LGFRP 试样的拉伸强度。当接枝MAH 量占PP 总量的0.3%时,拉伸强度达到最大值。

(2)BMI 可以有效地提高LGFRP 试样的拉伸强度,但其效果不如PP-M AH 明显。

(3)长纤维粒料的长度及其浸渍效果对LGFRP 试样的拉伸强度有显著影响。5mm 和15m m 粒料注塑试样的拉伸强度高于10mm 粒料注塑试样。注塑用粒料的浸渍效果越好,试样的拉伸强度也就越高。

(4)退火处理可以有效地提高LGFRP 试样的拉伸强度。

表1 退火处理对不同粒料长度及浇口尺寸注塑试样拉伸强度的影响(PP -MAH 含量13%)

Table 1 The influence of annealing treatment on the tensile strength

len gth of th e pellets /mm 5

10

15

M odes of the mold gate wide narrow w ide narr ow w ide narrow Improved r atio of tens ile

9.6

8.4

29.3

10.11

33.4

29.8

?

44?复 合 材 料 学 报

参考文献:

[1] Nishitani Yos uke,Sek iguch i Is am u,Yos himitsu,Yos hikuni,

et al.Long glass fib re reinforced polypropylenes:fabr ication and mechanical properties[J].Polymer s and Polymer Comp os-ites,1999,7(3):205-215.

[2] Skour lis T P,M ehta S R,C has sapis C,et al.Impact fracture

beh avior of injection molded long g las s fiber reinforced polypropylene[J].P oly m E ng S ci,1998,38(1):79-89.[3] Vu-Kh anh T,Den ault J,Hab ib P,et https://www.doczj.com/doc/b84299728.html,p S ci T echn,

1991,40:423.

[4] 咸贵军,益小苏,潘 颐.热塑性树脂熔融渍浸连续纤维装

置.塑料工业,2000,28(5):15-17.

[5] 朱火召男.聚丙烯塑料的应用与改性[M].北京:轻工业出版

社,1982.172-173.

[6] 乔生儒.复合材料的细观力学性能[M].西安:西北工业大学

出版社,1997.113-116.

?

45

?

咸贵军,等:长玻璃纤维/聚丙烯复合材料粒料注塑制品的拉伸强度

玻璃纤维增强聚丙烯复合材料的力学性能

玻璃纤维增强聚丙烯复合材料的力学性能 摘要:本文论述了玻璃纤维增强聚丙烯复合材料的力学性能,主要包括材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度。并分析了复合材料力学性能与玻璃纤维含量之间的关系,最后将复合材料与ABS的力学性能进行比较,发现玻璃纤维增强的聚丙烯复合材料可以替代ABS应用于一些受力领域。关键词:玻璃纤维;聚丙烯;力学性能;ABS 1.引言 聚丙烯是一种综合性能十分优异的热塑性通用塑料,其具有易加工、密度小、生产成本低等特点,所以聚丙烯在家用电器、日常用品包装材料、汽车工业等行业有着广泛的应用,成为近些年来增长速度最快的塑料之一。然而聚丙烯也有一些缺点,比如:抗蠕变性差、熔点较低、尺寸稳定性不好、热变形温度低、低温脆性等,制约了其作为工程受力材料的应用。聚丙烯的一般性能如表1所示[1]。如果想提高聚丙烯的耐热性和冲击强度,拓宽其应用范围,就应对聚丙烯进行改性[2, 3]。 表1 聚丙烯的一般性能[1] Tab. 1 The properties of polypropylene 性能数据 拉伸强度/Mpa 29 断裂伸长率/% 200~700 弯曲强度/Mpa 50~58.8 压缩强度/Mpa 45 缺口冲击强度/(KJ/m2)5~10 洛氏硬度80~110 弹性模量/Mpa 980~9800 玻璃纤维增强聚丙烯复合材料(GFRPP)是以热塑性树脂聚丙烯为基体,以长玻璃纤维为增强骨架的材料[4],其性能与ABS 接近,但价格低于ABS 塑料。目前,国内外已对GF 增强PP 做了大量研究[5, 6]。玻璃纤维增强聚丙稀己广泛应用于汽车零部件、家电行业、飞机制造业等。 2.玻璃纤维增强聚丙烯复合材料的力学性能

玻纤改性聚丙烯简述

玻纤增强聚丙烯 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP 改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量可以达到 3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2. 玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展 玻纤增强PP在汽车用料中的应用也不断拓展,新产品的不断涌现,对PP改性也提出了更高的要求,改性PP将有以下主要发展趋势:

玻璃纤维聚丙烯复合材料的性能与形态分析

玻璃纤维/聚丙烯复合材料的性能与形态分析摘要:介绍了玻璃纤维增强聚丙烯复合材料结晶情况,界而横晶的产生,横晶对材料力学性能的影响及控制方法;另外,对于玻璃纤维在该体系中对基体的结晶成核作用通过观察结晶过程,分析结晶热行为。讨论了偶联别、增容剂、润滑剂、增韧剂等改性剂对玻纤增强PP性能的影响。 关键词:聚丙烯;改性剂;玻璃纤维;共混,聚丙烯/玻璃纤维复合材料;界面;横晶。偶联别、增容剂、润滑剂、增韧剂等改性剂,生产工艺等。 目前,热塑性复合材料已成为树脂基复合材料研究开发的热点,已有一些热塑性复合材料在航空、航天及其它领域得到应用。玻璃纤维增强聚丙烯的生产技术较为成熟,原料来源广泛,成本相对较低,因此玻璃纤维增强聚丙烯是开发应用较早的热塑性复合材料品种之一。玻璃纤维增强聚丙烯复合材料具有加工过程无化学反应、成型周期短、成本低、可再生、可重复使用及力学性能好的优点。玻璃纤维增强聚丙烯已获得广泛应用,其应用领域包括汽车、建材、包装、运输、化工、造船、家具、航空、航天等行业。 随着现代科学技术的进步,对材料的要求越来越高,为了提高玻璃纤维增强聚丙烯复合材料的力学性能,进一步拓宽其应用范围,人们对该材料的研究正日益深入。界面是复合材料极为重要的微结构,,已是外加载荷从基体向增强材料传递的纽带聚丙烯是一种分子链缺乏活性基团的非极性聚合物,很难与玻璃纤维形成有效的界面结合,人们通过对纤维及基体的改性提高了两者的界面结合。结构规整的聚丙烯有较强的结晶能力,与其他的纤维增强热塑性复合材料一样,纤维的表面可能对聚丙烯产生结晶成核效应,在界面形成横晶。界面横晶的出现改变了复合体系的界面结构,将对界面的应力传递行为及体系的破坏行为产生很大的影响。 1.聚丙烯的结晶 聚丙烯是一种具有立体规整性的高聚物,它的结晶形态可以有α,β,γ,δ,ε和拟六方五种,其中α和β是两种常见的结晶,形态。 聚丙烯熔体冷却时,熔体中的某些有序区域开始形成尺寸很小的晶胚,晶胚长大到一定尺寸时,成为初始晶核,然后大分子的链端通过热运动,在晶核上重排,生成初始晶片,初始晶片沿晶轴方向生长,逐渐形成初始球晶,初始球晶长大后就成为球晶。

高强玻璃纤维的现状及发展趋势

高强玻璃纤维的现状及发展趋势 1 引言 1938年,美国欧文斯-科宁(OC)公司发明了无碱E玻璃纤维开创了玻璃纤维增强复合材料时代,1960年,又应美国空军的需求开发的一种比E玻纤强度和模量更高一种玻璃纤维,名为S玻纤。S-2是它的商业化生产的注册品牌,现由AGY公司生产。法国的圣戈班(SAINT-GOBINE) 集团的维托特克斯(VETROTEX)公司,日本的日东纺织株式会社,也分别宣布开发出了商标为R高强玻纤和T高强玻纤,前苏联的波洛茨克公司(现白俄罗斯POLOTSK-STEKLOVOLOKNO)生产BMⅡ (为上标)型高强玻纤,此外还有日本的板旭子公司生产U、K高强玻纤用于玻纤帘子线的生产。 中材科技股份有限公司南京玻纤院自上世纪70年代以来独立自主开发并规模化工业生产我国的HS系列高强玻纤,产品性能接近或达到国外先进水平。 将上述各公司生产的S、R、T、BMⅡ(为上标)、 HS玻纤统称为高强玻纤。 2 高强玻纤的化学成份 高强玻璃系统主要为SiO2-Al203-Mg0或SiO2-Al2O3-CaO-MgO体系(数字为下标),各种高强玻璃成份不尽相同,但其中Al2O3的含量均在25%左右。高强玻纤的化学成分见表1。 3 高强玻纤的性能 高强玻纤与常用E玻纤相比具有下列主要六大特点:拉伸强度高、弹性模量高刚性好;断裂伸长量大抗冲击性能好,化学稳定性好,耐高温,抗疲劳特性及雷达透波性能好。 3.1 高强玻纤的拉伸强度及模量 高强玻纤的拉伸强度,弹性模量分别比E玻纤提高了30%~40%和16%~20%以上。用高强玻纤制成的复合材料其强度及模量比E玻纤制成的复合材料分别高5O%以上,见图1和图2。

玻璃纤维棉

玻璃纤维 目录 玻璃纤维 (1) 1、材料简介 (2) 基本介绍 (2) 特点介绍 (3) 主要成分 (4) 2、材料分类 (5) E-玻璃 (6) C-玻璃 (6) 高强玻璃纤维 (7) AR玻璃纤维 (7) A玻璃 (7) E-CR玻璃 (8) D玻璃 (8) 3、强伸性能测试 (8) 4、品种用途 (9) 无捻粗纱 (9) 无捻粗纱织物(方格布) (11) 玻璃纤维毡片 (11) 短切原丝和磨碎纤维 (13) 玻璃纤维织物 (14) 组合玻璃纤维增强材料 (16) 玻璃纤维湿法毡 (17) 玻璃纤维布 (17) 5、现状前景 (18)

玻璃纤维短切丝 玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 1、材料简介 基本介绍 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具

玻璃纤维 有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。 CAS NO:14808-60-7 分子结构 [1] 特点介绍 原料及其应用玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好(特别是玻璃棉),抗拉强度高,电绝缘性好(如无碱玻璃纤维)。但性脆,耐磨性较差。玻璃纤维主要用作电绝缘

长玻纤增强聚丙烯成型工艺

长玻纤增强聚丙烯成型工艺 发布时间:2011-01-13 ;浏览次数:127 返回列表 长玻纤增强热塑性复合材料作为当今玻璃纤维增强材料的一个发展趋势,受到了国内外各大塑料改性生产厂商的高度重视,特别是长玻纤增强pp材料,由于其很高的性价比优势,更被业界所广泛看好。目前这些厂商纷纷投入大量的人力、物力进行该类型材料的生产研发和市场开拓的工作。 长玻纤增强pp产品定义 长玻纤增强pp产品是一种长玻纤增强pp的改性塑料材料。该材料一般为长度12毫米或25毫米,直径3毫米左右的柱状粒子。在这种粒子中,玻璃纤维有着和粒子同样的长度,玻璃纤维的含量可以从20%到70%不等,粒子颜色可以根据客户要求进行配色。该粒子一般可以用于注射及模压工艺,可以生产结构件或半结构件,应用的领域包括汽车、建筑、家电、电动工具等等。 长玻纤增强pp性能优势 lft粒料在进入注射机料斗时,内部的纤维长度和粒子长度相等,为0.5-3公分左右。随着注射机螺杆的输送、注射口的流体冲击以及在材料模腔内的流动等工艺条件的介入,玻璃纤维最后在制品中的平均长度为4毫米左右。相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),lftp材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能,使得增强后通用pp材料的性能能够达到或接近增强工程塑料如pa或ppo的性能。 长玻纤增强pp性价比优势 由于lft材料类似于增强工程塑料的卓越性能以及pp基材相对于工程塑料基材极其低廉的价格成本,因此赋予了该材料极佳的性价比:相对于短纤增强pa材料而言,使用lft材料可在材料成本上节约40~50%左右;相对于短纤增强ppo材料而言,使用lft材料可在材料成本上节约100%

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

影响玻璃纤维强度的因素

影响玻璃纤维强度的因素 1、纤维直径和长度对拉伸强度的影响 一般情况,玻璃纤维的直径愈细,抗拉强度越高,但在不同的拉丝温度下拉制的同一直径的纤维强度,也可能有区别。玻璃纤维的拉伸强度和长度有关,随着纤维长度的增加,拉伸强度显著下降直径和长度对玻璃纤维拉伸强度的影响,可以用微裂纹假说来解释。因为随着纤维直径和长度的减小,纤维中微裂纹会相应减少,从而提高了纤维强度。 2、化学组成对强度的影响 一般是含碱量越高、强度越低。无碱纤维比有碱纤维的拉伸强度高20%研究证明,高强和无碱纤维,由于成型温度高,硬化速度快,结构链能大等原因,因此具有很高的抗拉强度。含K2O和PbO 成分多的玻璃纤维强度较低。 3、玻璃液质量对玻璃纤维强度的影响 A)结晶杂质的影响:当玻璃成分波动或漏板温度波动或降低时,可能导致纤维中结晶的出现。实践证明,有结晶的纤维比无结晶的纤维强度要低。 B)玻璃液中的小气泡也会降低纤维的强度。曾试验用含小气泡的玻璃液拉直径为5.7um,的玻璃纤维其强度比 用纯净玻璃液拉制的纤维强度降低20%。 4、成型条件对玻璃纤维的影响

实践证明,用漏板拉制的玻璃纤维强度高于用玻璃棒法拉制的纤维。在玻璃棒法中,用煤气加热生产的纤维又比用电热丝加热生产的纤维强度为高。如用漏板法拉制10um,玻璃纤维的强度为1700MPa,而用棒法拉制相同直径的玻璃纤维强度仅为1100MPa。这是因为玻璃棒只加热到软化,粘度仍然很大,拉丝时纤维受到很大的应力;此外玻璃棒法是在较低温度下拉丝成型,其冷却速度要比漏板法为低。用各种不同成型方法生产的玻璃纤维的强度各不相同。用漏板法拉制的纤维强度最高,气流吹拉长棉次之,玻璃棒法再次之。然后是蒸汽立吹短棉,强度最低是蒸汽喷吹矿棉。在采用漏板拉丝的方法中,采用较高的成型温度,较小的漏孔直径,可以提高纤维强度。 5、表面处理对强度的影响 在连续拉丝时,必须在单根纤维或纤维束上敷以浸润剂,它在纤维表面上形成一层保护膜,防止在纺织加工过程中,纤维间发生相互摩擦,而损伤纤维降低强度。玻璃布经热处理除去浸润剂后,强度下降很多,但在用中间粘结剂处理后,强度一般都可回升,这是因为中间粘结剂涂层一方面对纤维起到保护作用,另一方面对纤维表面缺陷有所弥补。 6、存放时间对强度的影响 玻璃纤维存放一段时间后其强度会降低,这种现象称为纤维的老化。主要是空气中的水分对纤维侵蚀的结果。此,化学稳定性高的纤维强度降低小,如同样存放233年的有碱

汽车新材料:长玻纤增强PP(LFT-PP)

汽车新材料:长玻纤增强PP(LFT-PP) 由于金属不适合成型复杂的形状,限制了它在很多零件中的应用,这也阻碍了成本的下降。与此相反,采用长玻纤增强塑料注射成型则可以克服上述诸多弊病。因此掀起了“以塑代钢”的潮流:LFT-PP替代金属成为汽车新材料。 LFT-PP是长纤维增强聚丙烯材料,聚赛龙LFT-PP塑料是长玻璃纤维经过专门设计的模具浸润PP基体树脂,得到被树脂充分浸润的料条后切成一定长度的粒子。 LFT-PP,也就是长玻纤增强聚丙烯(Long Glass Fiber Reinforced Polypropylene.简称LGFPP),作为汽车模块载体材料,该材料不仅能有效地提高制品的刚性、抗冲击强度、抗蠕变性能和尺寸稳定性,而且可以做出复杂的汽车模块制品。 长玻纤生产工艺 长玻纤增强复合塑料和短纤维增强复合塑料比较 2、高耐热

LFT-PP材料在120℃时的高温疲劳强度是普通玻纤增强PP的2倍,甚至比以耐热性著称的玻纤增强尼龙高10%,因而这种材料具有作为结构件所需的耐久性和可靠性。 3、更好的抗翘曲性 LFT-PP材料的优势特点 1、良好的尺寸稳定性 2、优异的耐疲劳性 3、较小的蠕变性能 4、各向异性小、低翘曲变形 5、优异的力学性能,特别是耐冲击特性

6、良好流动性、适应薄壁产品加工 LFT-PP材料的材料性能 1、优异的物理力学性能 2、优异的热氧老化性能 3、优异的耐低温性 4、良好的分散性和外观效果 5、良好的耐候性 LFT热塑性复合材料的加工成型 长纤维增强PP可用一般的射出成型机成型没有问题,但是若采用混炼度高的螺杆和射嘴会导致玻纤容易断裂,造成无法充分发挥长纤维原有的性能。因此推荐使用注塑机的选择如下: 螺杆长径比为16:1-22:1 压缩比为2:1-2.5:1 在允许的情况下尽量选择直径较大的螺杆 采用深螺槽、低压缩比螺杆 采用开放式大直径射嘴 LFT-PP在汽车领域中的典型应用

玻纤增强聚丙烯的意义

玻纤增强聚丙烯的意义 关键词:玻纤增强PP,PP改性,PP加纤阻燃 对PP材料的改性一般有增强增韧、耐候改性、玻璃纤维增强改性、阻燃改性和超韧改性等途径。 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量

可以达到3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2. 玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP发展趋势及展望 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展。玻纤增强PP在汽车用料中的应用也不断拓展,新产品的

新型高强度玻璃纤维制备及其增强环氧树脂性能.

2010 年第 17 期·航空制造技术 75 新型高强度玻璃纤维制备及其 增强环氧树脂性能 * 中材科技股份有限公司刘建勋祖群朱建勋 高强度玻璃纤维与普通无碱玻璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域。 目前, 主要高强度玻璃纤维有:美国的“S -2” 、日本的“T” 纤维、俄罗斯的“ВМЛ” 纤维、法国的“R” 纤维和中国的“H S” 系列纤维 [3-6]。表 1是不同牌号高强度玻璃纤维的性能比较, 同时与 E-glass 纤维作对比。 从表 1可以看出, 目前我国性能较高的“H S-4” 玻璃纤维, 其力学性能和法国“R”玻璃纤维、俄罗斯 刘建勋 毕业于南京理工大学国家特种超细粉体研究中心, 获工学博士学位。2008~2010年, 南京玻璃纤维研究设计院博士后、高级工程师, 江苏省颗粒学会理事。主持国防军品配套、江苏省自然科学基金等国家和省科技项目, 现在主要从事特种玻璃纤维成分与性能研究。发表 SCI、 EI 文章 10余篇。 Preparation of New High-Strength Glass Fiber and Performance of Reinforced Epoxy Resin

* 国家高技术研究发展计划 (863计划资助项目 (2007AA03Z549 ; 江苏省自然科学基金资助项目 (BK2009488 。 高强度玻璃纤维与普通无碱玻 璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域, 如导弹发动机壳体、宇航飞机内衬、枪托、发射炮筒、防弹装甲、高压容器等。随着科技的发展, 高强度玻璃纤维在各工业领域的需求量也在不断扩大[1-2]。 76 航空制造技术·2010 年第 17 期 及浸胶纱强度及层间剪切强度。 (2 玻璃纤维新生态强度的检测。 根据标准 A S T M D -2102, 取熔制好的玻璃约 60g, 放入单孔铂铑坩埚内, 在1440℃ ~1450℃下再熔融, 通过控制常规的玻璃纤维成型工艺参数 (液面高度、热点温度、拉丝机转速等 , 拉制成直径为7~8μm 的连续玻璃纤维, 采用强力测试机测试其新生态强度, 测试环境湿度必须控制在规定范围内。 (3 玻璃纤维耐温性的检测。玻璃纤维的耐温性采用软化点来判定, 软化点温度越高, 耐温性越好, 反之则耐温性差。软化点的测试方法与其他玻璃纤维软化点测试方法相同, 采用吊丝法(按 A S T M C -338 测试, 匀速升温, 激光位移感应器记录玻璃伸长速率, 当伸长率

玻纤增强PP的特性

玻纤增强PP的特性 PP加玻纤,通常,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想 把PP用在工程结构件上,就必须使用玻璃纤维进行增强。 PP加玻纤,通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。具体来说,拉伸强度达到了65MPa~90MPa,弯曲强度达到了70MPa~120MPa,弯曲模量达到了3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美,并且更耐热。 PP加玻纤,一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。 增强改性PP所用的玻璃纤维,要求长度为0.4~0.6ram,若长度小于0.04mm,玻璃纤维只起填充作用而无增强效果,发达国家都在开发长丝增强注射材料。玻璃纤维含量在40%(质量分数)含量内,玻 璃纤维含量越高,PPR弹性模量、抗张、抗弯强度也越高。但一般不能超过40%,否则流动量下降,失去补强作用,一般在10%~30%。 PP填充改性,在PP中加入一定量的无机矿物,如滑石粉、碳酸钙、二氧化钛、云母等,可提高刚性,改善耐热性与光泽性;填加碳 纤维、硼纤维、玻璃纤维等可提高抗张强度;填加阻燃剂可提高阻燃性能; 填加抗静电剂、着色剂、分散剂等可分别提高抗静电性、着色性及流动性等;填加成核剂,可加快结晶速度,提高结晶温度,形成更多更小的球晶 体,从而提高透明性和冲击强度。因此,填充剂对提高塑料制品的性能、改善塑料的成型加工性、降低成本有显著的效果。 玻纤增强PP的应用 PP作为四大通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是它也存 在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺 点。因此,必须对其进行改性,以使其能够适应产品的需求。对PP材料 的改性一般是通过添加矿物质增强增韧、耐候改性、玻璃纤维增强、阻燃改性和超韧改性等几个途径,每一种改性PP在家用电器领域都有着大量 应用。 PP加玻纤材料,可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇。此外,它也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。

SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)

SMTC 长玻璃纤维增强聚丙烯材料要求 Long glass fiber reinforced polypropylene material requirements 发 布Issue 上汽集团技术中心技术标准化委员会 Technical Standardization Committee of SAIC MOTOR Technical Center

前言 为规范车用长玻璃纤维增强聚丙烯材料要求,特制定本标准。 请注意本文件的某些内容可能涉及专利,上汽集团不承担识别这些专利的责任。 当中英文产生疑义时,以中文为准。 本标准由材料分标委提出。 本标准由SMTC标准化技术委员会批准。 本标准由标准化工作组负责标准化审核及归口管理。 本标准起草部门:质量保证部。 本标准主要起草人:邓家战、蒋中、胡仁其。 本标准于2014年1月16日首次批准发布,2014年1月17日实施。 Foreword This standard describes the requirements for Long glass fiber reinforced polypropylene material requirements. This standard is in Chinese and English. If in doubt, the Chinese version is the Master. This standard was proposed by material sub-committee. This standard was approved by the SMTC Technical Standardization Committee. The Standardization Working Team is responsible for the standardization approval and overall management of this standard. The draft department of this standard: Quality assurance department. The main drafters of this standard: Deng Jiazhan, Jiang Zhong, Hu Renqi. This standard was second approved and issued on Jan, 16. 2014 and it will be implemented on Jan, 17. 2014.

【CN109929132A】一种高强度的玻璃纤维复合材料及其加工工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910254078.9 (22)申请日 2019.03.30 (71)申请人 裴广华 地址 215000 江苏省苏州市工业园区万盛 街8号圆融大厦1003 (72)发明人 裴广华  (51)Int.Cl. C08J 7/04(2006.01) C09D 129/04(2006.01) C09D 7/62(2018.01) C09D 7/63(2018.01) C08L 23/12(2006.01) C08L 71/02(2006.01) C08L 51/06(2006.01) C08K 13/06(2006.01) C08K 9/04(2006.01) C08K 3/04(2006.01)C08K 7/06(2006.01)C08K 7/14(2006.01)C08K 3/32(2006.01)C08K 5/3492(2006.01) (54)发明名称 一种高强度的玻璃纤维复合材料及其加工 工艺 (57)摘要 本发明公开了一种高强度的玻璃纤维复合 材料及其加工工艺,现如今的导热聚合物复合材 料多用采用聚酰胺、聚苯硫醚等作为树脂基体, 这些树脂基体的加工成本高,性能较差,不易成 型,相对而言,以聚丙烯作为树脂基体的导热复 合材料,它的成本更低,性能更加优越,同时易加 工成型,因此聚丙烯树脂成为研究导热复合材料 的重点。聚丙烯树脂的导热系数较低,无法广泛 应用,因此现如今都通过添加石墨烯来提高聚丙 烯树脂的导热系数。本发明配方设计合理,工艺 参数优化,不仅实现了高强度玻璃纤维复合材料 的制备,同时抑制了复合材料的阻燃现象,提高 了复合材料的导热性能,应用范围更广,具有较 高的实用性。权利要求书2页 说明书9页CN 109929132 A 2019.06.25 C N 109929132 A

纤维增强聚丙烯复合材料应用

纤维增强聚丙烯复合材料及其在汽车中的应用 玻璃纤维毡增强热塑性片材(Glass Mat Reinforced Thermoplastics,简称GMT)作为先期研发应用成功的一种热塑性复合材料,曾对汽车工业采用新材料产生了积极而又深远的影响,至今仍方兴未艾。近年来,车用纤维增强聚丙烯复合材料的研究和应用又有了新的发展——自增强聚丙烯(SR-PP)和长玻纤增强聚丙烯(LGFPP)的开发应用成功使其成为汽车工业中的新宠。1 N# H* U$ H9 Z 在汽车塑料件所用塑料材料中,聚丙烯是用量最大、发展最快的塑料品种,其原因不仅是由于聚丙烯材料本身具有密度小、成本低、产量大、性价比高、化学稳定性好、易于加工成型和可回收利用等突出特点,而且还因为该种材料可通过共聚、共混、填充增强等方法得到改性,因而可适合不同的汽车零件的使用性能要求。 目前可用于汽车零部件的聚丙烯材料已有多个牌号的品种,可分别作为汽车保险杠、仪表板、方向盘、车门护板、发动机冷却风扇以及车身暖风组件等多种零部件的材料。尽管如此,为了提供高性能品种以满足高品质汽车在美观、舒适、安全、防腐以及轻量化方面提出的更高要求,人们仍然在不断地进行着聚丙烯材料的改性和应用方面的研究。自增强聚丙烯复合材料8 N" g: f: K+ E- N% T0 o/ d 自增强聚丙烯复合材料(Self-Reinforced Polypropylene Composite,简称SR-PP)是一种由高定向性的聚丙烯纤维和各向同性的聚丙烯基材组成的100%聚丙烯片材。SR-PP是继GMT之后国外最新开发应用的一种热塑性复合材料,它由英国Leads大学研制成功。2002年初,Amoco纤维有限公司在德国Gronau建立了第一条年产5000t SR-PP的生产线,其生产的产品目前主要用作车底遮护板。 自增强聚丙烯片材加工制备工艺的要素可概述为:将高模量的聚丙烯带排列起来,在适宜的温度和压力条件下,使每条带的薄层表皮熔融在一起,在冷却过程中,这种熔融的材料凝固或重结晶,从而粘合成为一个整体结构。由于生成的热压实片材由同一种聚合物材料所组成,再加上物相之间分子的连续性,使片材中纤维/基材间有着优异的粘合性。此外,由于每条定向带表面膜层的熔融效应,从而克服了GMT材料中增强玻璃纤维需要浸润处理的问题。自增强聚丙烯片材热压实制备工艺如图1所示。 国外有关专家在对自增强聚丙烯复合材料的性能进行研究后指出,SR-PP片材的刚性和强度与GMT材料很接近(弹性模量均在5GPa左右),但较GMT材料轻20%~30%。此外,与随意纤维方向排布的GMT片材和NMT(天然纤维增强聚丙烯)片材不同的是,SR-PP片材生产中使用的编织纤维结构使整个零件具有均匀一致的机械性能,可将加工零件的厚度进一步减薄20%~30%,这样就可以使成品的总重量减轻50%左右。表1列出了SR-PP、GMT和均聚PP三种材料的性能对比。

长玻纤增强聚丙烯应用介绍

长玻纤增强聚丙烯/PP+LGF 作为汽车模块载体材料,长玻纤增强聚丙烯的开发成功使之不只被应用在马自达汽车上。最近,新福特Fiesta车型前门模块也相继由Owens Coring汽车公司开发成功,该车门模块集成了多种功能元件,诸如门锁、车门玻璃升降器、扬声器、防盗装置等,采用的载体材料是DSM公司的牌号为StaMax P30YM240长玻纤增强聚丙烯材料。在开发该车门模块的过程中,一些专家对注射成型用长玻纤增强聚丙烯材料的性能进行了深入的研究,特别是对该种材料的抗蠕变性能进行了研究,结果表明,长玻纤增强聚丙烯材料即使经受100℃的高温也不会产生明显的蠕变,且比短玻纤增强聚丙烯有着更好的抗蠕变性能。在高温和长时间低负荷条件下,长玻纤增强聚丙烯材料不会产生变形,可使其制品具有良好的尺寸稳定性,这可从批量生产的新福特Fiesta车型前门模块的尺寸实测结果中得到证实。目前,随着汽车零部件模块化日益引起人们的重视且越来越多地得到应用,长玻纤增强聚丙烯无疑将成为一种理想的模块载体材料,为此有人预言,LGFPP材料将成为GMT材料作为汽车模块应用的替代品。以聚丙烯树脂为基材的不同纤维增强的热塑性复合材料,无论是GMT、SR-PP还是LGFPP,它们都有着一些共同的特点,即:与金属材料相比,它们具有密度低、重量轻、比强度高、耐腐蚀、易成型等特点;与热固性复合材料SMC和手糊玻璃钢相比,它们具有成型周期短、冲击韧性好、可再生利用等特点。尤其是可再生利用的特性使得这些材料在环保要求日益严格的今天具有更广阔的应用前景。 长纤PP的比重比尼龙PA轻20%,比铝合金轻62%。比重轻20%的优势在于是同样体积的长纤PP产品可以比尼龙轻20%,以同样重量的长纤PP原材料可以比尼龙多生产20%的产品。长纤PP替代尼龙加玻纤优势最为明显。 _ 独有的无取向的纤维网络结构使材料高低温度条件下及高低温高频交变的环境中的高力学性能保持性; _ 优异的抗冲击性能,高模量、高强度、低翘曲、与金属相近的热膨胀系数; _ 各向同性,低收缩率,低蠕变,高尺寸稳定性; _ 优异的耐磨和耐疲劳性; _ 优异的耐化学性; _ 优异的表面光洁度; _ 优异的成型加工性能:高流动,易脱模,对螺杆伤害低。 汽车工业:前端框架、车身门板模块、仪表盘骨架、冷却风扇及框架、蓄电池托架、保险杠骨架、座椅骨架、发动机罩壳、脚踏板、挡泥板、备用轮胎架等几十多种。 家电行业:洗衣机滚筒、叶轮、洗衣机三角支架、空调导风扇等,用于全面取代短纤增强PA、ABS材料或金属材料。 机电行业:导流管扇叶和电机过滤器罩、风叶/同轴气缸离合器辅助件/高承载力、高扬程潜水电机、水泵/止推轴承、导轴承/机车导轨、真空泵、压缩机转子、线圈轴等。 通讯电子电器行业:通讯、电子行业高精度接插件/点火器零组件、继电器基座/微波炉变压器线圈架、框架/电气联结器、继电器、电磁阀封装件/扫描仪组件等。 石油化工:防腐耐磨部件、平台格栅、过滤机、反应器内件等。 其他:电动工具外壳、自行车骨架、滑雪板、地面机车脚踏板、民用安全鞋头、安全头盔、水泵外壳及叶轮等等。 长玻纤增强PP市场应用

玻璃纤维——文献综述

文献综述 题目:玻璃纤维及其复合材料的性能与应用 姓名:顾典梅 专业:化学工程与工艺 班级:化工102 班 学号: 1008110206 指导教师:潘老师 日期:2013-6-17

玻璃纤维及其复合材料的性能与应用 摘要 材料是工业的基础,工业的发展,在很大程度上取决于新材料的开发与应用。玻璃纤维作为一种综合性能优良的无机非金属材料,被广泛应用于国民经济的众多领域,给工业的发展注入了新的活力。本文主要对玻璃纤维的发展、基本性能、复合材料及其应用做了介绍。 关键字:玻璃纤维复合材料性能 Abstract Material is the basis of industry,industrial development,development and depends greatly on the application of new materials.Glass fiber as a kind of inorganic non-metallic materials with excellent comprehensive properties,has been widely used in many fields of national economy,has injected new vitality to the development of industry.This paper mainly discusses the development,the basic properties of glass fiber,composite material and its application is introduced. Key words: glass fiber composite materials performance. 1、前言 在一般人的观念中,玻璃为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予形状以后终于可以成为优良之结构用材。可见,玻璃纤维并不是我们平日里想象的这般无用。玻璃纤维是塑料改性增强的主要品种,是实现通用塑料工程化的重要途径之一,它的使用能使制品的抗拉强度、刚性、热变形温度明显提高。玻璃纤维的应用已渗透到国民经济的各个领域,如交通、电子、建筑、卫生、环保、化工、造船、航空、航天等,已成为不可缺少的优良材料。玻璃纤维复合材料由于其材料性能的可设计性及轻质高强的特点,应用于航空、航天及国民经济的诸多领域,如建筑、陆上交通工具、船艇和近海工程、电子、电器、体育、医疗器械等。 在国发2号文件的指导及贵州省十二五规划中提出大力发展制造业,其中合成纤维产业也占很大比重,这是个良好的契机,充分利用好玻璃纤维及其复合材料,对于加快工业的进步,改善贵州经济又重要意义。 2、玻璃纤维的发展历程 文献[1][2][3]主要对玻璃纤维及其复合材料的发展性能等做了详细的介绍。玻璃纤维的发展主要经历了以下几个个阶段:

玻璃纤维增强聚丙烯复合材料

玻璃纤维增强聚丙烯复合材料的制备及性能研究 一.原材料 1.聚丙烯(polypropylene简称PP) PP是一种热塑性树脂基体,为白色蜡状材料。聚丙烯的生产均采用齐格勒—纳塔催化剂,以Al(C2H5)3+TiCl4体系在烷烃(汽油)中的浆状液为催化剂,在压力为1.3MPa,温度为100℃的条件下按离子聚合机理反应制得。聚丙烯的结晶度为70%以上,密度为0.98,透明度大,软化点在165℃左右,脆点—10~20℃,具有优异的介电性能。热变形温度超过100℃,其强度及刚度均优于聚乙烯,具有突出的耐弯曲疲劳性能、耐化学药品性和力学性能都比较好,吸水率也很低。因此应用十分广泛,主要用于制造薄膜,电绝缘体,容器等,还可用作机械零件如法兰,接头,汽车零部件等。 2.玻璃纤维(glass fiber简称GF) GF是一种性能优异的无机非金属材料。成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺,最后形成各类产品。玻璃纤维单丝的直径从几个微米到十几米个微米,相当于一根头发丝的1/20—1/5,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。 玻璃一般人的观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,故配合树脂赋予形状以后终于可以成为优良的结构用材。玻璃纤维随其直径变小其强度高。作为增强材料的玻璃纤维具有以下的特点,这些特点使玻璃纤维的使用远较其他种类纤维来得广泛,发展速度亦遥遥领先,其特性列举如下:1)拉伸强度高,伸长小(茎3%)。 2)弹性系数高,刚性佳。3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。 4)为无机纤维,具不燃性,耐化学性佳。5)吸水性小。6)尺度安定性,耐热性均佳。 7)透明可透过光线。8)与树脂接着性良好之表面处理剂之开发完成。9)价格便宜。3.乙烯--丙烯共聚物 为了改善聚丙烯的冲击性能、低温脆性,应对之进行增韧处理。通常选用的是含有二烯烃成分的乙烯-- 丙烯-- 二烯烃三元共聚(BPDM) 4.表面处理剂 PP是非极性树脂,与其它材料的熔合性差。玻纤的表面光滑,很难与非极性树脂结合。改进方法主要是对玻纤的表面进行处理。表面处理剂主要用硅烷偶联剂,如KH-550等,但还不理想。因为此时PP依然是惰性的,它没有尼龙、饱和聚酯与玻纤之间那样的粘结力。为了改进这一缺点,可采用以下几种方法: (1) 以过氧化硅烷偶联剂:含有双键置换基团的某些过氧化硅烷,如乙烯基三(特丁基过氧化)硅烷。 (2)以氯化物偶联:将硅烷与全氯环戊烷,氯化二甲苯,氯桥酸酐等高氯化物并用,可显著地改进玻纤增强PP的强度。特别是从氯化二甲苯的热稳定性考虑,最优异。 (3) 对PP进行极性化处理,即在PP链中引入极性共聚单体,常用的极性共聚单体有双马来酰亚胺(BMI)和马来酸酐(MAH)等;或加入过氧化物,如过氧化二异丙苯(DCP)。 采用这些方法能使聚丙烯与玻纤表面产生一定程度的交联或化学作用,因而产品

相关主题
文本预览
相关文档 最新文档