当前位置:文档之家› 电力变压器“过电流保护”整定计算

电力变压器“过电流保护”整定计算

电力变压器“过电流保护”整定计算

电力变压器“过电流保护”整定计算

保护装置的动作电流应躲过可能出现的过负荷电流。

I op.k=K rel K jx K gh I1rT/K r n TA A

K rel:可靠系数,用于过电流保护时DL型和GL型继电器分别取1.2

和1.3。

K jx:接线系数,接于相电流时取1,接于相电流差时取√3。

K gh:过负荷系数,包括电动机自启动引起的过电流倍数,一般取2~3,当无自起动电动机时取1.3~1.5。

I1rT:变压器高压侧额定电流,A。

K r:继电器返回系数,取0.85(动作电流)。

n TA:互感器变比。

保护装置的灵敏系数,按电力系统最小运行方式下,低压侧两相短路时流过高压侧(保护安装处)的短路电流效验。

K sen=I2k2.min/I op≥1.5

电流保护整定计算例题

例1: 如图所示电力系统网络中,系统线电压为115kV l E =,内部阻抗.max =15s Z Ω,.min =12s Z Ω, 线路每公里正序阻抗1=0.4z Ω,线路长度L AB =80m, L BC =150m, rel 1.25K =Ⅰ,rel 1.15K =Ⅱ ,试保护1 的电流I 、II 保护进行整定计算。 解:1. 保护电流I 段保护整定计算 (1) 求动作电流 set.1 rel k.B.max rel s.min AB == 1.25 1.886kA +E I K I K Z Z ?? ==Ⅰ Ⅰ Ⅰ (2) 灵敏度校验 min .max set.1111=1539.54m 0.4s L Z z ???=-?=???????? min AB 39.5410049.480 L L =?=%%%>15% 满足要求 (3) 动作时间:1 0s t =Ⅰ 2. 保护1电流II 段整定计算 (1) 求动作电流 set.2rel k.C.max rel s.min AB BC == 1.250.7980kA +E I K I K Z Z Z ? ? ==+ⅠⅠⅠ s e t .1r e l s e t .2==1.15 0.798=0.9177kA I K I ?ⅡⅡⅠ (2) 灵敏度校验 k.B.min s.max AB I k.B.min sen set.1 1.223 = ==1.331 1.30.9177I K I >Ⅱ 满足要求 (3)动作时间: 1 20.5s t t t =+?=Ⅱ Ⅰ 例2:图示网络中,线路AB 装有III 段式电流保护,线路BC 装有II 段式电流保护,均采用两相星形接线方式。计算:线路AB 各段保护动作电流和动作时限,并校验各段灵敏度。

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

低压系统短路电流计算与断路器选择

低压系统短路电流计算与断路器选择 低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。本文拟在通过对低压短路电流的计算简述以及实例介绍,说明低压断路器的选择及校验方法。 在设计中,短路电流计算与断路器选择的步骤如下: ①简单估算低压短路电流; ②确定配电中心馈出电缆满足热稳定的最小截面; ③选择合适的低压断路器; ④合理选择整定值,校验灵敏度及选择性。 1.低压短路电流估算 1.1短路电流的计算用途 短路电流的计算用途主要有以下几点: ①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。 ②确定保护电器的整定值,使其在短路电流对开关电器及线路器材造成破坏之前切断故障电路。 ③校验开关电器及线路器材的动热稳定是否满足规范和实际运行的要求。 1.2短路电流的计算特点 短路电流计算的特点:

①用户变压器容量远小于系统容量,短路电流周期分量不衰减。 ②计入短路各元件有效电阻,但不计入元件及设备的接触电阻和电抗。 ③因线路电阻较大,不考虑短路电流非周期分量的影响。 ④变压器接线方式按D、yn11考虑。 1.3短路电流的计算方法 短路电流计算的方法: ——三相短路电流或单相短路电流kA; 式中 I k Z ——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母 k 线阻抗及电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗) U——电压V(用于三相短路电流时取230,用于单相短路电流时取220) 1.4短路电流的计算示例 下面通过范例来叙述低压短路电流的计算过程。

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

断路器的壳架电流,额定电流,脱扣电流

断路器不可能每种规格设计一种外壳和接线端子。不同额定电流(但相近)的断路器会使用同样一种外型体积甚至同样触头、同样的接线端子,这种外壳可通过的最大额定电流就是壳架电流。因此,同一壳架电流的断路器其额定电流可能不同,但其安装尺寸是相同的。 断路器壳架等级额定电流是指基本尺寸相同的框架和塑料外壳中能装的最大脱扣器的额定电流。断路器额定电流是指断路器中的脱扣器能长期通过的电流,又称断路器脱扣器额定电流。同一系列中有多种壳架等级额定电流,同一壳架等级额定电流中又有多种额定电流。例如DZ20系列中有100、225、400、630、800、1250等壳架等级额定电流,而100壳架等级额定电流中有16A、20A、25A、32A、40A、50A、63A、80A、100A额定电流;225A壳架等级额定电流中有100A,125A、160A、180A、200A、225A额定电流。DZ20—100和DZ20—225两种壳架等级中都有100A额定电流,但断路器体积外形和分断能力不相同,因此在选用时要把型号填写完整即具体的壳架等级额定电流内的断路器额定电流。 额定电流分级是按(1.25)优先系数来选择的:一方面是符合和满足最大线路和电器元件额定电流的需要;另一方面是为了标准化,以取得最佳的使用导线及加工的效益。因此它所规定的级别是:3(6)、8、10、12.5、16,20、25、32、40、50、63、80,100、125、160、200、250、315、400A等。由于此规定,当线路计算负载为90A时,则只能选100A规格,因此在一定程度上影响它的保护性能。 脱扣器电流整定值是指脱扣器调整到动作电流值。它是指额定电

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

断路器整定值

GCk柜某抽屉出线断路器选的塑壳断路器和该回路带的负载的进线断路器完全一致,可否通过调节过载整定值来实现上下级选择性? 比如GCK的断路器设置为1In 为过载整定值,负载进线断路器设置为0.8In过载 断路器基本参数和选型 该帖被浏览了195次 | 回复了6次 断路器基本参数特性Ue:额定电压(690V) Ui:额定绝缘电压(1000V) Uimp:额定冲击耐受电压(8KV) 断路器是配电系统中主要的保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、接地故障、失压以及欠电压保护。根据不同需要,断路器可配备不同的继电器或脱扣器。脱扣器是断路器总体的一个组成部分,而继电器,则通过与断路器操作机构相连的欠电压脱扣器、分励脱器来控制断路器。 低压断路器一般由脱扣器来完成其保护功能。 标明低压断路器电流特性的参数很多,容易混淆不清。在设计文件中,常常在标明断路器的电流值时,不说明电流值的意义,给定货造成混乱。要完整准确的选择断路器,清楚地标定断路器的各个电流参数是必要的。 1 断路器的额定电流参数 国标《低压开关设备和控制设备低压断路器》gbl4048.2-94(等效采用iec947-2)对断路器的额定电流使用两个概念,断路器的额定电流1n和断路器壳 架等级额定电流1nm,并给出如下定义: --断路器的额定电流1n,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。对带可调式脱扣器的断路器则为脱扣器可长期通过的最大电流。 --断路器壳架等级额定电流lnm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。 国标gbl4048.2-94中对断路器额定电流的定义与我们通常所说的概念有些不同。当我们提及“断路器额定电流”这一概念时,通常是指“断路器壳架等级额定电流”而不是“脱扣器额定电流”。例如当我们选择一只dz20y-100/3300-80a型断路器时,通常我们简单地说其额定电流为 100a,脱扣器的额定电流为80a。多数低压断路器供应商所提供的产品资料中,也一般不提“断路器壳架等级额定电流”这一复杂的说法,而只给出“断路器额定电流”这一参数,其实就是“断路器额定电流”作为“断路器壳架等级额定电流”的一种简称,似乎较为合适。也许标准中对额定电流的定义与平时使用的不一致是导致混乱的原因

三段式电流保护的整定及计算范文

第1章输电线路保护配置与整定计算 重点:掌握110KV及以下电压等级输电线路保护配置方法与整定计算原则。 难点:保护的整定计算 能力培养要求:基本能对110KV及以下电压等级线路的保护进行整定计算。 学时:4学时 主保护:反映整个保护元件上的故障并能以最短的延时有选择地切除故障的保护称为主保护。 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。 辅助保护:为补充主保护或后备保护的不足而增设的简单保护。 一、线路上的故障类型及特征: 相间短路(三相相间短路、二相相间短路) 接地短路(单相接地短路、二相接地短路、三相接地短路) 其中,三相相间短路故障产生的危害最严重;单相接地短路最常见。相间短路的最基本特征是:故障相流动短路电流,故障相之间的电压为零,保护安装处母线电压降低;接地短路的特征: 1、中性点不直接接地系统 特点是: ①全系统都出现零序电压,且零序电压全系统均相等。 ②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°。 ③故障线路的零序电流由全系统非故障元件、线路对地电容形成,零序电流滞后零序电压90°。显然,当母线上出线愈多时,故障线路流过的零序电流愈大。 ④故障相电压(金属性故障)为零,非故障相电压升高为正常运行时的相间电压。 ⑤故障线路与非故障线路的电容电流方向和大小不相同。

因此中性点不直接接地系统中,线路单相故障可以反应零序电压的出现构成零序电压保护;可以反应零序电流的大小构成零序电流保护;可以反应零序功率的方向构成零序功率方向保护。 2、中性点直接接地系统 接地时零序分量的特点: ①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零。 ②零序电流的分布,主要决定于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。 ③在电力系统运行方式变化时,如果输电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的。但电力系统正序阻抗和负序阻抗要随着系统运行方式而变化,将间接影响零序分量的大小。 ④对于发生故障的线路,两端零序功率方向与正序功率方向相反,零序功率方向实际上都是由线路流向母线的。 二、保护的配置 小电流接地系统(35KV及以下)输电线路一般采用三段式电流保护反应相间短路故障;由于小电流接地系统没有接地点,故单相接地短路仅视为异常运行状态,一般利用母线上的绝缘监察装置发信号,由运行人员“分区”停电寻找接地设备。对于变电站来讲,母线上出线回路数较多,也涉及供电的连续性问题,故一般采用零序电流或零序方向保护反应接地故障。 对于短线路、运行方式变化较大时,可不考虑Ⅰ段保护,仅用Ⅱ段+Ⅲ段保护分别

低压断路器过流脱扣器动作电流的整定与计算

(1)低压断路器过流脱扣器额定电流的选择 低压断路器过流脱扣器的额定电流IN.OR不小于线路的计算电流I30,即IN.OR≥I30。 (2)低压断路器过流脱扣器动作电流的整定 ①瞬时过电流脱扣器动作电流的整定。低压断路器所保护的对象中,有某些电器设备,这些电器设备在启动过程中,会在短时间内产生数倍于其额定电流的高峰值电流,从而使低压断路器在短时间内承受较大的尖峰电流。瞬时过电流脱扣器的动作电流lop(o)必须躲过线路的尖峰电流IPK,即Iop(o)≥Krel·IPK 式中Krel为可靠系数。在选用断路器时,应注意使低压断路器的瞬时过电流脱扣器的整定电流躲过尖峰电流,以免引起低压断路器的误动作; ②短延时过流脱扣器动作电流和动作时间的整定。短延时过流脱扣器的动作电流lop(s),也应躲过线路的尖峰电流IPK,即IOP(S)≥Krel·IPK,式中KERL 为可靠系数。短延时过流脱扣器的动作时间一般分0.2S、0.4S和0.6S三种,按前后保护装置的保护选择性来确定,应使前一级保护的动作时间比后一级保护的动作时间长一个时间级差; ③长延时过流脱扣器动作电流和动作时间的整定。长延时过流脱扣器主要是用来保护过负荷,因此其动作电流Iop(1)只需要躲过线路的最大负荷电流即计算电流I30,即Iop(1)≥KREL·I30式中KREL为可靠系数。长延时过流脱扣器的动作时间应躲过允许短时过负荷的持续时间,以免引起低压断路器的误动作; ④过流脱扣器的动作电流与被保护线路的配合要求。为了不致线路因出现过负荷或短路引起绝缘线缆过热受损甚至失火,而其低压断路器不跳闸事故的发生,低压断路器过流脱扣器的动作电流lOP应符合公式的要求,lOP≤KOL·Ial,失中Ial绝缘线缆的允许载流量;Kol一绝缘线缆的允许短时过负荷系数,对瞬时和短延时过流脱扣器,一般取4.5;对长延时过流脱扣器,做短路保护时取1.1,只做过负荷保护时取1。 如需进一步了解相关断路器产品的选型,报价,采购,参数,图片,批发等信息,请关注https://www.doczj.com/doc/b38502973.html,/

三段式电流保护整定计算(答案)

4、下图所示网络,其中各条线路均装设三段式电流保护。试整定线路AB装设的三段式电流保护(计算三段式电流保护中各段动作电流、动作时限并校验灵敏性)。 s s .s x min .s x 已知:线路AB正常运行时流过的最大负荷电流为230A; B、C、D母线处发生短路故障时的最大及最小短路电流分别为A k 509 .1 )3( max . = KB I、A k 250 .1 )2( min . = KB I,A k 722 .0 )3( max . = KC I、A k 612 .0 )2( min . = KC I,A k 638 .0 )3( max . = KD I、A k 542 .0 )2( min . = KD I;整定计算使用的可靠系数:25 .1 = I rel K、1.1 = II rel K、15 .1 = III rel K; 自启动系数:5.1 A = st K;返回系数85 .0 = re K;时间级差s5.0 = ?t;并且,电流II段的灵敏度系数应大于1.2,电流III段作为远后备及近后备时的灵敏度系数应分别大于1.1、1.5。 解:对保护1的三段式电流保护进行整定计算。 (1)电流I段(瞬时电流速断保护): 动作电流计算,kA 886 .1 509 .1 25 .1 )3( max . 1. = ? = = KB I rel I op I K I 动作时限计算,s0 1 = I t 校验灵敏性, 最小保护范围计算为: % 5. 51 % 100 ] 14 886 .1 2 3 115 3 [ 80 4.0 1 % 100 ] 2 3 [ 1 (%) max . 1. 1 min . = ? - ? ? ? ? = ? - = s I op AB p x I E l x lφ % 20 ~ 15 (%) min . > p l,可见满足要求。 (2)电流II段(限时电流速断保护): 动作电流计算, (1)与保护2的I段配合时:kA 993 .0 ) 722 .0 25 .1( 1.1 2. 1. = ? ? = =I op II rel II op I K I (2)与保护3的I段配合时:kA 877 .0 ) 638 .0 25 .1( 1.1 3. 1. = ? ? = =I op II rel II op I K I 取大者,于是kA 993 .0 1. = II op I

断路器整定电流的计算

断路器整定分多种情形: 1、万能式空气断路器:一般带有电子脱扣器,可以在出厂前整定,也可以在安装现场整定,需要用调试仪器; 2、塑壳断路器:热磁脱扣性能一般是出厂前就固定的(与产品制造工艺有关,特殊要求要订做),也有可以现场进行整定的,但也需要带电子脱扣器附件(参见施耐德产品)价格高,通常选择塑壳断路器是根据样本技术参数选择(如:短时脱扣曲线、长延时脱扣曲线、瞬时脱扣过流倍数等); 3、微型断路器:终端配电用,不用整定(大致分7~10倍瞬断和10~14倍瞬断两大类,分别用于照明、电动机负荷),虽然名牌产品也有热脱扣调节螺丝,但不易掌握精确度。 小型断路器计算电流除,塑壳断路器计算电流除,得整定电流 按照计算电流的倍考虑即可 低压电机热继电器的整定值是电机额定值的~倍。 如果是热继电器的话,整定电流=*额定电流 郭老师您好,请问您额定电流和整定电流的关系及怎样计算整定电流悬赏分:0 - 解决时间:2009-1-7 19:34 计算整定电流有什么参考资料 提问者:dwz092 - 秀才三级最佳答案 不同的设备有不同的保护配置,不同的配置有不同的整定方法,必须根据保护设备的种类、形式、保护要求、现场情况进行整定和调校; 保护定值的计算不是很复杂,但没有经验,没有基础,计算也是不好入手的,只要计算一次,就顺手了; 以10KV配电变压器为例,一般配电变压器装设过电流和速断保护;过流保护一般取额定电流的倍,速断保护一般取额定电流的5-7倍;最后还要根据装设地点的短路电流大小,校验保护的灵敏度;许多书上有保护定值的计算过程案例,你可以参考,但工程实践中,大多用经验公式,来得更快,更直接有效。 电工常用口诀--电动机电流计算(2008-11-11 18:14:53) 标签:自控仪表it分类:自控电工常用口诀--电动机电流计算 1、已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流。

段式电流保护的整定及计算

段式电流保护的整定及 计算 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取~。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验: 式中: X1——线路的单位阻抗,一般Ω/KM;

Xsmax —— 系统 最大 短路 阻 抗。 要求 最小 保护 范围 不得 低于 15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则:不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取~; △t——时限级差,一般取;灵敏度校验: 规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备以及相邻线路或元件的远后备。动作电流按躲过最大负荷电流整定。 式中: KⅢrel——可靠系数,一般取~; Krel——电流继电器返回系数,一般取~;

Kss——电动机自起动系 数,一般取~;动作时间 按阶梯原则递推。 灵敏度分别按近后备和远 后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短 路电流。即:最小运行方式下,两相相间短路电 流。 要求:作近后备使用时,Ksen≥~ 作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端; 4、三段式电流保护整定计算实例 如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB线路的保护进行整定计算并校验其灵敏度。 解:(1)短路电流计算注意:短路电流计算值要注意归算至保护安装处电压等级,否则会出现错误;双侧甚至多侧电源网络中,应取流经保护的短路电流值;在有限系统中,短路电流数值会随时间衰减,整定计算及灵敏度校验时,精确计算应取相应时间处的短路电流数值。 B母线短路三相、两相最大和最小短路电流为: =1590(A)

三段式电流保护整定计算实例

三段式电流保护整定计算实例: 如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB 线路的保护进行整 定计算并校验其灵敏度。其中25.1=I rel K ,15.1=II rel K ,15.1=III rel K ,85.0=re K 整定计算: ① 保护1的Ⅰ段定值计算 )( 1590)4.0*204.5(337 )(31min .)3(max .A l X X E I s s kB =+=+= )(1990159025.1) 3(max ,1A I K I kB I rel I op =?== 工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。 按躲过变压器低压侧母线短路电流整定: 选上述计算较大值为动作电流计算值. 最小保护范围的校验: =

满足要求 ②保护1的Ⅱ段限时电流速断保护 与相邻线路瞬时电流速断保护配合 )(105084025.12A I I op =?= =×=1210A 选上述计算较大值为动作电流计算值,动作时间。 灵敏系数校验: 可见,如与相邻线路配合,将不满足要求,改为与变压器配合。 ③保护1的Ⅲ段定限时过电流保护 按躲过AB 线路最大负荷电流整定: )(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel III op =??????== = 动作时限按阶梯原则推。此处假定BC 段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。 灵敏度校验: 近后备时: B 母线最小短路电流:

变压器高低压侧过流保护

实验四变压器高压侧过流保护 一、实验目的 1.了解变压器后备保护过流保护原理; 2. 熟悉过流保护的逻辑组态方法。 二、实验原理及逻辑框图 变压器的高、低压侧发生区外故障时,由于后备保护装置直流电源故障可能造成保护拒动,严重地威胁变压器的安全运行和电网的稳定,为了避免这种情况的发生,变压器的高、低压侧各自设置过流保护,作为变压器的后备保护,该保护动作后作用于变压器各侧断路器。逻辑图如4-1所示: 图4-1 过流保护的逻辑图 图4-2 高压侧过流I段保护逻辑框图

图4-3 高压侧过流II段保护逻辑框图 三、实验内容 1.高压侧过流保护实验 1)首先用导线将端子“合闸断线+”与端子“合闸断线-”短接,将端子“跳闸断线+”与端子“跳闸断线-”短接,并将端子“UA+”与端子“UA-”短接, 将端子“Ia+”与端子“Ia-”短接。装置接线检查无误后,合上单相漏电断路器,保护装置得电,控制回路可操作。再合上三相漏电断路器使整个实验装置上电。 2)修改保护定值:进入微机变压器保护装置菜单“定值”→“定值”,输入密码,按确认键后,分别进行“高压侧过流Ⅰ”,“高压侧过流Ⅱ”的定值整定界面,整定完成后,按 3)投入保护压板。将过流保护的硬压板(用导线将端子“A相电压+”接到端子“A相电压-”,用导线将端子“开入+”接到端子“高压侧过流压板”)和软压板投入(进入“定值”→“压板”,确认后输入密码,分别进入→“高压侧过流Ⅰ”,“高压侧过流Ⅱ”,分别将其保护软压板投入后→按“确认”后显示压板固化成功)。其他所有保护的硬压板和软压板均退出:

4)参考“变压器实验系统的故障模拟”中的高压侧过流保护的实验模拟方法模拟变压器的高压侧过流故障。 5 记录WBH-820系列微机变压器保护装置中记录的过流故障的故障相电流、正常相电流及保护的整定值,并制作相应的表格。 表4-1A:变压器高压侧过流保护实验数据表 四、心得体会

10kv系统继电保护整定计算与配合实例

10kV系统继电保护整定计算与配合实例 系统情况: 两路10kV电源进线,一用一备,负荷出线6路,4台630kW电动机,2台630kVA变压器,所以采用单母线分段,两段负荷分布完全一样,右边部分没画出,右边变压器与一台电动机为备用。 有关数据:最大运行方式下10kV母线三相短路电流为I31=5000A,最小运行方式下10kV母线三相短路电流为I32=4000A,变压器低压母线三相短路反应到高压侧Id为467A。 一、电动机保护整定计算 选用GL型继电器做电动机过负荷与速断保护 1、过负荷保护 Idzj=Kjx*Kk*Ied/(Kf*Ki)=4.03A 取4A 选GL12/5型动作时限的确定:根据计算,2倍动作电流动作时间为,查曲线10倍动作时间为10S 2、电流速断保护 Idzj=Kjx*Kk*Kq*Ied/Ki=24A 瞬动倍数为24/4=6倍 3、灵敏度校验 由于电机配出电缆较短,50米以内,这里用10kV母线最小三相短路电流代替电机端子三相短路电流. Km=(24X15)=>2 二、变压器保护整定计算 1、过电流保护 Idzj=Kjx*Kk*Kgh*Ie/(Kf*Ki)=8.4A 取9A 选GL11/10型动作时限取灵敏度为Km=(20X9)=> 2、电流速断保护 Idzj=Kjx*Kk*Id/Ki=20=35A 35/9=,取4倍灵敏度为Km=(180X4)=>2 3、单相接地保护 三、母联断路器保护整定计算

采用GL型继电器,取消瞬时保护,过电流保护按躲过任一母线的最大负荷电流整定。 Idzj=Kjx*Kk*Ifh/(Kh*Ki)=*30)=6.2A 取7A与下级过流保护(电动机)配合:电机速断一次动作电流360A,动作时间10S,则母联过流与此配合,360/210=倍,动作时间为(电机瞬动6倍时限)+=,在GL12型曲线查得为5S曲线(10倍)。所以选择GL12/10型继电器。 灵敏度校验:Km1=(7X30)=>1.5 Km2=(7X30)=> 四、电源进线断路器的保护整定计算 如果采用反时限,瞬动部分无法配合,所以选用定时限。 1、过电流保护 按照线路过电流保护公式整定Idzj=Kjx*Kk*Igh/(Kh*Ki)=12.36A,取12.5A动作时限的确定:与母联过流保护配合。定时限一次动作电流500A,为母联反时限动作电流倍,定时限动作时限要比反时限此倍数下的动作时间大,查反时限曲线倍时t=,所以定时限动作时限为。选DL-11/20型与DS时间继电器构成保护。 灵敏度校验:Km1==> 2、带时限速断保护 与相邻元件速断保护配合

断路器过流脱扣器额定电流的选择和整定

断路器过流脱扣器额定电流的选择和整定 摘要:我们一般根据线路预期短路电流来选择满足分断能力的断路器,但线路预期短路电流的计算是一项非常繁琐的工作。本文将简单介绍如何在低压系统中正确的选用和使用低压断路器。 关键词:低压配电系统断路器短路欠压脱扣器 引言 断路器广泛应用于低压配电系统中,是一种保护电器元件。在设计低压配电系统时,应注意断路器的选择性,对断路器过流脱扣器额定电流进行选择和整定,确保充分发挥过电流脱扣器的作用;当环境温度大于或小于校准温度值时,应根据制造商提供的温度与载流能力修正系数来调整低压断路器的额定电流值。 1、断路器的几种电流参数 断路器的额定电流In,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。 断路器壳架等级额定电流Inm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。它决定了所能安装的脱扣器的最大额定电流值。例如,DW15—1600额定电流800A的断路器,1600 A是断路器的壳架等级额定电流Inm,断路器的额定电流In为800A。 过电流脱扣器可分为过载脱扣器和短路(电磁)脱扣器,有长延时动作电流(Ir1)、短延时动作电流(Ir2)和瞬时动作电流(Ir3)之分。如正泰产DW15—1600的Ir1为(0.7~1)In,Ir3为(1~3)In,没有短延时脱扣器;常熟产CW2—1600A 的Ir1为(0.4~1)In,Ir2为(0.4~15)In+OFF,短延时时间0.1s—0.4s,共4级,Ir3为1.6KA~35 kA+OFF。 断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;也就是断路器规定的试验电压及其它规定条件下的极限短路分断电流值,不考虑断路器继续承载它的额定电流。 极限短路分断能力Icu的试验程序为O—t—CO。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA的短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路处于热备状态(试验按钮仍在按下状态),断路器再进行一次接通(CLOSE 简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功。 额定运行短路分断能力Ics,是指断路器在规定的试验电压及其它规定条件下的一种比额定极限短路分断电流小的分断电流值,在按规定的试验程序O—t—CO—t—CO动作之后,断路器应有继续承载它的额定电流的能力。它比Icu的试验程序多了一次CO。Ics是Icu的一个百分数。对于万能式和塑壳式断路器, Ics值略有不同,塑壳式允许Ics最小可以是25%Icu,万能式允许Ics最小是50%的Icu,Ics=Icu的断路器是很少的。我国的DW45智能型万能式断路器的Ics为62.5%~65%Icu。 2、断路器的电流整定 低压断路器过流脱扣器的额定电流应不小于线路的计算电流,即In≥Ijs (Ijs为所保护

变压器和发电机的保护

对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 变压器保护配备一般根据变压器的容量和电压等级。小型变压器配过流和速断保护就够了,甚至可以用熔断器保护;中型变压器(1250kVA以上)可以再加上瓦斯保护;更大的变压器(如6300kVA以上)一般应再配备差动保护。 变压器保护配置的基本原则 1、瓦斯保护: 800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变 压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护: 相间短路的后备保护用于反应外部相间短路引起的变压器过电流,同时作为瓦斯保护和纵差保护(或电流速断保护)的后备保护,其动作时限按电流保护的阶梯形原则来整定,延时动作于跳开变压器各电源侧断路器,并发相应信号。一般采用过流保护、复合电压起动过电流保护或负序电流单相低电压保护等。

断路器相关计算说明

断路器的一般选用原则 断路器的一般选用原则为: (1)断路器额定电流≥负载工作电流; (2)断路器额定电压≥电源和负载的额定电压; (3)断路器脱扣器额定电流≥负载工作电流; (4)断路器极限通断能力≥电路最大短路电流; (5)线路末端单相对地短路电流/断路器瞬时(或短路时)脱扣器整定电流≥1.25; (6)断路器欠电压脱扣器额定电压=线路额定电压。 (7)断路器瞬动电流/电动机启动电流=2.0~2.5 选择要点 1、断路器的额定工作电压不小于线路的额定电压。 2、断路器的额定电流不小于线路的计算负荷电流。 3、断路器的额定短路通断能力应不小于线路中可能出现的最大短路电流。 4、线路末端单相对地短路电流应不小于1.25倍断路器脱扣器整定电流;如果不能满足时,可采用单相接地保护断路器(如DW16型万能式断路器)或考虑在零线上装设电流互感器或采用带零序电流互感器的线路(或漏电继电器)来解决。变压器中性点应接地。 5、欠电压脱扣器额定电压等于线路额定电压;是否需要带延时按使用场合的需要而定。 6、断路器分励脱扣器额定电压应等于控制电源电压。 7、电动传动机的额定工作电压应等于控制电源电压。 8、注意断路器接触方向,母联断路器应选用可在下方进线的断路器。 9、注意与其他电器的配合协调,各级断路器的过电流脱扣器整定值和延时应符合选择性配合要求。 10、电动机保护断路器的瞬时动作电流应考虑电动机的起动条件(电动机的种类、起动电流倍数和时间)

交直流断路器选用计算 (一)交流断路器选用计算 1.选择电气参数的一般原则 (1)断路器的额定工作电压大于或等于线路额定电压。 (2)断路器的额定电流大于或等于线路计算负载电流。 (3)断路器的额定短路通断能力大于或等于线路中可能出现的最大短路电流,一般按有效值计算。 2.如果选用的断路器额定电流与要求相符,但额定短路通断能力小于断路器安装点的线路最大短路电流,必须提高选用断路器的额定电流,而按线路计算负载电流选择过电流脱扣器的额定电流。如果这样还不能满足要求,则可考虑下述三种方案解决:1)采用级联保护(或称串级保护)方式,利用上一级断路器和该断路器一起动作来提高短路分断能力。采用这种方案时,需将上一统断路器的脱扣器瞬动电流整定在下级断路器额定短路通断能力的80%左右。 2)采用限流断路器。 3)采用断路器加后备熔断器。 (4) 线路末端单相对地短路电流大于或等于1.25倍断路器瞬时(或短延时)脱扣器 整定电流。这对负载电流较小,配电线路较长的情况尤为重要。因为线路较长时,末端短路电流较小,单相对地短路电流就更小。在三相四线制中相零短路时,对地短路电流还要小些,有时比道电流脱扣器整定的电流还要小,不能使过电流脱扣器动作,因而在单相对地时失去保护。在这种情况下,考虑在零线上装设电流互感器(其二次接电流继电器,对地短路时,继电器动作使断路器分断),或采用带零序电流互感器的线路(或漏电继电器)来解决。采用这些方法时,变压器中性点均应接地。 (5) 断路器欠电压脱扣器额定电压等于线路额定电压。 是否需要欠电压保护,应按使用要求而定,并非所有断路器都需要带欠电压脱扣器。在某些供电质量较差的系统,选用带欠电压保护的断路器,反而会因为电压波动造成不希望的断电。如必须带欠电压脱扣器,则应考虑有适当的延时。 (6)具有短延时的断路器,若带欠电压脱扣器,则欠电压脱扣器必须是延时的,其延时时间应大于或等于短路延时时间。

相关主题
文本预览
相关文档 最新文档