当前位置:文档之家› 梯形钢屋架课程设计(度)

梯形钢屋架课程设计(度)

梯形钢屋架课程设计(度)
梯形钢屋架课程设计(度)

长沙理工大学继续教育学院梯形钢屋架课程设计

年级:

专业:

姓名:

学号:

指导老师:

时间:2017 年月日

目录

课程设计任务书 0

一、设计资料: 0

二、屋架几何尺寸及檩条布置 (1)

三、支撑布置 (2)

四、荷载与内力计算 (3)

五、杆件截面设计 (5)

六、节点设计 (9)

七、填板设计 (22)

长沙理工大学继续教育学院

课程设计任务书

一、设计资料:

1、某车间跨度为18m,厂房总长度90m,柱距6m。

2、采用×6m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚

100mm,檩距不大于1800mm。檩条采用冷弯薄壁斜卷边C 形钢C220×75×20×,屋面坡度i=l/10。

3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高,柱上端设有钢筋混凝土连系梁。上柱截面为450mm×450mm,所用混凝土强度等级为C30,轴心抗压强度设计值

f=mm2。抗风柱的柱距为6m,上端与屋架上弦用板铰连接。

c

4、钢材用Q235,焊条用E43 系列型。

5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。

图1

二、屋架几何尺寸及檩条布置

1、屋架几何尺寸

屋面采用×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架;

屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。

由于梯形屋架跨度L 30m 24m ,为避免影响使用和外观,制造时应起拱

f L / 500 60mm 。

屋架计算跨度l0L 2 30 2 。

跨中高度H0=h0+i l0 /2=3585mm。

为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取,起拱后屋架杆件几何尺寸和节点编号如图 2 所示(其中虚线为原屋架,实线为起拱后屋架)。

图2

运输单元的最大尺寸为长度15m,高度4m。此屋架跨度30m,高度,所以可将屋架从屋脊处断开,取一半屋架作为运输单元,长度为15m,高为。两个运输单元分别在工厂里面制作完成后,再运输至施工现场进行拼接。

2、檩条布置

采用长尺复合屋面板,单坡内不需要搭接,在屋架上弦节点设置檩条,水平檩距为。檩条跨度l 6 ,在跨中三分点处设置两道拉条,为檩条提供两个侧向支撑点。由于风荷载较大,故在屋檐和屋脊处都设置斜拉条和刚性撑杆,以将拉条的拉力直接传递给屋架。

檩条、拉条和撑杆的设置如图 3 所示。

三、支撑布置

1、上弦横向水平支撑

上弦横向水平支撑应设置在厂房两端的第一个柱间,且间距不宜超过60m。本车间长度为96m, 因此需要布置四道横向水平支撑,如图4所示。

图4

2、下弦横向和纵向水平支撑

屋架跨度L 30m 16m ,故应设置下弦横向和纵向水平支撑。下弦横向水平支撑与上弦横向水平支撑布置在同一柱间,如图5所示

图5

3、垂直支撑

垂直支撑必须设置。对于本屋架结构,在跨度中央设置一道中间垂直支撑,在屋架两端各设置一道垂直支撑。垂直支撑只设置在有横向水平支撑的同一柱间的屋架上,如图 6 所示。

图6

4、系杆

没有设置横向水平支撑的屋架,其上下弦的侧向支撑点由系杆来充当。上弦平面内,屋脊和屋檐处需要设置刚性系杆,其它支撑点处设置柔性系杆。本屋盖结构中,檩条长细比λ200 ,故可兼充上弦平面的刚性和柔性系杆。下弦平面设置两道柔性系杆(图5),

可采用45 5 的单角钢。

四、荷载与内力计算

1、荷载计算

1)永久荷载

(1)永久荷载

预应力混凝土大型屋面板m2

檩条自重m2

屋架及支撑自重m2

永久荷载总和:1,92kN/m2

(2)可变荷载

(a)活荷载:屋面活荷载m 2活荷载计算信息: 考虑活荷载不利布置风荷载计算信息: 不计算风荷载

2、荷载组合

设计屋架时,应考虑以下四种组合:

(1)组合一:全跨永久荷载+全跨活荷载

永久荷载与活荷载大小接近,活荷载起控制作用,荷载设计值为

q 2 m2

屋架上弦节点荷载为

P qA 6 kN

(2)组合二:全跨永久荷载+半跨活荷载

全跨永久荷载:

q1 2 m2

P q1 A 6

半跨活荷载:

q2m 2

P2q2 A 6

(3)组合三:全跨屋架及支撑自重+半跨屋面板重+半跨施工荷载全跨屋架及支撑自重:

q3m 2

P3q3 A 6

半跨屋面板重+半跨屋面活荷载:

q4m2

P4q4 A 6

上述各组合中,端部节点荷载取跨中节点荷载值的一半。

3、内力计算

本设计采用数值法计算杆件在单位节点力作用下各杆件的内力系数(单位节点

杆件内力系数(P=1)组合一组合二组合三计算内

名称全跨左半跨右半跨P×①P1×①+P1×①+P3×①+P3×①+(kN)

①②③P2×②P2×③P4×②P4×③

A B000000000

B C-3

C D-3

D E

上E F

弦F G.

杆G H

H I-502

I J-13

J K-13

a c

下c e

弦e g

杆g i

i k

a B

B c 201 c D 斜 D e 腹 e F -103 杆 F g 2 g H H i i j j k I j 0

A a -1 0 -27 -27 C c -1 -1 0 -27 -27 竖 E e -1 -1 0 -27 -27 杆 G g -1 -1 0 -27 -27 I i 0

K k 0 0 0 0

0 0 0 0

I j -1

-1

-27 -27

-27

五、杆件截面设计 1、节点板厚度

对于梯形屋架,节点板厚度由腹杆最大内力(一般在支座处)按下表取用: 梯形桁架腹杆内力或三角形屋架

弦杆端节间内力 (kN)

<=180 181~300 301~500 501~700 701~905

中间节点板厚

(mm)

6 8 10 12 14

支座节点板厚

(mm)

8 10 12 14 16

10mm 。

2、杆件计算长度系数及截面形式 (1)上弦杆

面内计算长度系数x μ 。根据上弦横向水平支撑的布置方案(图 4),面外计算长度系数y μ 。y μ4x μ,根据等稳定原则,采用两不等边角钢短肢相并组成的T 形截面。 (2)下弦杆

与上弦杆类似,面内计算长度系数x μ ,由图 5 可知,面外计算长度0Y l 6m 。下弦杆受拉,不需要考虑稳定性,因此下弦杆采用两等肢角钢组成的 T 形截面。

(3)支座腹杆(Aa 、aB )

面内和面外计算长度系数都为 ,采用两等肢角钢组成的 T 形截面。

(4)再分式腹杆(ij 、jK )

面内计算长度系数x

μ ,面外计算长度

2011122.70.750.2546640.750.2539440.5233259.4Y N l l l N ??-?

?=+=?+?=>?= ? ?-????

采用两不等边角钢短肢相并组成的 T 形截面。 (5)跨中竖腹杆(Kk )

采用两个等肢角钢组成的十字形截面,斜平面内计算长度系数为 。 (6)其它腹杆

面内计算长度系数x μ ,面外计算长度系数y μ ,根据等稳定原则,采用两等

肢角钢组成的 T 形截面。 3、上弦杆

上弦杆需要贯通,各杆截面相同,按 、

杆的最大内力设计,即 N kN 。

计算长度0X l l 1507mm ,0Y l 4l

mm 。截面选用 2110

70 10 ,短肢相并,肢背间距 a=6mm ,所提供的截面几何特性为: A

2 , i x

, i y 。 (1)刚度验算

[][]0x 0y 150.766.68150

2.26

30.14

49.31506.11

X X y

y

l i l i λλλλ===<==

=

=<= ,满足 (2)整体稳定验算

b t /t=125/10=<×l oy /b t =27,因此绕 y 轴弯扭屈曲的换算长细比

λy =,λmax =,上弦杆绕 x 轴弯扭屈曲,按 b 类截面查得稳定系数 ? ,

则3

22233210201.03/215/0.48134.33410N N mm f N mm A ??==<=??,满足 4、下弦杆

下弦杆需要贯通,各杆截面相同,按 gi 杆的最大内力设计,即 N 。计算长度l 0x l 3000mm , l 0y 6000mm 。截面选用 280

10 ,肢背间距 a=6mm ,所提供的截面几何特性为: A 2 , i x

cm ,

i y cm 。 (1)刚度验算

[][]0x 0y 300.0

123.973502.42600167.13350

3.59

X X y

y l i l i λλλλ=

==<====<=,满足

(2)强度验算

3

222321.410106.2/215/30.2510

N N mm f N mm A ?==<=?,满足 5、再分式腹杆 ij-jK

再分式腹杆在 j 节点处不断开,采用通长杆件。最大拉力 N jk

kN , N ij ;最大压力 N jK , N ij 。可见,该杆

截面由 jK 杆的最大拉力确定,即N kN 。计算长度 l 0x l

2332mm , l 0y 4290mm 。截面选用 245x4 ,肢背间距 a=6mm ,所提供的截面几何特性为: A ,ix ,iy cm 。 (1)刚度验算

[][]0x 0y 233.2166.57350

1.38

429200.47350

2.16X X y y l i l i λλλλ===<====<=,满足

(2)强度验算

322

253.21076.30/215/6.97210

N N mm f N mm A ?==<=?,满足 6、竖腹杆 Ii

杆件轴力为 N ,计算长度l 0u l 0v 3585 3226mm 。截面选用256 3 ,十字形截面,肢背间距 a=6mm ,所提供的截面几何特性为: A 2 ,i u , i v cm 。 (1)刚度验算

[][]0x 0y 322.6117.741502.74

322.6147.98150

2.18

u u v v l i l i λλλλ=

==<====<=,满足

(2)整体稳定验算

4

01

y 22100.4755618.70.5632.26(1)155.36147.363

y

yz y y l b b t

b l t

λλλ==

==+=>=,上弦杆绕 y 轴弯扭屈曲,按 b 类截面查得稳定系数 ?

,则

322

222.710107.10/215/0.317 6.68610

N N mm f N mm A ??==<=??,满足 其余杆件的截面设计过程不再一一列出,详见表 2 所示。

2110 70 28010 26310 263 5 2568 250×4

263 4 245×4

263 4 245×4

245×4

245×4

245×4

245×4

250×3

256×3

256×3

245×4

245×4

六、节点设计

1、屋脊节点“K ” 1、下弦节点“c ”

(1)腹杆与节点板的连接焊缝 (a )“Bc ”杆

杆件轴力N=,截面为2L63×5,节点板厚8mm ,肢背和肢尖的内力分配系数分别为0.7α=、0.3β=,角焊缝强度设计值2160N/mm w f f =。

肢背焊缝焊脚尺寸取

,min ,1,max min 1.5 3.67mm 4mm 1.2 1.256mm

t=5mm f f f h h h t ?≥===??

=≤==?=??≤?? 所需焊缝长度

31,1

,1,11,10.7134.910224113.4mm 20.720.74160

1010440mm

120mm 62624248mm

f w

f f

f f N

l h h f

h l h α??=

+=+?=????≥=?=?=?

≤=?=?取

肢尖焊缝焊脚尺寸取

,min ,2

min ,max

1.5 3.67mm 4mm 1.2 1.2565mm f f f h h t mm h t ?≥===??

=≤=?=??≤==??

所需焊缝长度

32,2

,2,22,20.3134.91022453.220.720.74160

10104406062624248f w

f f

f f N

l h mm h f

h mm

l mm h mm

β??=

+=+?=????≥=?=?=?

≤=?=?取

(c )“cD ”杆

杆件轴力N=,截面为2L56×8,节点板厚8mm ,肢背和肢尖的内力分配系数分别为0.7α=、0.3β=,角焊缝强度设计值2160N/mm w f f =。

肢背焊缝焊脚尺寸取

,min ,1,max min 4.2mm 5mm 1.27.2mm t-2=6mm f f f h h h t ?≥==??

=≤==??≤??

所需焊缝长度

31,1

,1,11,10.7113.7102

2581.1mm 20.720.75160

1010550mm

90mm 62625248mm

f w f f

f f N

l h h f

h l h α??=

+=+?=????≥=?=?=?

≤=?=?取

肢尖焊缝焊脚尺寸取

,min max ,2

,max min 1.5 4.2mm 5mm 1.27.2mm t-2=6mm

f f f h t h h t ?≥==??

=≤==??≤??

所需焊缝长度

32,2

,2,22,20.3113.71022530.4mm 20.720.75160

1050mm

50mm 62625310mm

f w

f f

f f N

l h h f

h l h β??=

+=+?=????≥=?=?

≤=?=?取

(2)节点详图

根据上述焊缝长度以及杆件截面,并考虑杆件之间应有的间隙、制作和装配等误差,按比例绘出节点详图,如图7所示。从而确定节点板尺寸为280mm ×300mm 。图中,屋架右半边运输单元上的构件必须在工地装配后才能与节点板焊接,已以工地焊缝代号标明。

图7 (3)下弦与节点板的连接焊缝

下弦与节点板的连接焊缝长度300mm l =,所受的力为左右两下弦杆的内力差ΔN=。下弦杆截面为28010∠?,节点板厚8mm ,肢尖与肢背的焊脚尺寸都取

,min 5mm 1.5 4.7mm f f h h =≥===

焊缝计算长度

230025290mm 60605300mm w f f l l h h =-=-?=<=?=,取290mm w l = 受力较大的肢背处的焊缝应力为

3220.7131.91045.5N/mm 160N/mm 20.720.75290

w f f f w N

f h l ατ???===<=????,满足

2.上弦节点“D ”

(1)腹杆与节点板的连接焊缝 (a )“cD ”杆

“cD ”杆与节点板的焊缝尺寸和节点“c ”相同。 (b )“De ”杆

杆件轴力N=,截面为2504∠?,节点板厚6mm ,肢背和肢尖的内力分配系数分别为0.7α=、0.3β=,角焊缝强度设计值2160N/mm w f f =。

肢背焊缝焊脚尺寸取

,min ,1,max min 1.5 3.7mm 4mm 1.2 1.24 4.8mm t=4mm

f f f h h h t ?≥===??

=≤==?=??≤??

所需焊缝长度

31,1

,1,11,10.783.41022473.2mm 20.720.74160

1010440mm

80mm 62624248mm

f w

f f

f f N

l h h f

h l h α??=

+=+?=????≥=?=?=?

≤=?=?取

肢尖焊缝焊脚尺寸取

,2,14f f h h mm ==

所需焊缝长度

32,2

,20.383.41022436mm 20.720.74160

f w f f

N

l h h f

β??=

+=+?=???? 取,22,2,262624248mm 50mm 104040248f f f h l h mm h mm

?≤=?=?

=≥=??

≥+=?

(2)节点详图

根据上述焊缝长度以及杆件截面,并考虑杆件之间应有的间隙、制作和装配

等误差,按比例绘出节点详图,如图8所示,从而确定节点板尺寸为220mm ×190mm 。

图8 (3)上弦与节点板的连接焊缝

上弦与节点板的连接焊缝长度220mm l =,所受的力为左右两上弦杆的内力差ΔN=,以及节点荷载P=27KN 。上弦杆截面为21107010∠??,节点板厚12mm 。 (a )上弦肢背与节点板的槽焊缝

上弦肢背与节点板的槽焊缝承受节点荷载P ,槽焊缝按两条0.53mm f h t ==的角焊缝计算。屋面倾角()arctan 110α=,节点荷载P 的偏心距e=30mm 。

槽焊缝所受的应力为

32

2

332

2

sin 15.16100.0995 1.68N mm 20.720.73(22023)

cos 620.720.715.16100.995615.16102026.19N mm 20.73(22023)20.73(22023)

f f w f f w f w

P h l P Pe

h l h l ατασ??===????-?=

+

???

????

=+=???-????-?=2221.5N mm 0.80.8160128N mm ,w f f =<=?=满足

(b )上弦肢尖与节点板的连接焊缝

上弦肢尖的两条角焊缝承担偏心荷载N ?,偏心距e=30mm 。取焊脚尺寸

,min ,max min 1.5 4.7mm 5mm 1028mm 1.2t 7.2

f f f h h h ?≥===??

=≤=-=??≤=??

肢尖焊缝所受的应力为

3

2

32

22

22100.11068.1N mm 20.720.75(22025)

66100.11052.8

102.7N mm 20.720.75(22025)

108.28N mm 160N mm ,f f w f f w

w f N h l Ne h l f τσ??===????-?????===????-?==<=满足

3.有工地拼接的下弦节点“k ”

“k ”节点与一般下弦节点的区别在于节点处弦杆中断而需对弦杆进行拼接。

(1)拼接角钢的截面和长度

弦杆一般都采用同号角钢进行拼接,为了使拼接角钢与原来的角钢相紧贴,并便于施焊,需将拼接角钢顶部截去棱角,宽度为9mm (角钢内圆弧半径),且将垂直肢截去5mm f h t ++(t 为角钢厚度),见图6所示。因切割而对拼接角钢截面的削弱考虑由节点板补偿而不计。

拼接角钢与下弦杆共有4条角焊缝,都位于角钢的肢尖,承担节点两侧弦杆中较小的内力设计值2N ,对于下弦杆,可偏安全地取22N A f =。

下弦杆截面为28010∠?,230.25cm A =。焊脚尺寸取为

,min ,max 1.5 4.7mm

5mm 1028mm

f f f h h h ?≥===?=?≤=-=??

所需的拼接角钢总长度为

230.2510215222022520620.9mm 40.740.75160s f

w

f f Af

l h h f ????

??=++=?+?+= ? ? ????????

?

取630mm s l =。

(2)下弦杆与节点板的连接角焊缝

下弦杆与节点板连接焊缝的计算内力取12N N N ?=-和10.15N 两者中的较大值,“c ”节点处N 1=N 2=,下弦杆截面为28010∠?,节点板厚8mm ,肢背和肢尖的内力分配系数分别为0.7α=、0.3β=,角焊缝强度设计值2160N/mm w f f =。

肢背焊缝焊脚尺寸取

,min ,1,max min 1.5 4.7mm

6mm 1.2 1.267.2mm

f f f h h h t ?≥===?=?≤==?=??

所需焊缝长度

3

1,1,1,110.70.15309.31022539101055020.720.75160

50f f w

f f N

l h mm h mm h f l mm

α???=+=+?=≤=?=????=取

肢尖焊缝焊脚尺寸取

,min max ,2

,max 1.5 1.510 4.7mm

5mm 6mm

f f f h t h h t ?≥==?=?=?≤==??

所需焊缝长度

3

2,2

,2,2,22,20.30.15309.31022522.420.720.75160

max(10,402)505062625310f w f f

f f f N

l h mm

h f

h h mm

l mm h mm

β???=

+=+?=????≥+=?=?

≤=?=?取

(3)腹杆与节点板的连接焊缝

焊缝尺寸列表计算如表 3 所示。“Kk ”杆与节点板的连接焊缝尺寸为:肢背,1f h 4mm ,l 1 50mm ;肢尖 ,2f h 4mm , l 2 50mm 。 (4)节点详图

根据上述焊缝长度以及杆件截面,并考虑杆件之间应有的间隙、制作和装配等误差,按比例绘出节点详图,如图9所示。图中,屋架右半边运输单元上的构件必须在工地装配后才能与节点板焊接,已以工地焊缝代号标明。

图9

4.屋脊节点“K ”

“K ”节点与一般上弦节点的区别在于节点处弦杆中断而需对弦杆进行拼接。

(1) 拼接角钢的截面和长度

与“k ”节点类似,拼接角钢采用上弦杆同号角钢,顶部截去棱角,宽度为10mm ,垂直肢截去5mm 20mm f h t ++=,见图7所示。

拼接角钢与上弦杆共有4条角焊缝,都位于角钢的肢尖,承担节点两侧弦杆中较小截面中的内力设计值N 2=。上弦杆截面为21107010∠??,焊脚尺寸取为

,min max ,max 1.5 1.510 4.7mm 6mm 28mm 1.2t 7.2min f f f h

t h h mm

??

≥==?=?=?≤=-=?

?≤=?

所需的拼接角钢总长度为

32

591.310222022530578mm 40.740.75160578mm

s f

w

f f s N l h h f l ?????=++=?+?+= ? ? ????????

?

=取

(2)腹杆与节点板的连接焊缝

焊缝尺寸列表计算如表 3 所示。“ik ”杆与节点板的连接焊缝尺寸为:肢背,1f h 4mm ,l 1 50mm ;肢尖 ,2f h 4mm , l 2 50mm 。“Kk ”杆与节点板的连接焊缝尺寸为:肢背,1

f h 4mm ,l 1

40mm ;肢尖 ,2f h

4mm , l 2

50mm 。

(3)节点详图

根据上述焊缝长度以及杆件截面,并考虑杆件之间应有的间隙、制作和装配等误差,按比例绘出节点详图,如图7所示。图中,屋架右半边运输单元上的构件必须在工地装配后才能与节点板焊接,已以工地焊缝代号标明。

(4)上弦杆与节点板的连接焊缝

上弦肢背与节点板的槽焊缝长度L=140,承受节点荷载P=;肢尖焊缝长度

2150mm

l ,承受偏心荷载0,15N1=×=。上弦杆截面为2L110×70×10*,节点板厚6mm。

(a )上弦肢背与节点板的槽焊缝

槽焊缝按两条0.53mm f h t ==的角焊缝计算。屋面倾角()arctan 110α=,节点荷载P 的偏心距e=87mm 。

槽焊缝所受的应力为

322

33222sin 7.58100.0995 1.34N mm ,20.720.73(14023)

cos 620.720.77.58100.99567.58108720.73(14023)20.73(14023)52.3N mm 0.80.8160128N mm ,f f w f f w f w

w f P h l P Pe

h l h l f ατασ??===????-?=

+

???????=+

???-????-?=<=?=忽略不计

满足

(b )上弦肢尖与节点板的连接焊缝

上弦肢尖的两条角焊缝承担偏心荷载10.15N ,偏心距e=40mm 。取焊脚尺寸

,min

,max

1.55f f f h

mm h mm h ?≥=?=?≤=?? 肢尖焊缝所受的应力为

()

()

3

2

13

2

122

0.1549.81050.82N/mm 20.720.751502560.15649.81050

108.89N/mm 20.720.7515025f f w f f w N h l N e h l τσ?===????-?????=

==????-?

22102.71N/mm 160N/mm w f f ==<=,满足 5.支座节点“a ”

为便于施焊,下弦杆角钢水平肢的底面与支座底板的净距不小于水平肢的边

长,且不小于130mm ,取130mm 。在节点中心线上设置加劲肋,加劲肋的高度与节点板相同,厚度都为8mm 。 (1)支座底板的尺寸 (a )底板的平面尺寸

支座反力R=271,锚拴直径d=20mm ,锚拴孔直径d 0=2~,取d 0=40mm ,C30混凝土强度设计值f c =mm 2。仅考虑有加劲肋部分的底板承受支座反力,所需要的底板净截面面积为:

3

2

2711022773mm 11.9n c R A f ?===

锚栓孔面积为:

2240402204456A mm π?=??+?=

所需底板总面积为:

塑胶产品结构设计--卡扣

2.4,扣位 2.4.1,扣位也称卡扣,是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处. 2.4.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理: 扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°. 扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量. 扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角. 2.4.3,卡扣常见形式及尺寸 a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍. 图2.4.3a b.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸. 如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣. 图2.4.3b c.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.

图2.4.3c d.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8, TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定. 图2.4.3d e.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱. 另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.

梯形钢屋架课程设计

《钢结构》课程设计 题目:武汉某车间钢结构屋架设计 院(系):城市建设学院 专业班级:土木090 学生姓名: 学号: 指导教师:蒋华 2012年6月11日至2012年6月15日 华中科技大学武昌分校制

《钢结构》课程设计任务书

目录 一、设计资料 (5) 二、屋架几何尺寸及檩条布置 (5) 1、屋架几何尺寸 (5) 2、檩条布置 (6) 三、支撑布置 (6) 1、上弦横向水平支撑 (6) 2、下弦横向和纵向水平支撑 (6) 3、垂直支.撑 (7) 4、系杆 (7) 四、荷载与内力计算 (7) 1、荷载计算 (7) 2、荷载组合 (7) 3、内力计算 (8)

一、设计资料: 1、某车间跨度为18m,厂房总长度90m,柱距6m。 2、采用1.5m×6m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚100mm,檩距不大于1800mm。檩条采用冷弯薄壁斜卷边 C 形钢 C220×75×20×2.5,屋面坡度i=l/10。 3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高18.000m,柱上端设有钢筋混凝土连系梁。上柱截面为450mm×450mm,所用混凝土强度等级为C30,轴心抗压强度设计值 f=14.3N/mm2。抗风柱的柱距为6m,上端与屋架上弦用板铰连接。 c 4、钢材用Q235,焊条用E43 系列型。 5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。 图1 二、屋架几何尺寸及檩条布置 1、屋架几何尺寸 屋面采用1.5m×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架; 屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。 由于梯形屋架跨度L = 30m > 24m ,为避免影响使用和外观,制造时应起拱 f = L / 500 = 60mm 。 屋架计算跨度l0= L - 2 ? 0.15 = 30 - 2 ? 0.15 = 29.7m 。 =h0+i? l0/2=3585mm。 跨中高度H 为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取1.5m,起拱后屋架杆件几何尺寸和节点编号如图 2 所示(其中虚线为原屋架,实线为起拱后屋架)。

梯形钢屋架课程设计(2017年度)

长沙理工大学继续教育学院梯形钢屋架课程设计 年级: 专业: 姓名: 学号: 指导老师:

时间:2017 年月日

目录 课程设计任务书 (1) 一、设计资料: (2) 二、屋架几何尺寸及檩条布置 (3) 三、支撑布置 (4) 四、荷载与内力计算 (5) 五、杆件截面设计 (9) 六、节点设计 (17) 七、填板设计 (35)

长沙理工大学继续教育学院课程设计任务书

一、设计资料: 1、某车间跨度为18m,厂房总长度90m,柱距6m。 2、采用1.5m×6m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚100mm,檩距不大于1800mm。檩条采用冷弯薄壁斜卷边 C 形钢C220×75×20×2.5,屋面坡度i=l/10。 3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高18.000m,柱上端设有钢筋混凝土连系梁。上柱截面为450mm×450mm,所用混凝土强度等级为C30,轴心f=14.3N/mm2。抗风柱的柱距为6m,上端与屋架上弦用板抗压强度设计值 c 铰连接。 4、钢材用Q235,焊条用E43 系列型。 5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。

图1 二、屋架几何尺寸及檩条布置 1、屋架几何尺寸 屋面采用1.5m×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架; 屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。 由于梯形屋架跨度L 30m 24m ,为避免影响使用和外观,制造时应起拱 f L / 500 60mm 。 屋架计算跨度l0L 2 0.15 30 2 0.15 29.7m 。跨中高度H 0=h0+i l0 /2=3585mm。 为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取1.5m,起拱后屋架杆件几何尺寸和节点编号如图 2 所示(其中虚线为原屋架,实线为起拱后屋架)。 图2

24m梯形钢屋架设计

钢结构课程设计 学生姓名:李兴锋 学号:20094023227 所在学院:工程学院 专业班级:09级土木(2)班 指导教师:

目录 1、设计资料 (3) 2、屋架形式和几何尺寸 (5) 3、节点荷载设计 (5) 4、屋架荷载 (6) 5、杆件截面选择 (6) 6、屋架杆件计算总表 (13) 7、焊缝计算 (14) 8、杆件应力计算 (16) 9、节点设计 (19) 10、课程设计小结 (25) 11、设计手写稿 (27) 12、施工图 (28)

T型钢架课程设计任务书 一、设计资料 某车间(或厂房)跨度L,长度96m,柱距6m,屋盖采用梯形钢屋架,屋面材料为压型钢板复合板,檩条间距1.5m,屋面坡度i = 1/10,屋面活荷载标准值为0.5kN/m2,当地基本风压为0.55kN/m2,屋架简支于钢筋混凝土柱上,混凝土强度等级C30,柱截面400mm×400mm。其他设计资料如下: A.跨度 B.永久荷载 注:表中给出的永久荷载尚未包含屋架和支撑自重。C.雪荷载 D.积灰荷载 二、题目分配

注:土木07-1班执行D1组合;土木07-2班执行D2组合;土木07专升本执行D3组合。 各班学生在题目分配表中找到自己学号所对应的设计资料并结合各自班级的D组合进行设计。 三、设计要求 计算书:内容应详尽,主要内容应包括:设计任务书,材料选择,屋架形式、几何尺寸,支撑布置,荷载汇集,杆件内力计算及组合,杆件截面选择,典型节点设计(屋脊、跨中拼接节点,上下弦节点)等。 图纸:应符合制图规范及要求,表达应完整;绘制要求:主要图面应绘制正面图、上下弦平面图,必要的侧面图、剖面图,以及某些安装节点或特殊零件的

钢结构课程设计指导书(详细版)

钢结构课程设计指导书 (梯形钢屋架) 土木工程学院钢结构教研室

钢结构课程设计指导书 绪言课程设计目的要求 课程设计是一个重要的教学过程,是对学生知识和能力的总结。要求学生通过钢结构课程设计,进一步了解钢结构的结构型式、结构布置和受力特点,掌握钢结构的计算简图、荷载组合和内力分析,掌握钢结构的构造要求等。要求在老师的指导下,参考已学过的课本及有关资料,综合应用钢结构的材料、连接和基本构件的基本理论、基本知识,进行整体钢结构设计计算,并绘制钢结构施工图。 第一节 钢结构课程设计题目 一、设计题目 某24m跨度车间钢屋架设计。 二、 设计任务 1、选择钢屋架的材料 2、确定屋架形式及几何尺寸 3、屋盖及支撑的布置 4、钢屋架的结构设计 5、绘制钢屋架施工图及材料表 三、 设计资料 某厂一金工车间跨度24m,长度为90m,柱距6m,内设两台50/5t中级工作制桥式吊车,设防烈度为7度。屋面采用1.5×6.0m大型屋面板。20mm厚水泥砂浆找平,上铺80mm厚泡沫混凝土保温层;三毡四油防水层,上铺小石子。屋面坡度i=1/10。屋面活荷载标准值0.7kN/m2,雪荷载标准值0.5 kN/m2,积灰荷载标准值0.3 kN/m2。屋架铰接于钢筋混凝土柱上,上柱截面b×h=400×400mm,混凝土强度等级为C20。 第二节 钢屋架设计计算 一、材料选择 根据荷载性质,钢材可采用Q235-A.F,要求保证屈服强度、抗拉强度、伸长率、冷弯试验及碳、硫、磷含量合格。屋架连接方法采用焊接,焊条可选用

E43型,手工焊。 二、屋架形式及几何尺寸 因屋面采用混凝土大型屋面板,屋面坡屋i=1/10,故宜采用梯形屋架。 屋架计算跨度应取l。=l-2×150=24000-300=23700mm。 屋架端部高度H。与屋架中部高度及屋面坡度相关,我国常将H。取为1.8~2.1m等较整齐的数值,以利多跨屋架时的屋面构造。可取H。=1990mm。 为使屋架上弦只受节点荷载,腹杆体系采用节间为3m的人字形式,屋面板传来的荷载,正好作用在节点上,使之传力更好。 屋架跨中起拱l/500 ,可取50mm。 三、支撑布置 根据车间长度,屋架跨度,荷载情况,以及吊车设置情况,宜布置三道上、下弦横向水平支撑,垂直支撑和系杆,屋脊节点及屋架支座处沿厂房通长设置刚性系杆,屋架下弦沿跨中通长设一道柔性系杆。凡与支撑连接的屋架可编号为GWJ—2,其它编号均为GWJ—l。 四、荷载和内力计算 1、荷载计算 屋面活荷载与雪载一般不会同时出现,可取其中较大者进行计算。 屋架沿水平投影面积分布的自重(包括支撑)可按经验公式计算。 荷载计算中,因屋面坡度较小,风荷载对屋面为吸力,对重屋盖可不考虑,所以各荷载均按水平投影面积计算。 2.荷载组合 设计屋架时,应考虑以下三种荷载组合: (1) 全跨永久荷载+全跨可变荷载 (2) 全跨永久荷载+半跨可变荷载 (3) 全跨屋架与支撑自重+半跨屋面板自重+半跨屋面活荷载 3. 内力计算 按图解法、解析法、电算法均可计算屋架各杆内力。 先求出单位荷载作用于各节点时的内力,即内力系数,然后可求出当荷载作用于全跨及半跨各节点时的杆件内力,并求出三种荷载组合下的杯件内力.取其中不利内力(正、负最大值)作为设计屋架的依据。可列表计算。 跨中附近斜腹件的内力发生变号,由于考虑了施工阶段荷载的不利分布。

跨度24m梯形钢屋架设计说明

24m钢结构开始设计 1、设计资料 1)某厂房跨度为24m,总长90m,柱距6m,屋架下弦标高为18m。 2)屋架铰支于钢筋混凝土柱顶,上45柱截面400×400,混凝土强度等级为C30。 3)屋面采用1.5×6m的预应力钢筋混凝土大型屋面板。(屋面板不考虑作为支撑用)。 4)该车间所属地区为市 5)采用梯形钢屋架 考虑静载:①预应力钢筋混凝土屋面板(包括嵌缝)、②二毡三油加绿豆沙、③找平层2cm厚、④ 支撑重量 考虑活载:活载(雪荷载)积灰荷载 6)钢材选用Q345钢,焊条为E50型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。屋面坡度 i=(3040-1990)/10500=1/10; 屋架计算跨度L =24000-300=23700mm; 端部高度取H=1990mm,中部高度取H=3190mm(约1/7。4)。屋架几何尺寸如图1所示: 图1:24米跨屋架几何尺寸 3、支撑布置 由于房屋长度有90米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。(如图2所示)

上弦平面支撑布置 屋架和下弦平面支撑布置 垂直支撑布置 4、屋架节点荷载

屋面坡度较小,故对所有荷载均按水平投影面计算: 计算屋架时考虑下列三种荷载组合情况 1) 满载(全跨静荷载加全跨活荷载) 节点荷载 ①由可变荷载效应控制的组合计算:取永久荷载γ G =1.2,屋面活荷载γ Q1 = 1.4,屋面集灰荷载γ Q2=1.4,ψ 2 =0.9,则节点荷载设计值为 F=(1.2×2.584+1.4×0.70+1.4×0.9×0.80)×1.5×6=45.7992kN ②由永久荷载效应控制的组合计算:取永久荷载γ G =1.35,屋面活荷载γ Q1 =1.4、ψ 1=0.7,屋面集灰荷载γ Q2 =1.4,ψ 2 =0.9,则节点荷载设计 值为 F=(1.35×2.584+1.4×0.7×0.70+1.4×0.9×0.80)×1.5×60=46.593 kN 2) 全跨静荷载和(左)半跨活荷 ①由可变荷载效应控制的组合计算:取永久荷载γ G =1.2,屋面活荷载γ Q1 = 1.4,屋面集灰荷载γ Q2=1.4,ψ 2 =0.9 全垮节点永久荷载 F1=(1.2×2.584)×1.5×6=27.9072kN 半垮节点可变荷载 F2=(1.4×0.70+1.4×0.9×0.80)×1.5×6=17.892kN ②由永久荷载效应控制的组合计算:取永久荷载γ G =1.35,屋面活荷载γ Q1 =1.4、ψ 1=0.7,屋面集灰荷载γ Q2 =1.4,ψ 2 =0.9 全垮节点永久荷载 F1=(1.35×2.55)×1.5×6=31.347 kN 半垮节点可变荷载

21米梯形钢屋架课程设计计算书要点

《钢结构设计》课程设计 姓名 学号 专业 指导老师

《钢结构》课程设计任务书

一、设计资料: 1、某工业厂房跨度为21m,厂房总长度72m,柱距6m。 2、采用1.5m×6.0m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚100mm,檩距不大于1800mm。檩条采用冷弯薄壁斜卷边 C 形钢 C220×75×20×2.5,屋面坡度i=l/10。 3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高18.0m,柱上端设有钢筋混凝土连系梁。上柱截面为400mm×400mm,所用混凝土强度等级为C30,轴心抗压强度设计值f c =14.3N/mm2。抗风柱的柱距为6m,上端与屋架上弦用板铰连接。 4、钢材用Q345-B,焊条用E50 系列型。 5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。 图1 二、屋架几何尺寸及檩条布置 1、屋架几何尺寸 屋面采用1.5m×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架; 屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。 由于梯形屋架跨度L = 21m ,为避免影响使用和外观,制造时应起拱 f = L / 500 = 42mm 。 屋架计算跨度l0= L - 2 ? 0.15 = 21 - 2 ? 0.15 = 20.7m 。 =h0+i? l0/2=2935mm。 跨中高度H 为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取1.5m,起拱后屋架杆件几何尺寸和节点编号如图 2 所示屋架。 图2

三、支撑布置 1、上弦横向水平支撑 上弦横向水平支撑应设置在厂房两端的第一个柱间,且间距不宜超过60m。本车间长度为72m, 因此需要布置三道横向水平支撑,如图4所示。 图 4 2、下弦横向和纵向水平支撑 屋架跨设置下弦横向和纵向水平支撑。下弦横向水平支撑与上弦横向水平支撑布置在同一柱间,如图5所示 图5 3、垂直支撑

24m梯形钢屋架课程设计计算书

钢结构设计原理与施工课程设计――钢结构厂房屋架 指导教师: 班级: 学生姓名: 学号: 设计时间:2011年6月7号 浙江理工大学科技与艺术学院建筑系

梯形钢屋架课程设计计算书 一.设计资料: 1、车间柱网布置:长度60m ;柱距6m ;跨度24m 2、屋面坡度:1:10 3、屋面材料:预应力大型屋面板 4、荷载 1)静载:屋架及支撑自重0.384KN/m 2;檩条0.2KN/m 2;屋面防水层 0.1KN/m 2; 保温层0.4vKN/m 2;大型屋面板自重(包括灌缝)0.85KN/m 2;悬挂管道0.05 KN/m 2。 2)活载:屋面雪荷载0.35KN/m 2;施工活荷载标准值为0.7 KN/m 2;积灰荷 载1.2 KN/m 2。 5、材质Q235B 钢,焊条E43系列,手工焊。 二 .结构形式与选型 1.屋架形式及几何尺寸如图所示 : 拱50 根据厂房长度为60m 、跨度及荷载情况,设置上弦横向水平支撑3道,下弦由于 跨度为24m 故不设下弦支撑。

2.梯形钢屋架支撑布置如图所示: 3.荷载计算 屋面活荷载0.7KN/m2进行计算。 荷载计算表

荷载组合方法: 1、全跨永久荷载1F+全跨可变荷载2F 2、全跨永久荷载1F+半跨可变荷载2F 3、全跨屋架(包括支撑)自重3F+半跨屋面板自重4F+半跨屋面活荷载2F 4.内力计算 计算简图如下

屋架构件内力组合表 4.内力计算 1.上弦杆 整个上弦采用等截面,按FG 杆件的最大设计内力设计,即N=-895.731KN 上弦杆计算长度: 在屋架平面内:0x 0l l 1.508m ==,0y l 2 1.508 3.016m ==× 上弦截面选用两个不等肢角钢,短肢相并。 腹杆最大内力N=-520.651KN ,中间节点板厚度选用6mm ,支座节点板厚度选用8mm

跨度 24m梯形钢屋架设计

24m 钢结构开 始 设 计 1、设计资料 1)某厂房跨度为24m ,总长90m ,柱距6m ,屋架下弦标高为18m 。 2)屋架铰支于钢筋混凝土柱顶,上45柱截面400×400,混凝土强度等级为C30。 3)屋面采用×6m 的预应力钢筋混凝土大型屋面板。(屋面板不考虑作为支撑用)。 4)该车间所属地区为北京市 5)采用梯形钢屋架 考虑静载:①预应力钢筋混凝土屋面板(包括嵌缝)、②二毡三油加绿豆沙、③找平层2cm 厚、④ 支撑重量 考虑活载:活载(雪荷载)积灰荷载 6)钢材选用Q345钢,焊条为E50型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。屋面坡度 i=(3040-1990)/10500=1/10; 屋架计算跨度L 0=24000-300=23700mm ; 端部高度取H=1990mm ,中部高度取H=3190mm (约1/7。4)。屋架几何尺寸如图1所示: 1拱50

图1:24米跨屋架几何尺寸 3、支撑布置 由于房屋长度有90米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。(如图2所示) 上弦平面支撑布置 屋架和下弦平面支撑布置

垂直支撑布置 4、屋架节点荷载 屋面坡度较小,故对所有荷载均按水平投影面计算: 计算屋架时考虑下列三种荷载组合情况 1) 满载(全跨静荷载加全跨活荷载) 节点荷载 ①由可变荷载效应控制的组合计算:取永久荷载γG=,屋面活荷载γQ1=,屋面 集灰荷载γQ2=,ψ2=,则节点荷载设计值为 F=(×+×+××)××6= ②由永久荷载效应控制的组合计算:取永久荷载γG=,屋面活荷载γQ1=、ψ1 =,屋面集灰荷载γQ2=,ψ2=,则节点荷载设计值为 F=(×+××+××)××60=kN 2) 全跨静荷载和(左)半跨活荷 ①由可变荷载效应控制的组合计算:取永久荷载γG=,屋面活荷载γQ1=,屋面

梯形钢屋架课程设计例题

梯形钢屋架课程设计 一、设计资料 (1)题号72,屋面坡度1: 10,跨度30m,长度102m,,地点:哈尔滨,基本 2 2 雪压:kN/m,基本风压:m。该车间内设有两台200/50kN中级工作制吊车,轨顶标高为8.5m。采用1.5m x 6m预应力混凝土大型屋面板,80mm厚泡沫混凝土保护层,卷材屋面,屋面坡度i=1/10。屋面活荷载标准值,血荷载标准值为 2 2 kN/m,积灰荷载标准值为kN/m。屋架绞支在钢筋混凝土柱上,上柱截面为 400mm x 400mm。混凝土采用C20,,钢筋采用Q235B级,焊条采用E43 型。 (2)屋架计算跨度:l0=30m-2X 0.15m=29.7m。 (3)跨中及端部高度:采用无檩无盖方案。平坡梯形屋架,取屋架在30m轴线处的端部高度h。2.°05m。屋架跨中起拱按l0 /500考虑,取60mm。 二、结构形式与布置 屋架形式及几何尺寸如下图: ism 5

根据厂房长度(102>60)、跨度及荷载情况,设置三道上、下弦横向水平支撑。因柱网采用封闭结合,厂房两端的横向水平支撑设在第一柱间,该水平支撑的规格与中间柱间的支撑规则有所不同。梯形钢屋架支撑布置如下图: * 7

垂直支擢IT 垂直支撑27 三、荷载计算 1、荷载计算 屋面荷载与雪荷载不会同时出现,计算时取较大值进行计算,故取屋面活荷载 kN/m 2进行计算。 屋架沿水平投影面积分布的自重(包括支撑)按经验公式g k(0.12 0.11l)kN/m2计算,跨度单位为米(m)。荷载计算表如下: (1)全跨永久荷载+全跨可变荷载:

全跨节点永久荷载及可变荷载:

梯形钢屋架课程设计

梯形钢屋架课程设计计算书 1.设计资料: 1、车间柱网布置:长度90m ;柱距6m ;跨度18m 2、屋面坡度:1:10 3、屋面材料:预应力大型屋面板 4、荷载 1)静载:屋架及支撑自重0.45KN/m2;屋面防水层0.4KN/m2;找平层0.4KN/m2;大型屋面板自重(包括灌缝)1.4KN/m2。 2)活载:屋面雪荷载0.3KN/m2;屋面检修荷载0.5KN/m2 5、材质Q235B钢,焊条E43XX系列,手工焊。 2 . 结构形式与选型 屋架形式及几何尺寸如图所示 根据厂房长度(90m>60m)、跨度及荷载情况,设置上弦横向水平支撑3道,下弦由于跨度为18m故不设下弦支撑。 梯形钢屋架支撑布置如图所示:

3 . 荷载计算 屋面活荷载0.7KN/m2进行计算。荷载计算表

1、全跨永久荷载1F +全跨可变荷载2F 2、全跨永久荷载1F +半跨可变荷载2F 3、全跨屋架(包括支撑)自重3F +半跨屋面板自重4F +半跨屋面活荷载2F 4. 内力计算 计算简图如下 (c) (b) (a) 2 F /22 3//3F 22/F 4 2F /F 1/2/22 1// 2 2/4

5. 杆件设计 1、 上弦杆 整个上弦采用等截面,按FG 杆件的最大设计内力设计,即N=-210.32KN 上弦杆计算长度: 在屋架平面内:0x 0l l 1.508m ==,0y l 2 1.508 3.016m ==× 上弦截面选用两个不等肢角钢,短肢相并。 腹杆最大内力N=-115.16 KN ,中间节点板厚度选用6mm ,支座节点板厚度选用8mm 设λ=60,υ=0.807,截面积为3 2N 210.3210A 1327.4mm f 0.807215 =××==υ

钢结构课程设计汇本梯形钢屋架计算书

-、设计资料 1、某工厂车间,采用梯形钢屋架无檩屋盖方案,厂房跨度取27m,长度为102m,柱距6m。采用1.5m×6m预应力钢筋混凝土大型屋面板,保温层、找平层及防水层自重标准值为1.3kN/m2。屋面活荷载标准值为0.5kN/m2,雪荷载标准值0.5kN/m2,积灰荷载标准值为0.6kN/m2,轴线处屋架端高为1.90m,屋面坡度为i=1/12,屋架铰接支承在钢筋混凝土柱上,上柱截面400mm×400mm,混凝土标号为C25。钢材采用Q235B级,焊条采用E43型。 2、屋架计算跨度: Lo=27m-2×0.15m=26.7m 3、跨中及端部高度: 端部高度:h′=1900mm(端部轴线处),h=1915mm(端部计算处)。 屋架中间高度h=3025mm。 二、结构形式与布置 屋架形式及几何尺寸如图一所示: 2、荷载组合 设计桁架时,应考虑以下三种组合: ①全跨永久荷载+全跨可变荷载(按永久荷载为主控制的组合) :全跨节点荷 载设计值:F=(1.35×3.12+1.4×0.7×0.5+1.4×0.9×0.6) ×1.5×6 =49.122kN 图三桁架计算简图 本设计采用程序计算结构在单位节点力作用下各杆件的力系数,见表一。

1、上弦杆: 整个上弦杆采用相等截面,按最大设计力IJ 、JK 计算,根据表得: N= -1139.63KN ,屋架平面计算长度为节间轴线长度,即:ox l =1355mm,本屋架为无檩体系,认为大型屋面板只起刚性系杆作用,不起支撑作用,根据支撑布置和力变化情况,取屋架平面外计算长度oy l 为支撑点间的距离,即: oy l =3ox l =4065mm 。根据屋架平面外上弦杆的计算长度,上弦截面宜选用两个 不等肢角钢,且短肢相并,如图四所示:

24m钢结构课程设计计算书

设计某厂房钢屋架 一、设计资料 梯形屋架跨度24m,物价间距6m,厂房长度120m。屋架支撑于钢筋混凝土柱子上,节点采用焊接方式连接,,其混凝土强度C25,柱顶截面尺寸400mm×400mm。屋面用预应力钢筋混凝土大型屋面板。上弦平面侧向支撑间距为两倍节间长度,下弦平面在柱顶和跨中各设一道纵向系杆。屋面坡度i=1/10。刚材采用Q235B钢,焊条E43××系列,手工焊。 二、屋架形式和几何尺寸 屋架的计算跨度l0=L-300=24000-300=21000mm,端部高度取H0=2000mm,跨中高度H=3200mm 三、屋盖支撑布置(见图1) 四、荷载计算 ⒈永久荷载:预应力钢筋混凝土屋面板(包括嵌缝)1.40KN/m2 防水层(三毡四油上铺小石子)0.35 KN/m2 找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/m2 保温层(泡沫混凝土)厚40mm 0.25KN/m2 钢屋架及支撑重0.12+0.011×24=0.384KN/m2 合计 2.784KN/m2 ⒉可变荷载:屋面荷载0.5KN/m2 雪荷载0.6KN/m2 由于可变荷载和雪荷载不能同时达到最大,因此去他们中的较大值。取0.6 KN/m2 五、屋架杆件内力计算与组合 永久荷载分项系数1.2,可变荷载分项系数1.4. ⒈荷载组合: ⑴全跨恒载+全跨活载 ⑵全跨恒载+半跨活载 ⑶全跨屋架,支撑自重+半跨屋面板重+半跨活载 ⒉节点荷载: 永久荷载F1=1.2×2.784×1.5×6=30.07KN

可变荷载F2=1.4×0.6×1.5×6=7.56KN ⒊屋架杆件内力计算 表一屋架构件内力组合表(单位:KN)见表1 六、屋架杆件设计 支座斜杆的最大内力设计值为-333.40 KN,查表9.1,中间节点板厚度选用10mm,支座节点板厚度选用12mm。 ⒈上弦杆 上弦采用等截面,按N=-572.28KN,FG杆件的最大设计内力设计。上弦杆计算长度:平面内:l ox=l o=1507mm;在屋架平面外,根据支撑和内力变化情况,取l oy =2×l0=3014mm。 假设λx=λy=120,查表得φ=0.437。取强度设计值f=215 N/mm2, 则需要的截面面积: A=N∕φf=572280∕0.751×215=3544mm2=35.44 cm2 需要回转半径: i x=l ox∕λ=1507∕70=21.5mm i y= l oy∕λ=1507×2∕70=43mm 根据需要的A、i x,查角钢型钢表,

结构设计之卡扣设计

扣位裝配法 (Snap Fastening) 扣位不但提供一種簡單及快捷的裝配模式,更是一種低成本而可靠性的緊接技術。 扣位的優點 扣位裝拆容易,充份發揮設計作裝配﹝Design for Assembly﹞的意念。由於扣位與產品同時成形,並且在裝配過程中無需配合額外的物料,如螺絲緊固件或接著劑,因此扣位是一種低成本的裝配方法。再者,扣位的裝配過程亦非常簡單,一般只需一 個插入的動作,無需作旋轉運動或裝配前產品定位的工作,快捷簡便。 扣位的缺點 扣位裝置經過多次裝入、拆除的動作後,因為疲勞效應,扣位底部連接產品的部份容易斷裂。斷裂後的扣位裝置難以修補。 這情況對使用脆性或充填塑料的零件特別容易發生。由於扣位作為產品零件的一部份,扣位的損壞亦即產品零件的損壞,唯一的補救方法就是更換零件。此外,扣位在產品設計方面,特別在公差上的控制較為嚴謹,公差不當容易產生裝配過鬆或過緊 的現象。 應用範圍 扣位的應用非常廣泛,環形的扣位常見於樽蓋、食物盒的頂蓋。長形的扣位則應用於皮袋或背囊的開關部份。U形的扣位亦普遍應用於電器用品、玩具的電池盒蓋等等,實在不勝不枚舉。

基本設計手則 扣位提供了一種不但方便快捷而且經濟的產品裝配方法,因為扣位的組合部份在生產成品的時候同時成型,裝配時無須配合 其他如螺絲、介子等緊鎖配件,只要需組合的兩邊扣位互相配合扣上即可。 扣位的設計雖可有多種幾何形狀,但其操作原理大致相同:當兩件零件扣上時,其中一件零件的勾形伸出部份被相接零件的 凸緣部份推開,直至凸緣部份完結為止;及後,藉著塑膠的彈性,勾形伸出部份即時復位,其後面的凹槽亦即時被相接零件 的凸緣部份嵌入,此倒扣位置立時形成互相扣著的狀態,請參考扣位的操作原理圖。 如以功能來區分,扣位的設計可分為成永久型和可拆卸型兩種。永久型扣位的設計方便裝上但不容易拆下,可拆卸型扣位的 設計則裝上、拆下均十分方便。其原理是可拆卸型扣位的勾形伸出部份附有適當的導入角及導出角方便扣上及分離的動作,導入角及導出角的大小直接影響扣上及分離時所需的力度,永久型的扣位則只有導入角而沒有導出角的設計,所以一經扣上,相接部份即形成自我鎖上的狀態,不容易拆下。請參考永久式及可拆卸式扣位的原理圖。 永久式及可拆卸式扣位的原理 若以扣位的形狀來區分,則大致上可分為環型扣、單邊扣、球形扣等等,其設計可參閱下圖。 扣位的設計一般是離不開懸樑式的方法,懸樑式的延伸就是環型扣或球型扣。所謂懸樑式,其實是利用塑膠本身的撓曲變形的特性,經過彈性回復返回原來的形狀。扣位的設計是需要計算出來,如裝配時之受力,和裝配後應力集中的漸變行為,是要 從塑料特性中考慮。常用的懸樑扣位是恆等切面的,若要懸樑變形大些可採用漸變切面,單邊厚度可漸減至原來的一半。其 變形量可比恆等切面的多百分之六十以上。 不同切面形式的懸樑扣位及其變形量之比較 扣位裝置的弱點是扣位的兩個組合部份:勾形伸出部份及凸緣部份經多次重覆使用後容易產生變形,甚至出現斷裂的現象, 斷裂後的扣位很難修補,這情況較常出現於脆性或摻入纖維的塑膠材料上。因為扣位與產品同時成型,所以扣位的損壞亦即 產品的損壞。補救的辦法是將扣位裝置設計成多個扣位同時共用,使整體的裝置不會因為個別扣位的損壞而不能運作,從而 增加其使用壽命。扣位裝置的另一弱點是扣位相關尺寸的公差要求十分嚴謹,倒扣位置過多容易形成扣位損壞;相反,倒扣 位置過少則裝配位置難於控制或組合部份出現過鬆的現象。

24m梯形钢屋架设计

高等教育自学考试 钢结构课程设计 号:130213100072 : 桀铭

1、设计资料 1)某厂房跨度为24m,总长90m,屋架间距6m, 2)屋架铰支于钢筋混凝土柱顶,上柱截面400×400,混凝土强度等级为C30。 3)屋面采用1.5×6m的预应力钢筋混凝土大型屋面板。(屋面板不考虑作为支撑用)。 4)该车间所属地区为市 5)采用梯形钢屋架 考虑静载:①1.5m*6m预应力钢筋混凝土大型屋面板(1.4KN/m2)、②二毡三油加绿豆沙、③20mm厚水泥砂浆找平层(0.4KN/m)④支撑重量考虑活载:活载(雪荷载)积灰荷载 6)钢材选用Q345B级钢,焊条为E43型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。屋面坡度 i=(3040-1990)/10500=1/10; 屋架计算跨度L0=24000-300=23700mm; 端部高度取H=1990mm,中部高度取H=3190mm(约1/7。4)。屋架几何尺寸如图1所示:

拱50 图1:24米跨屋架几何尺寸 3、支撑布置 由于房屋长度有90米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。(如图2所示) 上弦平面支撑布置

屋架和下弦平面支撑布置 垂直支撑布置 4、屋架节点荷载 屋面坡度较小,故对所有荷载均按水平投影面计算:

计算屋架时考虑下列三种荷载组合情况 1) 满载(全跨静荷载加全跨活荷载) 节点荷载 ①由可变荷载效应控制的组合计算:取永久荷载γ G=1.2,屋面活荷载γQ1= 1.4,屋面集灰荷载γQ2=1.4,ψ2=0.9,则节点荷载设计值为 F=(1.2×2.584+1.4×0.70+1.4×0.9×0.80)×1.5×6=45.7992kN ②由永久荷载效应控制的组合计算:取永久荷载γ G=1.35,屋面活荷载γQ1=1.4、ψ1=0.7,屋面集灰荷载γQ2=1.4,ψ2=0.9,则节点荷载设计值为 F=(1.35×2.584+1.4×0.7×0.70+1.4×0.9×0.80)×1.5×60=46.593 kN 2) 全跨静荷载和(左)半跨活荷 ①由可变荷载效应控制的组合计算:取永久荷载γ G=1.2,屋面活荷载γQ1= 1.4,屋面集灰荷载γQ2=1.4,ψ2=0.9

梯形钢屋架钢33米课程设计计算书

钢结构课程设计 -、设计资料 1、已知条件:梯形钢屋架跨度33m,长度120m,柱距6m。屋架铰接于混凝土柱上,屋面采用单层彩色钢板波形瓦,屋面坡度i=1/10。屋面活荷载标准值为0.7 kN/m2,屋架铰支在钢筋混凝土柱上,上柱截面为400 mm×400 mm,混凝土标号为C20。钢材采用Q345B级,焊条采用E50型。 2、屋架计算跨度: Lo=33-2×0.15=32.7m, 3、跨中及端部高度: 端部高度:h`=1900mm(轴线处),h=1915mm(计算跨度处)。 屋架的中间高度h=3400mm,屋架跨中起拱按Lo/500考虑,取60mm。 二、结构形式与布置 图1 屋架形式及几何尺寸

符号说明:GWJ-(钢屋架);SC-(上弦支撑):XC-(下弦支撑); CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆) 图2 屋架支撑布置图 三、荷载与内力计算 1.荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值 钢屋架和支撑自重0.12+0.011×30=0.45kN/㎡单层彩色钢板波形瓦0.12kN/㎡ 总计0.57kN/㎡` 可变荷载标准值 屋面活荷载0.70 kN/㎡ 总计0.7kN/㎡ 永久荷载设计值 1.2×0.57=0.684kN/㎡ 可变荷载设计值 1.4×0.7=0.98kN/㎡ 2.荷载组合 设计屋架时,应考虑以下三种组合: 全跨永久荷载+全跨可变荷载 全跨节点永久荷载及可变荷载:F=(0.684+0.98) ×1.5×6=14.97kN ②全跨永久荷载+半跨可变荷载 全跨节点永久荷载:F1=0.684×1.5×6=6.156kN 半跨节点可变荷载:F2=0.98×1.5×6=8.82 kN

课程设计24米屋架钢结构

钢结构课程设计——24m跨钢屋架设计计算书 目录 设计资料 (2) 结构形式与布置 (3) 荷载计算 (5) 内力计算 (6) 杆件设计 (8) 节点设计 (12) 附件 pf程序数据 (18)

钢结构课程设计——24m跨钢屋架设计计算书 一、设计资料: 1.某单层单跨工业厂房,跨度24m,长度102m。 2.厂房柱距6m,钢筋混凝土柱,混凝土强度C20,上柱截面尺寸400x400mm, 钢屋架支承在柱顶。 3.吊车一台50T,一台20T,中级工作制桥式吊车(软钩),吊车平台标高12.000m。 4.荷载标准值 (1)永久荷载 三毡四油(上铺绿豆沙)防水层 0.4KN/m2 水泥砂浆找平层 0.3 KN/m2 保温层 0.6 KN/m2 一毡二油隔气层 0.05 KN/m2 预应力混凝土大型屋面板 1.4 KN/m2 屋架(包括支撑)自重 0.12+0.011L=0.384 KN/m2 (2)可变荷载 屋面活载标准值 0.7 KN/m2 雪荷载标准值 0.35 KN/m2 积灰荷载标准值 0.3 KN/m2 5.屋架结构形式、计算跨度及几何尺寸见图1(屋面坡度为1:10)。 图1 梯形屋架示意图(单位: mm) 6.钢材选用Q235钢,角钢,钢板各种规格齐全,有各种类型的焊条和C级螺栓可供选用。 7.钢屋架的制造、运输和安装条件:在金属结构厂制造,运往工地安装,最大运输长度16m,运输高度3.85m,工地有足够的起重安装设备。

二、结构形式与布置 (1)屋架形式及几何尺寸如图2所示。 图2 屋架形式及几何尺寸(单位mm) (2)屋架支撑的种类有横向支撑、纵向支撑、垂直支撑和系杆。 横向支撑:根据其位于屋架上弦平面或者下弦平面,又可分为上弦横向支撑和下弦横向支撑,上弦平面横向支撑对保证上弦杆的侧向稳定性有着重要作用。设计人无数种屋架跨度为24m,室内有悬挂吊车,因此上弦与下弦都需在第一个柱间设置横向支撑,又因为长度为102m,所以应该在跨中增设一道横向支撑,保证横向支撑之间小于60m。 纵向支撑:设于屋架的上弦与下弦平面,布置在沿柱列的各屋架端部节间部位,它可以与横向支撑一起形成水平刚性盘,增加房屋的整体刚度,减轻受荷较大的框架所受水平荷载和产生的水平变形对于梯形屋架,纵向支撑设在屋架的下弦的平面。 垂直支撑:位于两屋架端部或跨间某处的竖向平面或者斜向平面内,它可以保证屋架侧向整体稳定性,传递纵向所受纵向荷载,对于梯形屋架跨度小于30m,因此只需在屋架两端和跨度中点设置垂直支撑。 系杆:在屋架上弦平面,屋架跨中和两端各布置一道通长的刚性系杆,其他结点设通长的柔性系杆;下弦平面,仅在跨中和两端布置通长的柔性系杆。 具体支撑形式如图3:

卡扣结构设计

卡扣结构设计 卡接是射出零件常用的安装方法。这种方式在很多年以前就已经开始使用了,出于安装简便和成本上的考虑,现在他们变得越来越重要了。卡接的优势在于避免了螺纹连接,夹紧,粘贴等其他的连接方法。这些卡接结构是采用模具成型的,不需要额外把他们连接起来。另外,如果设计得当,还可以达到重复安装和拆卸而不损伤零件。卡接结构可以设计成一次性的和多次使用的。一次性的卡接是指零件安装以后不需要再拆下来。多次使用的卡接结构则多用在需要便于拆卸的场合。 卡接结构的设计需要考虑很多问题。设计一个卡接的结构需要考虑的远比设计螺纹连接要多。卡接结构所需要的模具也比较复杂和昂贵。一般说来,在装配时节省的资金要比制作工艺上增加的成本多。 通常有三种主要的卡接结构:环形,悬臂,扭转 1.环形卡接 图一,有时钢笔会用到这种环形卡接结构来固定笔帽 图二,瓶盖也会采用环形卡接结构 图三,球和球座也是一种环形卡接结构 上面这三种都是采用环形卡接结构的例子。由于这些零件在装配时整个圆周都有很大的应力,所以,只有那些在屈服点有很大延展性的材料才能应用。关于计算最大变形量的问题请参见下一章的计算公式。(计算公式的一章,需要时间翻译----笔者)。 2.悬臂卡接结构

悬臂卡接是应用最广的卡接结构。有相当多的计算公式和 工程经验确保我们能设计出一个出色的卡接机构。这一小节介绍不同的设计方法。关于悬臂卡接具体尺寸的计算可以参看下一章。 图四展示了为了拆卸而设计的四种不同的设计方法。图四a 是采用90°的挂钩和90°的凹槽连接。这种结构无法拆卸。图四b是在挂钩和凹槽的部分都设计了一定的角度,便于安装和拆卸。这个上盖取下和扣上的力是相同的。图四c和图四a一样有90°的直角,不同的是设计者加了一个“窗户”在下面的零件上。这样就可以方便的进行拆卸了。图四d采用了“U”字形的结构来使上盖可以自由变形而方便拆卸。 图四c中有一个潜在的问题就是这个卡接结构有可能被推的很远;没有止推的结构。如果这个结构被推的过大而断裂了就再也无法修复了。所以设计者通常会考虑设计一个止推的结构来防止悬臂超过应力。图四d的设计就有这样的停止(止推)结构(仅仅是考虑采用推力)。 图五展示了悬臂卡接的机械原理,是如何通过采用倾斜的表面结构来达到便于安装和拆卸的目的的。 U形的悬臂卡接结构通常用在像电池盒和盖子中。图六表示了这种结构是如何工作的。采用这种结构,塑料不会有太大的应力,所以,这样的塑料有多次的弯曲是可能的。而且,它有一个止推结构,这样就不会由于变形太大而破裂。

梯形钢屋架课程设计---简支梯形钢屋架设计

北京建筑工程学院 土木与交通工程学院 《钢结构》课程设计任务书 班级 姓名 学号 日期 指导教师 2012年6月

梯形钢屋架课程设计任务书 一、设计题目 简支梯形钢屋架设计 二、设计资料 工程名称:某机加工车间 1 结构平面布置 某地区单层单跨工业厂房机加工车间,屋架跨度及厂房长度见附表,柱距6m,屋架下弦标高16.5m。 2 排架结构体系 钢筋混凝土柱(混凝土强度等级为C20,上柱截面400×400); 钢屋架铰支于柱上; 1.5×6.0m预应力钢筋混凝土大型屋面板; 屋面坡度10 i。 = /1 3 车间内设有中级工作制、起重量≤300KN的吊车,计算温度高于-200C。 4 材料 钢屋架选用Q235-B·F钢,焊条为E43型。 5 荷载(标准值)(屋面构造层做法也可自定) 二毡三油上铺小石子 0.35 KN/m2 (硫化型橡胶油毡,PVC建筑防水塑料油膏) 砂浆找平层(厚20mm) 0.40 KN/m2 泡沫混凝土保温层(厚80mm) 0.48 KN/m2 预应力钢筋混凝土大型屋面板1.4 KN/m2 (包括灌缝) 屋架及支撑自重( 0.12+0.011l) KN/m2 悬挂管道(奇数) 0.15 KN/m2 吊顶(奇数) 0.55 KN/m2 活荷载或施工荷载:见附表 屋面积灰荷载:见附表 雪荷载: 0.40 KN/m2 6、钢屋架形式示意图(未表示起拱) 图1 钢屋架形式示意图 三、设计任务 要求设计钢屋架并绘制施工图。掌握钢屋架荷载的计算;掌握杆件内力的计算和组合,杆件的计算长度,截面型式,截面选择及构造要求,填板的设置及节点板的厚度;掌握普通钢屋架节点设计的原则和要求,主要节点的设计及计算和构造;掌握钢屋架施工图的内容和

相关主题
文本预览
相关文档 最新文档