当前位置:文档之家› 数学建模培训——最优化方法练习题

数学建模培训——最优化方法练习题

数学建模培训——最优化方法练习题
数学建模培训——最优化方法练习题

练习

1、求解下列线性规划问题。 (1)

()131********max 43112

.222333

3

24

36400,1,2,3,4

i f x x x s t

x x x x x x x x x x i =--++-=+=-+=≥= (2)

()123123123max 23.2222320,1,2

i f x x x x s t

x x x x x x x i =---+≤-+-≤-≥=

(3)

()1231212312max 564.22553415100,1,2,3

i f x x x x s t

x x x x x x x x i =+++≤++≤+≤≥=

(4)

12312312312123min 33..

25231612,,0

x x x s t x x x x x x x x x x x -++-+≤-+≤+≤≥ (5)

1212312412515max 2..

506221,,0

x x s t x x x x x x x x x x x +++=-++=++=≥ (6)

()

123412341234max 30354045..

34647043658001,2,3,4i x x x x s t x x x x x x x x x i ++++++≤+++≤≥=

2、建立线性规划模型,求解下列问题。

(1)某工厂生产甲、乙两种产品。已知生产甲种产品t 1需耗A 种矿石t 10、B 种矿石t 5、煤t 4;生产乙种产品t 1需耗A 种矿石t 4、B 种矿石t 4、煤t 9。每t 1甲种产品的利润是600元,每t 1乙种产品的利润是1000元。工厂在生产这两种产品的计划中要求消耗A 种矿石不超过t 300、B 种矿石不超过t 200、煤不超过t 360。甲、乙两种产品应各生产多少,能使利润总额达到最大?

(2)设有A 1,A 2两个香蕉基地,产量分别为60吨和80吨,联合供应B 1,B 2,B 3三个销地的销售量经预测分别为50吨、50吨和40吨。两个产地到三个销地的单位运价如下表所示:

表1(单位运费:元/

吨)

问每个产地向每个销地各发货多少,才能使总的运费最少?

(3)某工厂用甲,乙两种原料生产A,B,C,D 四种产品,每种产品的利润、现有原料数量及每种产品消耗原料定额如下表:

问题:怎样组织生产才能使总利润最大? 3、一维非线性优化问题

(1)求函数()()()6

30sin tan 1x

x x x e ?=-在[]0,1内的极大值

(2)求函数()t

t

t e e ψ-=+在[]1,1-内的极小值

(3)求函数()()

()

2

2

1

1

60.30.01

0.90.04

f x x x =+

--+-+在1处的零点及在()

0.5,1.5-内的最大值;

4、无约束非线性优化问题

(1)()()()()4

2

2

2

121122min ,221f x x x x x x =-+-++, ()01,1T

x =

(2)()(

)

2

2

2121

min 12x x x -+-, ()00,0T

x =

(3)()()()()2

4

4

2

12342314min (10)5210f x x x x x x x x x =++-+-+-

()03,1,0,1T

x =-

(4)求函数 ()(

)()2

22211

1001g x x x x =-+-在()1,1点附近的最小值。

5、约束非线性优化问题 (1)

()123

123min ..02372

f x x x x s t x x x =-≤++≤ ()010,10,10T

x =

(2)

()()

1221212212min 42421..0

x f x e x x x x x s t x x =++++≥≥

(3)

()()

12212122121212max 42421.. 1.50

10

x f x e x x x x x s t x x x x x x =+++++--≤-≤

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

运筹学与最优化方法习题集

一.单纯性法 1.用单纯形法求解下列线性规划问题(共 15 分) 12 2121212max 2515 6224..5 ,0 z x x x x x s t x x x x =+≤??+≤??+≤??≥? 2.用单纯形法求解下列线性规划问题(共 15 分) 12 121212max 2322 ..2210 ,0 z x x x x s t x x x x =+-≥-??+≤??≥? 3.用单纯形法求解下列线性规划问题(共 15 分) 1234 123412341234max 24564282 ..2341 ,,,z x x x x x x x x s t x x x x x x x x =-+-+-+≤? ?-+++≤??≥ ? 4.用单纯形法求解下列线性规划问题(共 15 分) 123 123123123123max 2360 210..20 ,,0 z x x x x x x x x x s t x x x x x x =-+++≤??-+≤??+-≤??≥? 5.用单纯形法求解下列线性规划问题(共 15 分) 123 12312123max 224 ..26,,0 z x x x x x x s t x x x x x =-++++≤??+≤??≥? 6.用单纯形法求解下列线性规划问题(共 15 分)

12 121212 max 105349..528 ,0z x x x x s t x x x x =++≤??+≤??≥? 7.用单纯形法求解下列线性规划问题(共 16 分) 12 121212max 254 212..3218 ,0 z x x x x s t x x x x =+≤??≤??+≤??≥?

附录:全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling,简称CUMCM)是由国家教育部高等教育司和中国工业与应用数学学会联合举办的,在全国高校中规模最大的课外科技活动之一. 其竞赛宗旨是:创新意识、团队精神、重在参与、公平竞争. 本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加).同学们可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系. 全国大学生数学建模竞赛章程(2008年)第一条总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革. 第二条竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程.题目有较大的灵活性供参赛者发挥其创造能力.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准. 第三条竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行. 2.竞赛每年举办一次,一般在某个周末前后的三天内举行. 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限.竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加.每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理. 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

全国数学建模竞赛B题CUMCMB

2 0 1 3 高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B 题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接 复原模型和算法,并针对附件1、附件 2 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件 5 给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件 5 的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1) 每一附件为同一页纸的碎片数据。 (2) 附件1、附件2为纵切碎片数据,每页纸被切为19 条碎片。 (3) 附件3、附件4为纵横切碎片数据,每页纸被切为11X19个碎片。 (4) 附件5为纵横切碎片数据,每页纸被切为11 X 19个碎片,每个碎片有正反两面。该附件中 每一碎片对应两个文件,共有2X 11X 19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1) 附件1、附件2的结果:将碎片序号按复原后顺序填入1X 19的表格; (2) 附件3、附件4的结果:将碎片序号按复原后顺序填入11X 19的表格; (3) 附件5的结果:将碎片序号按复原后顺序填入两个11X 19的表格;

运筹学课程设计-个人学习时间优化分配

个人学习时间优化分配 设计总说明(摘要) 合理的安排时间方案,采取最优化的时间组合,有利于我们充分发挥各个时间阶段的学习效益。同时可以使我们的学习符合日常行为及自身特点,不仅使时间得到有效安排,也使得我们的身心得到和谐。此次,研究分配一天中四个阶段四门课程的学习时间,就是根据学生的身心特点,和各阶段对各课程学习的收获程度,采取获得程度量化的方法,设计出一个最优的时间组合方案,从而获得最大的收获效益。即获得学习的最大价值。 在这个过程中要将运筹学的各种理论知识与具体实际情况相结合。首先是确 定所要研究的问题,考虑所需要的各种数据,根据实际需求确定所需要的数据和模拟量化的数据。将数据整理形成分析和解决问题的具体模型。其次对已得模型利用计算机进行求解,得出方程的最优解。最后结合所研究问题的实际背景,对模型的解进行评价、分析以及调整,并对解的实施与控制提出合理化的建议。 关键词:时间优化,线性规化,最优解,获得效益最大 目录 1.绪论 1.1研究的背景 (3) 1.2研究的主要内容与目的 (3) 1.3研究的意义 (3) 1.4研究的主要方法与思路 (3) 2.理论方法的选择 2.1所研究的问题的特点 (4) 2.2拟采用的运筹学理论方法的特点 (4) 2.3理论方法的适用性及有效性论证 (5) 3.模型的建立 3.1 基础数据的确定 (5) 3.2变量的设定 (6) 3.3目标函数的建立 (6) 3.4限制条件的确定 (6) 3.5模型的建立 (7) 4.模型的求解及解的分析 4.1模型的求解 (7) 4.2解的分析与评价 (9) 5.结论与建议 5.1研究结论 (11)

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

_高教社杯_数学建模竞赛题分析与参赛培训_曾庆茂

教育现代化·2015年11月(下半月)233 职 业技术教育 DOI :10.16541/https://www.doczj.com/doc/b35396102.html,ki.2095-8420.2015.15.自1992年举办第一届全国大学生数学建模竞 赛(China Undergraduate Mathematical Contest in Modeling ,缩写为CUMCM )以来,以“高教社杯”冠名的CUMCM 逐渐成为我据报道,2014年,参加该赛事的院校达1338所之多,参赛队达25347个(其中本科组22233个、专科组3114个),参赛人数达7万多[1,2]。 本文在分析近10年(2005年~2014年)“高教社杯”数学建模竞赛(本科组)赛题的基础上,结合作者所在学校对学生进行参赛培训的具体做法,从数学建模教师团队的建设、数学建模课程建设与教学内容的设置以及数学建模竞赛模拟等三方面探讨指导老师应该如何进行参赛培训的相关问题。 一、历届竞赛题浏览 2005年:(A )长江水质的评价和预测;(B )DVD 在线租赁; 2006年:(A )出版社的资源配置;(B )艾滋病疗法的评价及疗效的预测; 2007年:(A )中国人口增长预测;(B )乘公交,看奥运; 2008年:(A )数码相机定位;(B )高等教育学费标准探讨; 2009年:(A )制动器试验台的控制方法分析;(B )眼科病床的合理安排; 2010年:(A )储油罐的变位识别与罐容表标定;(B )2010年上海世博会影响力的定量评估; 2011年:(A )城市表层土壤重金属污染分析;(B )交巡警服务平台的设置与调度; “高教社杯”数学建模竞赛题分析与参赛培训 曾庆茂,魏福义 (华南农业大学数学与信息学院应用数学系,广东广州,510642) 摘 要:“高教社杯”冠名赞助的全国大学生数学建模竞赛是我国高校最具影响力的学科竞赛之一。数学建模竞赛不但有利于培养学生的创新能力,而且有利于培养学生的团队合作精神。本文在分析2005-2014年本科组赛题的基础上,将数学建模竞赛试题分为优化类、评价类、预测类和其他类等四大类型。基于这种分类,结合作者所在学校对学生进行参赛培训的具体做法,从数学建模教师团队的建设、数学建模课程建设与教学内容的设置以及数学建模竞赛模拟等三方面探讨了指导教师在对学生进行参赛培训时应注意的相关问题。 2012年:(A )葡萄酒的评价;(B )太阳能小屋的设计; 2013年:(A )车道被占用对城市道路通行能力的影响;(B )碎纸片的拼接复原; 2014年:(A )嫦娥三号软着陆轨道设计与控制策略;(B )创意平板折叠桌。 二、历届竞赛题分析 根据解决问题所需建立模型的目的,近10年的CUMCM 赛题最常见的有三大类,即优化类,评价类和预测类。此外,近年的还出现了一些直接来源于工程技术、工业设计和数学之外的其他学科为背景的赛题,我们将其归为“其他类”。近10年的二十道赛题具体分类如表1所示。 由表1不难统计得到,近10年的二十道竞赛题中,“优化类”赛题所占比例为;“评价类”赛题占;“预测类”赛题占;“其他类”占。 “优化类”作为一大类,解决问题的实际方法又各不相同。例如,图论方法;排队论;规划方法(包括整数规划、线性规划、非线性规划、动态规划和多目标规划等[3,4]);网络优化方法和仿真计算方法等。 对于“评价类”问题,也有不同的解决方法。例如,模糊综合评价方法、统计假设检验方法和层次分析法等。 对于“预测类”问题,采用的方法可以是曲线拟合法、回归分析法、微分方程法、差分方程法、神经网络方法、灰色预测法和时间序列方法等。 基金项目: 本文系“2014年广东省研究生示范课程建设项目”(项目编号:2014SFKC05);“2014年度华南农业大学教育教学改革与研究 项目”(项目编号:JG14043)的研究成果。 作者简介: 曾庆茂(1973-),男,江西赣州人,华南农业大学数学与信息学院讲师,硕士,研究方向:应用数学和数学建模.(广东广 州 510642) 083

运筹学与最优化方法线性规划案例分析报告

案例:连续投资的优化问题 一、题目: 某企业在今后五年内考虑对下列项目投资,已知:,从第一年到第四年每年年初需要投资,并于次年末收回本利115%。项目A,但规定最大投资额不超B,第三年年初需要投资,到第五年末能收回本利125%项目40万元。过,但规定最大投资额不超,第二年年初需要投资,到第五年末能收回本利140%项目C 30万元。过6%。项目D,五年内每年年初可购买公债,于当年末归还,并加利息问它应如何确定给这些项目的每年投100万元,该企业5年内可用于投资的资金总额为资使得到第五年末获得的投资本利总额为最大? 二、建立上述问题的数学模型的投资额,它们都是待定的年初给项目A,B,C,D, X (i=1.2.3.4.5)为第i设X,X , X iDiB1AiC每年年初均可投资,年末收回本利,固每年的投资额应该等于手中拥未知量。由于项目D 有的资金额。建立该问题的线性规划模型如下: +1.06X+1.40X+1.25XMax Z=1.15X5D 2C4A3B X+X=1000000 (1) 1D1A X+X+X=1.06X (2) 1D2C2A2D X+X+X=1.15X+1.06X (3) 3A 3B 3D 1A 2D s.t. X+X=1.15X+1.06X(4) 3D 4A 4D 2A X=1.15X+1.06X (5)5D 3A4D X<=400000 (6) 3B X<=300000 (7) 2C X , X , X, X>=0 i=1,2,3,4,5 iD1AiCiB 经过整理后如下: Max Z=1.15X+1.40X+1.25X+1.06X5D 2C4A3B X+X=1000000 1D1A-1.06X+ X+X+X =0 2D2A2C1D-1.15X-1.06X+ X+X+X=0 3D3A1A3B2D s.t. -1.15X-1.06X +X+X=0 4D3D4A2A-1.15X-1.06X+ X=0 5D4D3A X<=400000 3B X<=300000 2C i=1,2,3,4,5 , X , X, X>=0 X iDiBiC1A 求解过程以及相应的结果三、Excel中进行布局并输入相应的公式)在Excel1 (

数学建模比赛需要什么软件及其介绍

数学建模比赛必备 1matlab(矩阵实验室) 2 lingo和lingo(线性规划) 3 SPSS<统计) 其中MATLAB是最重要的也是最常用的 4还有就是最好学好c语言这个软件和有很多的相似之处 其中统计软件:SPSS,SAS,STATA。 解决运筹学的模型:lingo 5 PS:SAS很强大的,如果没有接触过还是不要学的好。其实SPSS解决一下就可以了,只是SAS画出来的图很好看。 6另外还有时间可以看看另两个软件SMARTDRAW LATELX

什么是数学建模 数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。 3、竞赛的内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 4、竞赛的步骤 建模是一种十分复杂的创造性劳动,现实世界中的事物形形色色,五花八门,不可能用一些条条框框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则: 1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息. 2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。为数学问题,注意要尽量采用简单的数学工具。

大学生数学建模竞赛简介

大学生数学建模竞赛简介 1、数模竞赛的起源与历史 数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意识、团队精神、重在参与、公平竞争。1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。 2、什么是数学建模 数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。 3、竞赛的内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 4、竞赛的步骤 建模是一种十分复杂的创造性劳动,现实世界中的事物形形色色,五花八门,不可能用一些条条框框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则: 1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息. 2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。为数学问题,注意要尽量采用简单的数学工具。

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

数学建模每年比赛介绍

苏北数学建模联赛 全国大学生数学建模竞赛、数学中国数学建模网络挑战赛、美国大学生数学建模竞赛、数学建模国际赛等,地区赛有华中赛、华东赛、东北赛、苏杯赛等。最近的比赛是2013年第六届数学中国数学建模网络挑战赛 https://www.doczj.com/doc/b35396102.html,/bz.html

https://www.doczj.com/doc/b35396102.html,/ 比赛时间:5月1日—5月4日 苏北数学建模联赛是由江苏省工业与应用数学学会、中国矿业大学、徐州市工业与应用数学学会联合主办,中国矿业大学理学院协办及数学建模协会筹办的面向苏北及全国其他地区的跨校、跨地区性数学建模竞赛,目的在于更好地促进数学建模事业的发展,扩大中国矿业大学在数学建模方面的影响力;同时,给全国广大数学建模爱好者提供锻炼的平台和更多的参赛机会,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识。 联赛由中国矿业大学数学建模协会组织,苏北数学建模联赛组织委员会负责每年发动报名、拟定赛题、组织优秀答卷的复审和评奖、印制获奖证书、举办颁奖仪式等。竞赛分学校组织进行,每个学校的参赛地点自行安排,没有院校统一组织的参赛队可

以向苏北数学建模联赛组委会报名参赛。每个参赛队由三名具有正式学籍的在校大学生(本科或专科)组成,参赛队从A、B、C 题中任选一题完成论文,本科组和专科组分开评阅。竞赛按照全国大学生数学建模竞赛的程序进行,报名时间为每年4月1日—4月29日(直接由学校统一报名),竞赛时间为5月1日—5月4日,网址:https://www.doczj.com/doc/b35396102.html,, 苏北数学建模联赛组委会聘请专家组成评阅委员会,评选一等奖占报名人数的5%、二等奖15%、三等奖25%,如果有突出的论文将评为竞赛特等奖,凡成功提交论文的参赛队均获成功参赛奖。对于获奖队伍将给予一定的奖品奖励并颁发获奖证书。 全国大学生数学建模大赛 比赛时间:9月的第三个星期五上午8时至下一个星期一上午8时 “全国大学生数学建模大赛”全称为“高教社杯全国大学生数学建模竞赛” 全国大学生数学建模大赛竞赛每年举办一次,每年的竞赛时间为9月的第三个星期五上午8时至下一个星期一上午8时。 报名时间:从大赛的通知文稿发出后,就可以报名了,报名截止时间一般在开始比赛的前7-10天。 大学生以队为单位参赛,每队3人(须属于同一所学校),专业不

数学建模案例之多变量最优化

数学建模案例之多变量最 优化

数学建模案例之 多变量无约束最优化 问题1[1]:一家彩电制造商计划推出两种产品:一种19英寸立体声彩色电视机,制造商建议零售价(MSRP)为339美元。另一种21英寸立体声彩色电视机,零售价399美元。公司付出的成本为19英寸彩电195美元/台,21英寸彩电225美元/台,还要加上400000美元的固定成本。在竞争的销售市场中,每年售出的彩电数量会影响彩电的平均售价。据估计,对每种类型的彩电,每多售出一台,平均销售价格会下降1美分。而且19英寸彩电的销售量会影响21英寸彩电的销售量,反之也是如此。据估计,每售出一台21英寸彩电,19英寸的彩电平均售价会下降0.3美分,而每售出一台19英寸的彩电,21英寸彩电的平均售价会下降0.4美分。问题是:每种彩电应该各生产多少台? 清晰问题:问每种彩电应该各生产多少台,使得利润最大化? 1.问题分析、假设与符号说明 这里涉及较多的变量: s:19英寸彩电的售出数量(台); t:21英寸彩电的售出数量(台); p:19英寸彩电的售出价格(美元/台); q:21英寸彩电的售出价格(美元/台); C:生产彩电的成本(美元); R:彩电销售的收入(美元); P:彩电销售的利润(美元)

两种彩电的初始定价分别为:339美元和399美元,成本分别为:195美元和225美元;每种彩电每多销售一台,平均售价下降系数a=0.01美元(称为价格弹性系数);两种彩电之间的销售相互影响系数分别为0.04美元和0.03美元;固定成本400000美元。 变量之间的相互关系确定: 假设1:对每种类型的彩电,每多售出一台,平均销售价格会下降1美分。 假设2:据估计,每售出一台21英寸彩电,19英寸的彩电平均售价会下降0.3美分,而每售出一台19英寸的彩电,21英寸彩电的平均售价会下降0.4美分。 因此,19英寸彩电的销售价格为: p=339-a×s-0.03×t,此处a=0.01 21英寸彩电的销售价格为: q=399-0.01×t-0.04×s 因此,总的销售收入为: R=p×s+q×t 生产成本为: C=400000+195×s+225×t 净利润为: P=R-C 因此,原问题转化为求s≥0和t≥0,使得P取得最大值。 2.建立数学模型 根据前面的分析,原问题的数学模型如下:

全国数学建模大赛简介2020年最新

一、什么是数学建模? 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。 自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 二、数学建模的几个过程 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 模型分析:对所得的结果进行数学上的分析。 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

相关主题
文本预览
相关文档 最新文档