当前位置:文档之家› 4 附件E:输电线路线路工频参数测试报告模板(工频法)带附件

4 附件E:输电线路线路工频参数测试报告模板(工频法)带附件

4 附件E:输电线路线路工频参数测试报告模板(工频法)带附件
4 附件E:输电线路线路工频参数测试报告模板(工频法)带附件

------------测试基本信息------------

备注:Ug为对侧A,B,C三相短路接地,本侧三相短路,测量点对地的干扰电压

无特别说明,报告中“(*)”表示根据不同测量方法和各单位运行要求的选填项,没有“(*)”都是必填项。

第1页

------------正序阻抗------------

测试数据

参数测试结果

备注:采用常规伏安表法进行测量,报告中必须给出各相或相间电压、电流、各相或相间功率值测量值;采用同步向量法测量,报告必须给出电压、电流测量值、相角及测试源频率,正序阻抗和零序阻抗测量时需同时提供电压的波动情况。

第2页

------------零序阻抗------------

测试数据

参数测试结果

备注:采用常规伏安表法进行测量,报告中必须给出正反极性加入的电压、电流、功率值测量值及相角;采用同步向量法测量,报告必须给出电压、电流测量值、相角及测试源频率,正序阻抗和零序阻抗测量时需同时提供电压的波动情况。

第3页

------------正序电容------------

测试数据

参数测试结果

备注:采用常规伏安表法进行测量,报告中必须给出各相或相间电压、电流测量值;采用同步向量法测量,报告必须给出电压、电流测量值、相角及测试源频率,正序阻抗和零序阻抗测量时需同时提供电压的波动情况。

第4页

------------零序电容------------

测试数据

参数测试结果

备注:采用常规伏安表法进行测量,报告中必须给出电压、电流测量值;采用同步向量法测量,报告必须给出电压、电流测量值、相角及测试源频率,正序阻抗和零序阻抗测量时需同时提供电压的波动情况。

第5页

------------线间互阻抗------------

测试数据

参数测试结果

备注:采用常规伏安表法进行测量,报告中必须给出相邻线路零序感应电压、本线电流测量值;采用同步向量法测量,报告必须给出相邻线路零序感应电压、本线电流测量值相角及系统频率。采用测量相邻线零序感应电压除以本线测量电流得出零序互感时,应注意检查是否有漏乘以3的情况出现,运行单位在数据报送时应对此重点校核。

------------附件-----------

备注:要求提供测试仪器的测试原理接线图及测试计算公式作为附件。

第6页

第7页

附件:测试原理接线图及测试计算公式(以ZH-M601线路参数测试仪为例) 一.正序阻抗

1. 测试原理接线图

2.测试计算公式

1

21

2121212121ca ca ca ca bc bc bc bc ab ab ab ab I I U U I I U U I I U U Z --=

--=--=

二、零序阻抗

1. 测试原理接线图

2.测试计算公式

)/()(31

2120I I U U Z --=

三、正序电容

1. 测试原理接线图

第8页

2.测试计算公式

)

(2)(1121

2c c c c U U f I I C --=

π

三、零序电容

1. 测试原理接线图

2.测试计算公式

)(6)(1

21

20a a a a U U f I I C --=

π

三、线间互阻抗 1. 测试原理接线图

2.测试计算公式

)

(2)(3121

2I I f U U M --=

π 备注:公式中的1和2代表两次测量得出结果。

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

线路参数测试方法

SM501测试线路参数的方法高感应电压下用邓克炎邓辉湖南省送变电建设公司调试所 引言0, ,不能用仪器直接测试超高压输电线路工频参数测试时,经常遇到感应电压很高的情况否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 SM501的介绍:1 线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,SM501同步交流采样及数字信号处理技使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D 术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 SM501的主要功能与特点:1.1 可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电(1)冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。(2)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电(3) 流互感器。可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保(4) 持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。主要技术指标;1.2 0.5级级,功率(1)基本测量精度:电流、电压、阻抗0.2:AC 0-50A :AC 0-450V 电流测量范围(2)电压测量范围为什么要对输电线路进行参数测试:2输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保SM501。定市超人电子有限公司研制了一种比较智能的参数测试仪那就是几种典型的参数测试:3: 输电线路正序阻抗的测试3.1 接法测量。1将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图接法测量。2当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器, 按图在仪器测试项目菜单中应选择“正序阻抗”。 IUA a A I UB B b

线路参数测试作业指导书

交流输电线路工频电气参数测量作业指导书 批准: 审核: 编制: 深圳市鹏能投资控股有限公司试验分公司

1.试验项目 测试要求 新建和改建的单回交流输电线路,在运行前应进行线路单位长度电阻、电感、电容等工频电气参数的测量; 新建和改建的同塔双回输电线路,在运行前应进行双回线路之间的工频单位长度的耦合电感、耦合电容测量。 线路电气参数测试前的试验项目 (a)感应电压; (b)感应电流; (c)绝缘电阻; (d)核对相别。 线路电气参数测量项目 (a)直流电阻 (b)直流电阻测量 (c)正序阻抗测量 (d)零序阻抗测量 (e)正序电容测量 (f)零序电容测量 (g)双回线路之间的工频单位长度的耦合电感和耦合电容测量(无特殊要求不用测试, 详细测试方法见附表1)。 架空线和电缆混合线路参数的测量 当一条输电线路由架空线路和电缆线路串联构成时,可测量混合线路的电气参数,必要时分别测量架空线段和电缆线段的电气参数。 测量用电源的频率选取 待测线路不存在工频感应电压和感应电流的条件下,可直接选用工频电源进行测量。 待测线路存在工频感应电压和感应电流的条件下,为保证参数测量结果的准确度,宜采

用异频法进行测量。一般情况下,选取f -f S ?和f f S ?+两个频率点进行测量。 f ?通常可取 Hz ,5 Hz , Hz ,10 Hz 。 2.适用范围 交接试验是能及时有效地发现电力设备因运输、安装等方面的问题造成的缺陷、防范电力设备事故、保证电力系统安全运行的有效手段,是保证电力设备安全投产工作中必不可少的一个重要环节。为了强化一次设备交接试验工作,规范交接试验现场作业,四川通源电力科技有限公司组织编制交接试验标准化作业指导书。作业指导书的编写参照国家标准、企业标准的技术规范、规定。 本作业指导书适用于110kV~500kV 电压等级新安装的、按照国家相关出厂试验标准试验合格的电气设备交接试验,本标准不适用于安装在煤矿井下或其他有爆炸危险场所的电气设备。 3.编写依据 表3-1 编 写 依 据

变频电机与工频电机的区别及电机扭矩计算公式

变频电机与工频电机有什么区别 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题

线路参数测试方案

. .. . 220KV茅申I线、茅申II线线路 参数测试案 编制: 审核: 批准: 年月日

线路参数测试案 I 试验前的准备: 1、先组织参加试验人员学习该线路测量三措案 2、由工作负责人向全体试验人员交待整个工作容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理可开工手续。 II 试验项目和步骤: 以下试验项目,每执行一项,即在序号左打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定: 1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品)

4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用通知对,线路已接地,请对做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I 线时,将茅申II线三相短路接地。 6、得到对回答:引线已拆除,人员已离开。 7、通知对:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用回答对。 8、接到对回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用通知对(申城变侧,以下同):线路已接地,将对侧线路三相用专用线夹短路并接地。 3、得到对回答:“三相已短接完毕,可以试验”。 4、通知对:“试验开始,将引下线分别接至电桥进行三相电阻测

YTLP输电线路工频参数测试系统简介

YTLP输电线路工频参数测试系统简介 1 功能 快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以进行线路间互感和耦合电容测量。 2 特点: 2.1 一体化设计,体积小、重量轻。接线简单,各种参数的测试,测试端的接线倒换全部在内部自动完成,接一次线,完成所有测试,极大地提高了现场测试工作效率,如果对端操作配合熟练,一般完成一回线路试验的时间为20分钟。测试过程不需要换线,可以保证测试人员和仪器设备的安全。 2.2 抗干扰能力强(具有抑制干扰影响的能力),抗干扰的原理是将现场的干扰电压泄放,抑制比可以达到最大200,将干扰电流减小,最大可以减小15倍。 2.3 测试频率选择47.5Hz和52.5Hz,异频测试的频率接近50Hz,具有更好的测试等效性,测试频率偏移导致的阻抗测试系统误差小于0.16%。 2.4 仪器设计已经考虑到短线路和电缆的测试,可以分辨0.001uF的电容和0.001Ω的电阻和电抗,在电容为0.01uF时的测试准确度可以保证:±3%读数±0.001μF;在电阻或电抗为0.01Ω时的测试准确度可以保证:±3%读数±0.001Ω; 2.5 测试信号与干扰信号为1:10倍的情况下,可以准确分离工频干扰和异频测试信号,从而准确测试线路工频参数。如果要求信号与干扰比为1:3的状态下才能分离工频干扰和异频测试信号,试验电压、电流(试验容量)将大出现有的三倍(容量大十倍)。这也是我们仪器采用200V试验电压和3A测试电流的依据。 3 技术指标 3.1 仪器供电电源:三相,~380V±10%,10A,50Hz (有效值) 3.2 仪器内部异频电源特性: 最大输出电压:三相,~200V(有效值) 最大输出电流:10A

高压输电线路测量方法

高压输电线路工频参数测量方法 根据GB50150-2006标准规定,新建及改建的35kV高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期 目前,高压输电线路工频参数测量方法有2种:传统工频法和变频法测试 目前国内不少电业部门在现场进行线路工频参数测量时,有的还采用指针式表计组合,需人工多次不同步读取测量数据,人工工作量大;有的虽已使用了专用的数字测量仪表或线路参数测试仪,但当线路较长时,所需用的工频试验电源容量仍将会很大;而且采用工频电源进行测试需要用调压器,隔离变压器,高压电流互感器、电压互感器等众多设备, 使得试验设备重、大、多,试验接线非常繁杂。整套试验设备体积庞大,重量大,需要吊车等配合工作,十分不利于现场工作,而且由于测试电源是工频电源,容易与耦合的工频干扰信号混频,带来很大的测量误差,需要大幅度提高信噪比,对电源的容量和体积要求又进一步提高 随着国家电力建设的发展、供电线路的同杆架设和交叉跨越增多,导致输电线路相互间的感应电压不断提高,对测试人员和仪器仪表的安全造成严重的威胁;给线路工频参数的准确测量带来了强力的干扰。因此,采用传统的工频电源进行线路参数的测试难以保证工作的安全性及测试结果的准确性 变频法测试系统可采用非工频频率的电源进行线路的测试,以代替目前线路测试需用的众多设备,并规避了工频感应对测量准确性的干扰。为了进一步削弱工频感应电压、电流对于测量安全的威胁和对测量准确性的干扰,我公司在测试系统的核心部件-变频电源内部做了特殊处理,用于泄放工频感应电流和削除工频感应电压 测试系统主机可对设定的频率信号进行定频采样,并根据主机仪器中数据库内置的不同类型及线径的输电线路每公里的理论参考值用于对测试结果的非工频频率进行 校正得出工频下的线路参数测试值 用户可根据被测线路的工频感应电压、电流的大小确定试验频率为工频或变频,若采用定频测试,仪器可将线路测试参数自动归算到工频条件下的测试结果,并且生成标准规范的测试报告。这样一来,极大的简化了线路参数的传统测试,而且可不必再考虑 量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数 MS-110输电线路工频参数测试系统主要特点有 1、快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以测量线路间互感和耦合电容(线路直阻采用线路直阻仪进行测量) 2、抗干扰能力强,能在异频信号与工频干扰信号之比为1:10的条件下准确测量; 3、外部接线简单,仅需一次接入被测线路的引下线就可以完成全部的线路参数测量

《接地装置工频特性参数的测量导则》DL475-92

接地装置工频特性参数的测量导则DL475—92 中华人民共和国电力行业标准 接地装置工频特性参数的测量导则DL475—92 中华人民共和国能源部1992-11-03 批准1993-04-01 实施 1 主题内容与适用范围 本导则规定了接地装置工频特性参数的测量方法以及减小或消除某些因素对测量结果影响的方法。 本导则适用于发电厂、变电所和杆塔等接地装置工频特性参数的测量,拟建发电厂、变电所和杆塔的场地土壤电阻率的测量。本导则也适用于避雷针和微波塔等其它接地装置工频特性参数的测量。 2 对接地装置工频特性参数测量的基本要求 2.1 在一般情况下尽量用本导则中推荐的方法测量接地装置的工频特性参数,如在测量中遇到困难时,可以由有关单位的负责人决定采用行之有效的方法测量。 2.2 发电厂、变电所和杆塔等接地装置的工频特性参数尽量在干燥季节时测量,而不应在雨 后立即测量。 2.3 通常应采用两种或两种以上电极布置方式(包括改变电极布置的方向)测量接地装置的工频特性参数。有时,还需要采用不同的方法测量,以互相验证,提高测量结果的可信度。 2.4 如条件允许,测量回路应尽可能接近输电线接地短路时的电流回路。 3 发电厂和变电所接地装置的工频接地电阻、接触电压和跨步电压的测量 3.1 发电厂和变电所接地装置的工频接地电阻的测量 3.1.1 测量原理 接地装置工频接地电阻的数值,等于接地装置的对地电压与通过接地装置流入地中的工频电流的比值。接地装置的对地电压是指接地装置与地中电流场的实际零位区之间的电位差。图1 是测量工频接地电阻的电极布置和电位分布的示意图,图上点P 是实际零电位区中的一点,实际零电位区是指沿被测接地装置与测量用的电流极C 之间连接线方向上电位梯度接近于零的区域。实际零电位区范围的大小,与测量用的电流极离被测接地装置的距离dGC 的大小、通过被测接地装置流入地中测试电流的大小以及测量用的电压表的分辨率等因素有关。 用电压表和电流表分别测量接地装置G 与电压极P 之间的电位差UG 和通过接地装置流入地中的测试电流I,由UG 和I 得到接地装置的工频接地电阻 (1) 3.1.2 测量工频接地电阻的三极法 三极法的三极是指图2 上的被测接地装置G,测量用的电压极P 和电流极C。图中测量 用的电流极C和电压极P离被测接地装置G边缘的距离为dGC=(4~5)D 和dGP=(0.5~0.6)dGC,D 为被测接地装置的最大对角线长度,点P 可以认为是处在实际的零电位区内。如果想较准确地找到实际零电位区,可以把电压极沿测量用电流极与被测接地装置之间连接线方向移动 三次,每次移动的距离约为dGC 的5%,测量电压极P 与接地装置G 之间的电压。如果电压 表的三次指示值之间的相对误差不超过5%,则可以把中间位置作为测量用电压极的位置。 图1 测量接地装置工频接地电阻的 电极布置和电位分布示意图 G—被测接地装置;P—测量用的电压极;C—测量用的电流极; D—被测接地装置的最大对角线长度 图2 三极法的原理接线图 (a)电极布置图;(b)原理接线图 G—被测接地装置;P—测量用的电压极;C—测量用的电流极; E —测量用的工频电源;A—交流电流表;V—交流电压表;

线路参数测试方法

线路参数测试方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日 线路参数测试方案 I试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定:

1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用电话通知对方,线路已接地,请对方做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干扰,根据情况可在线路测量端并上旁路电容)。

线路参数测试方案

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日

线路参数测试方案 I 试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II 试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定: 1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。

5、用电话通知对方,线路已接地,请对方做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干

输电线路工频参数测试仪的测试接线方法

输电线路工频参数测试仪的测试接线方法 MS-110A输电线路工频参数测试仪,能够准确测量各种高压输电线线路(架空、电缆、架空电缆混合、同杆多回架设的工频参数(正序电容、正序阻抗、零序电容、零序阻抗、互感和耦合电容等)。完全满足《110千伏及以上送变电基本建设工程启动验收规程》、DL/T559-94《220-500kV电网继电保护装置运行整定规程》、《GB50150-2006》的规定要求。 1、测试开始前的准备(将本端地刀打开)

图1-1:拆掉接地棒地线以便接上仪器测试线图1-2:测试线通过绝缘棒引到被测线路上 1.1如果试验现场有接地棒,操作步骤如下: (1)拆掉接地棒上的地线,以便接上仪器测试线,需拆3根接地棒,如图6-1;(2)将仪器面板左上角的接地端子可靠接入大地; (3)将信号地N可靠接入大地; (4)将黄色测试线较粗的接面板上的A端子,较细接U A端子,黄色夹子夹在接地棒前端的金属上; (5)将绿色测试线较粗的接面板上的B端子,较细接U B端子,黄色夹子夹在接地棒前端的金属上; (6)将红色测试线较粗的接面板上的C端子,较细接U C端子,黄色夹子夹在接地棒前端的金属上; (7)将夹有黄、绿、红测试线的接地棒分别钩到被测线路的A、B、C相上,如图6-2。 1.2如果试验现场没有接地棒,操作步骤如下: (1)将被测线路的测量端引下线可靠接入大地,如图6-3; 图1-3 将被测线路测量端引下线接地 (2)将仪器面板左上角的接地端子可靠接入大地; (3)将信号地N可靠接入大地; (4)将黄色测试线较粗的接面板上的A端子,较细的接U A端子; (5)将绿色测试线较粗的接面板上的B端子,较细的接U B端子; (6)将红色测试线较粗的接面板上的C端子,较细的接U C端子; (7)将黄、绿、红夹子分别夹到A、B、C线路的引下线上,如图6-4;

电力电缆工频参数测试

https://www.doczj.com/doc/b35283646.html,/610/ 电力电缆工频参数测试 随着城市规模的扩大,架空输电线路逐渐减少,因此测试电缆工频参数为计算系统短路电流、继电保护整定值、推算潮流分布和选择合理运行方式等提供实际依据,并可以检查电缆在安装、敷设时的质量是否满足设计的要求。 电力电缆工频参数测试的注意事项是: (1)在测量阻抗时,短路线截面积应尽可能大。 (2)在试验时为避免电流线压降的影响,功率表、电压表的电压最好从线路端子处进行测量。 (3)零序阻抗测试中,接地线截面积应足够大,与接地端连接应可靠,以防止接地不良干扰零序电阻测量。 (4)测量感应电流时,电缆线路末端应不接地,避免分流造成测量不准确。(5)零序阻抗测试中,电缆“金属护层”的接地方式与运行时的实际方式保持一致。 (6)施工方提供的电缆线路长度要准确,若提供的理论线路长度和实际长度相差过大会严重干扰对测量值的判断。 (7)严禁在雷雨天气进行线路参数测量,若在测量过程中沿线路有雷阵雨,则应立即停止测量。

https://www.doczj.com/doc/b35283646.html,/610/ (8)当被测电缆线路感应电压过高(>1000V)、感应电流过大(>30A)时,应向上级部门汇报,取消线路参数测量工作或将同沟敷设运行的电缆线路配合停电以降低感应电压、电缆。 (9)在测量正序阻抗时,采用双功率表法,要注意“极性”。 (10)在测量零序阻抗时,应采用隔离变压器,以避免系统零序分量的干扰。(11)测量直流电阻值与试验方案计算值比较,有明显差异,表面设计长度与施工长度不一致。若考虑电缆两端与GIS相连,直流电阻值包含GIS内隔离开关、断路器的接触电阻,以及到GIS内接地开关接触电阻的影响。 一般都超过厂家的计算值,直流电阻值作为参考值。

线路参数测量方案

110kV电缆线路参数测量方案 一、试验目的: 新建线路在投入运行前,测量各种工频参数值,为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作提供依据。 二、线路名称 1、2.8km纯电缆线路; 三、试验方法 1、从XX变电站进行测量,对侧站根据试验项目进行相应配合; 2、从XXX变电站进行测量,对侧站根据试验项目进行相应配合。 四、试验设备 五、试验准备 1.测试前应收集被测线路情况如线路名称、电压等级、线路长度、型号、截面等信息。 2.由对方协调好各关联单位 3.对侧GIS进行相应的操作 4.按试验计划准备好在现象XX变电站和XX变电站测量的工作票。 六、测量接线及步骤 1.正序阻抗的测量: 试验接线:将线路末端三相短路不接地,即合H-ES11地刀、并将接地

(1)如图接好试验回路接线,检查调压器置于零位。 (2)将测试仪选择正序阻抗测量后按确定,进入正序阻抗测量。 (2)将测试仪选择零序阻抗测量后按确定,进入零序阻抗测量。

(3)调节调压器开始升压,待电流升至一定值并且较为稳定时按确认。 (4)记录仪器显示的测量数值。可多次测量取平均值。 3. 正序电容的测量: 试验接线:将线路末端三相短路不接地,即合H-ES11地刀、并将接地点解开,三相短接。在线路始端加三相工频电源进行测量。接线图如下: 图一:正序电容测试接线图 试验步骤: (4)如图接好试验回路接线,检查调压器置于零位。 (5)将测试仪选择正序阻抗测量后按确定,进入正序阻抗测量。 (6)调节调压器开始升压,待电流升至一定值并且较为稳定时按确认。记录仪器显示的测量数值。可多次测量取平均值。 2. 零序电容的测量:

室内外热环境参数测定实验指导书

【实验名称】室内外热环境测试 【实验性质】综合性实验 【实验任务】测试不同类型建筑、不同建筑空间的热环境,对室外气象因素对室内热环境的影响进行分析,并根据分析结果针对建筑热工设计提出结论性意见。 【实验目的】 通过实验,使学生了解室内外热环境参数测定的基本内容,初步掌握仪器仪表的性能和使用方法,进一步感受和了解室外气象因素对建筑热环境的影响。 【实验内容】 建筑室内外热环境参数的测定主要分为室内热环境测定和室外热环境测定两部分。其中:室内热环境参数的测量主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 室外热环境参数的测试同样主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 ■风环境的测定 【实验仪器设备】 1、室内热环境的测定主要使用TESTO174H温湿度记录仪。 2、室外热环境参数的测定主要使用温湿度记录仪及8910便携气象站。 【实验方法和步骤】 1、室内热环境参数的测定 (1)将记录仪与计算机连接,设置记录仪时间及存储间隔等信息; (2)选择测点,注意避免测点受到日照等因素的影响; (3)选择完整时间段对选定测点和室外温湿度进行测试; (4)上传数据,进行数据整理和处理; (5)结合测点房间的特点(建筑形式、外环境、布局、朝向、围护结构等等)对实测数据的差异进行分析,提出建筑热工设计的改进型意见及设计原则; 测点A 位于建艺馆地下一层综合实验室西侧,有西向外墙外窗,有采暖; 测点B位于建艺馆地下一层综合实验室西侧,无外墙外窗,有采暖,暖气配置较少; 测点C 位于建艺馆地下一层综合实验室构造展室,无外墙外窗,无采暖;

【数据整理】 根据提供的数据图表选择所研究的时间段(周期10个小时),将对应的时刻、数据参数填入表格。 【分析】 根据数据结果分析同样外扰作用下不同室内环境的原因。 【结论及建议】 根据分析结果,归纳建筑热环境影响因素及其影响机理,提出通过建筑设计和设备等多种措施改善室内热环境的建议。

输电线路工频参数测试的技术要点及注意事项_刘焕强

65 第11卷 (2009年第10期)电力安全技术 输电线路工频参数测试的技术要点及注意事项 〔摘 要〕输电线路参数的测试是一项专业性极强的工作,要求测试方案科学,测试方法安全,测试参数准确。在介绍输电线路参数测试的基本原则后,结合实际工程的经验,提出了在测试线路参数中技术上应掌握的要点及安全方面应注意的事项。 〔关键词〕输电线路;参数测试;注意事项1 概述 新建高压输电线路在投入运行前,除了检查线路绝缘、核对相位外,还应测试各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据。对于投入运行多年的线路,由于投运后导线的老化、邻近线路的建设、土壤电阻率的变化,或气候、环境及地理等因素的影响,可能使输电线路的实际工频参数发生变化,也需定期测试。因此输电线路参数的测试是一项专业性极强的工作,要求测试方案科学,测试方法安全,测试参数准确。2 编制测试方案的主要内容2.1 收集有关参数资料 线路工频参数值的准确测试将为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作提供实际依据。因此测试参数前,应收集线路的有关设计资料,如线路名称、电压等级、线路长度、杆塔型式、导线型号和截面,了解线路参数设计值,并根据资料和现场实际条件制订测试方案。对于己投入运行的线路,由于电网结构的改变,可能会出现同杆架设的多回路或距离较近、平行段较长的线路,以致严重影响初期测试的耦合电容和互感阻抗参数值,同样要收集有关资料,根据电网的发展变化编制出符合实际的测试方案。2.2 确定需测试的线路参数 线路工频参数测试包括:正序阻抗、零序阻抗、线间阻抗、线地阻抗、互感阻抗、正序电容、零序电容、线间电容、线地电容及耦合电容。对新架线路各相的绝缘电阻、直流电阻也是需测试的线路参 刘焕强,欧阳青 (广东电网公司河源供电局,广东 河源 517000) 数。其中互感阻抗、耦合电容是当出现两回平行线 路运行时继电保护整定、考虑电容传递过电压影响必须用到的参数。 2.3 选定符合现场实际条件的试验方法 目前测量线路参数的方法大致包含以下3种。2.3.1 仪表法 仪表法是最早采用的方法。即在被测线路上施加电源后,使用电压表、电流表、功率表、频率计等,通过人工读取各表刻度,经运算后求得各参数值。由于在实测中工频干扰电压对线路零序参数和线路互感阻抗的测量精度影响很大,作为主要成分的工频分量必须予以消除,因此提出了一些改进,如电源倒相法、附加工频电源法、提高信噪比法。经过长时间的现场实践,证明仪表法是容易掌握、实用性强、使用广泛、行之有效的测量方法,但是在消除干扰方面稍显不足。2.3.2 数字法 实际上,这种方法的测量原理基本上是采用第一种方法,只是在信号的提取和处理上有了进一步提高。因为引入了单片机技术,使得处理方法上有了质的飞跃。首先是通过高精度的电压、电流互感器进行信号采集,再通过滤波器的按需组合,在硬件上实现对信号的滤波,再经过模/数转换,最后用单片机处理离散化的数字信号,得到最终结果。数字法在处理干扰的方面要明显优越于仪表法。但是,测量信号和干扰信号的主要成分是工频信号,因此在干扰很大时,就算使用再强大的数字信号处理方法,也不能达到应有的效果。如果想得到较为准确的结果,依然是以提高输出功率为代价。通过提高施加电压来提高信噪比,这就大大削弱了数字法的优越性。 A njipingtai 安 技 平 台

线路参数测试方案

福清融侨经济技术开发区光电园二期项目220kV输变电工程(线路部分) 线路参数测试方案 编制: 审核: 批准: 福建省*****电力建设公司检测调试所

线路参数测试方案 1 测试依据 1.1《GB50150-2006 电气装置安装工程电气设备交接试验标准》第25.0.1.2 条 1.2《Q/FJG10029.2—2004 福建省电力设备试验规程》第17条 1.3《DL/T 782 -2001 110kV及以上送变电工程启动及竣工验收规程》第5条 1.4 国家电网公司发布的《架空输电线路管理规范》第十五条 1.5《DL/T559-2007 220kV-750kV电网继电保护装置运行整定规程》 1.6《DL/T584-2007 3kV-110kV电网继电保护装置运行整定规程》 2 试验目的 高压输电线路新架设、更改路径、更换导线地线、杆塔塔头改造升压都应进行线路工频参数的测试。 3 工作任务及测试参数 220kV东林Ⅰ路参数测试范围:500kV东台变220kV东林I路出线构架(253线路)~220kV林中变220kV东林I路出线构架(263线路); 220kV东林Ⅱ路参数测试范围:500kV东台变220kV东林II路出线构架(254线路)~220kV林中变220kV东林II路出线构架(264线路); 220kV东京线参数测试范围:500kV东台变220kV东京线出线构架(256线路)~220kV 京东方变220kV东京线出线构架(212线路); 220kV林京线参数测试范围:220kV林中变220kV林京线出线构架(266线路)~220kV 京东方变220kV林京线出线构架(211线路); 三相架空输电线路参数:正序阻抗、零序阻抗、正序电容、零序电容及核相等工作。 4 测试线路的信息 4.1、220kV东京线工程,起于已建500kV东台变220kV出线构架,终止于新建京东方变电站220kV进线构架。全线按单、双回路架空线路和单回路电缆线路混合设计,路径总长约11.0km,其中东台变出线约3.7km线路利用已建东林I路#1~#8双回路单边挂线重新架线,新建单回路架空线路长约6.5km,新建单回路电缆约0.8km(与林中~京东方220kV线路电缆沟平行敷设)。本工程架空线路导线分为两段:①东台变出线3.7km线路利用已建东台~林中I回线路双回路塔架线,考虑原东林I路导线使用情况,采用与其一致的导线截面,即2×300mm2截面,对应导线型号为JL/LB20A-300/25;②其余单回路段6.5km架空导线采用1×400mm2截面,对应导线型号为JL/LB20A-400/35。

用三表法测量电路等效参数

用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数 cos φ=UI P 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 或 X =X L =2πfL , X =Xc =fC π21 2. 阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 图16-1 并联电容测量法 图16-1(a)中,Z 为待测定的元件,C'为试验电容器。(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图16-2所示,则可判断B 为感性元件。 由上分析可见,当B 为容性元件时, 对并联电容C'值无特殊要求;而当B 为感 性元件时,B'<│2B │才有判定为感性的意 I I Z B B B 2,U .U ....(a)(b).

用三表法测量电路等效参数实验报告(含数据处理)

实验七 用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数UI P =?cos 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 2. 阻抗性质的判别方法 可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。其原理可通过电压、电流的相量图来表示: 图7-1 并联电容测量法 图7-2 相量图 3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。 三、实验设备 DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。 四、实验内容 测试线路如图7-3所示,根据以下步骤完成表格7-1。 1. 按图7-3接线,将调压器调到表1中的规定值。 2. 分别测量15W 白炽灯(R)、镇流器(L) 和4.7μF 电容器( C)的电流和功率以及功率因数。 3. 测量L 、C 串联与并联后的电流和功率以及功率因数。 4. 如图7-4,用并联电容法判断以上负载的性质。

图7-3 图7-4 五、实验数据的计算和分析 根据表格7-1的测量结果,分别计算每个负载的等效参数。 白炽灯:I U Z ==2386.6, UI P =?cos =1 镇流器L :I U Z ==551.7,UI P =?cos =0.172 电容器C :I U Z ==647.2,UI P =?cos =0,C Z f ωπω1 ||,2==,f=50Hz ,因此C=4.9μF L 和C 串联:I U Z ==180.9,UI P =?cos =0.35;并联1μF 电容后,电流增大,所以是容 性负载 L 和C 并联:I U Z ==2515.7,UI P =?cos =0.47;并联1μF 电容后,电流减小,所以是感性负载 由以上数据计算等效电阻 R =│Z│cosφ,等效电抗 X =│Z│sinφ,填入表7-1中。 六、实验小结 掌握了交流电路的基本实验方法,学会使用调压器,交流电压表、交流电流表,用功率表测量元件的功率。通过三表法可以通过实验方法测量并计算出负载元件的阻抗。实验中,线路接错会出现报警,也可能烧坏功率表的保险丝,需按照例图仔细检查线路。通过测量发现,被测负载有些不是线性元件。 Z

220kV线路参数试验总结

电网线路参数测试研究介绍 摘要: 本文介绍了220kV架空线线路参数测试原理,试验步骤及试验时一些注意事项 关键字: 线路参数测试 220kV架空线线路电气试验 1 概述 输电线路是电力系统的重要组成部分,工频参数则是输电线路重要的特征数据,是电力系统潮流计算、继电保护整定计算和选择电力系统运行方式等工作之前建立电力系统数学模型的必备参数,工频参数的准确性关系到电网的安全稳定运行,因此对新建和新改造的线路在投运前均需进行工频参数的计算和测量,为调度等部门提供准确的数据。 一般应测的参数有直流电阻R,正序阻抗Z1,零序阻抗Z0,正序电容C1,零序电容C0,及双回线路零序互感和线间耦合电容。除了以上参数外,绝缘电阻及相序核对也是线路参数中不可缺少的测试内容。 2 试验原理及试验步骤 2.1 测量线路各相的绝缘电阻及相序核对 测量绝缘电阻,是为了检查线路的绝缘状况,以及有无接地或相间短路等缺陷。一般应在沿线天气良好情况下(不能在雷雨天气)进行测量。首先将被测线路三相对地短接,以释放线路电容积累的静电荷,从而保证人身和设备安全。测量时,应拆除三相对地的短路接地线,然后测量各相对地是否还有感应电压,若还有感应电压,应采取消除措施。 测量绝缘电阻时,应确知线路上无人工作,并得到现场指挥允许工作的命令后,如图(2-1)所示将非测量的两相短路接地,用2500V或者5000V兆欧表轮流测量每一相对其他两相及地间的绝缘电阻。 图(2-1) 相位核对的方法很多,一般用兆欧表法进行测量,如图(2-2)所示在线路始端接兆欧表的L端,而兆欧表的E端接地,在线路末端逐相接地测量;若兆欧表指示为零,则表示末端接地相与始端测量相同属于一相。按此方法,定出线路始,末两端的A﹑B﹑C相。

相关主题
文本预览
相关文档 最新文档