当前位置:文档之家› 电路实验讲义

电路实验讲义

电路实验讲义
电路实验讲义

实验一 基尔霍夫定律

一、实验目的

1、 验证基尔霍夫电流、电压定律,加深对基尔霍夫定律的理解。

2、 加深对电流、电压参考方向的理解。 二、实验原理

基尔霍夫定律是集总电路的基本定律。它包括电流定律和电压定律。

基尔霍夫电流定律(KCL ):在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零。

基尔霍夫电压定律(KVL ):在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零。 三、仪器设备

1、电路分析实验箱 一台

2、直流毫安表 二台

3、数字万用表 一台 四、实验内容与步骤

1、 实验前先任意设定三条支路的电流参考方向,可采用如图2-1中1I 、2I 、3I 所示。

图2-1

2、 按图2-1所示接线。

3、 按图2-1分别将E 1,E 2两路直流稳压电源接入电路,令1E =3V ,2E =6V ,

1R =1K Ω、 2R =1K Ω、3R =1K Ω。

4、 将直流毫安表串联在1I 、2I 、3I 支路中(注意;直流毫安表的“+、-”极与电流

的参考方向)

5、 确认连线正确后再通电,将直流毫安表的值记录在表2-1内。

6、用数字万用表分别测量两路电源及电阻元件上的电压值,记录在表2-1内

表2-1

五、实验报告要求

1.选定实路电路中的任一个节点,将测量数据代入基尔霍夫电流定律加以验证。

2.选定实验电路中任一闭合电路,将测量数据代入基尔霍夫电压定律加以验证。将计算值于测量值比较,分析误差原因。

实验二 叠加定理

一、实验目的

1.验证叠加定律

2.正确使用直流稳压电源和万用电表。 二、实验原理

叠加原理不仅适用于线性直流电路,也适用于线性交流电路,为了测量方便,我们用直流电路来验证它。叠加原理可简述如下;在线性电路中,任一支路中的电流(或电压)等于电路中各个独立源分别单独作用时在该支电路中产生的电流(或电压)的 代数和,所谓一个电源单独作用是指除了该电源外其他所有电源的作用都去掉,即理想电压源电压源所在处用短路代替,理想电流源所在处用开路代替,但保留它们的内阻,电路结构也不作改变。 由于功率是电压或电流的二次函数,因此叠加定理不能用来直接计算功率。例如在图3-1中

''1'11I I I -=

'

'2

'22I I I +-= ''3

'33I I I += 显然 12

''112'11)()(R I R I P R +≠

图3-1

三、仪器设备

1、电路分析实验箱 一台

2、直流毫安表 二台

3、数字万用表 一台 四、实验内容与步骤

实验线路如图3-2所示

图 3-2

1.实验箱电源接通220V 电源,调节输出电压,使第一路输出端电压1E =10V; 2E =6V ,(须用万用表重新测定),断开电源开关待用。按图3-2接线,4R +3R 调到1K ,经教师检查线路后,再接通电源开关。

2.测量1E 、2E 同时作用和分别单独作用时的支路电流3I ,并将数据记入表格3-1中。 注意;一个电源单独作用时,另一个电源从电路中取出,并将空出的两点用导线连起来。还要注意电流(及电压)的正、负极性。(注意;用指针表时,凡表针反偏的表示该量的实际方向与参考方向相反,应将表针反过来测量,数值取为负值!)

3.选一个回路,测定各元件上的电压,将数据记入表格3-1中。 五、实验报告要求

1.用实验数据验证支路的电流是否符合叠加原理,并对实验误差进行适当分析。 2.用实测电流值、电阻值计算电阻3R 所消耗的功率为多少?能否直接用叠加原理计算?试用具体数值说明之。

实验三 戴维南定理

一、实验目的

1. 验证戴维南定理

2. 测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理

戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电压等于原一端口的开路电压oc U ,其

电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻

eq

R ,见图4-1。

图4-1 图4-2

1. 开路电压的测量方法

方法一;直接测量法,当有源二端网络的等效内阻eq

R 与电压表的内阻

v R 相比可以忽

略不计时,可以直接用电压表测量开路电压。

方法二;补偿法。其测量电路如图4-2所示,E 为高精度的标准电压源,R 为标准分压电阻箱,G 为高灵敏度的检流计。调节电阻箱的分压比;c 、d 两端的电压随之改变,当cd

U =

ab U 时,流过检流计G 的电流为零,应此

KE E R R R U U cd ab =+=

=2

12

式中2

12

R R R K +=

为电阻箱的分压比,根据标准电压E 和分压比K 就可求得开路电

压ab U ,因为电路平衡时0=g I ,不消耗电能,所以此法测量精度较高。

2. 等效电阻R eq 得测量方法

对于已知得线性有源一端口网络,其入端等效电阻eq R 可以从原网络计算得出,也可以实验测出,下面介绍几种测量方法;

方法一:将有源二端网络中的独立源都去掉,在ab 端外加一已知电压U ,测量一端口的总电流总I ,则等效电阻总

I U R eq 。

实际的电压源和电流源都具有一定的内阻,它并不能与电源本身分开,应此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,此将影响测量精度,因而这种方法只适用于电压源内阻小和电流源内阻较大的情况。

方法二:测量ab 端的开路电压oc U 及短路电流sc I 则等效电阻sc

oc

eq I U R =

这种方法适用于ab 端等效电阻eq R 较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。

图4-3 图4-4 方法三:两次电压测量法

测量电路如图4-3所示,第一次测量ab 端的开路

oc U ,

第二次在ab 端接一已知电阻L

R

(负载电阻),测量此时a,b 端的负载电压U ,则a,b 端的等效电阻eq R 为:

L oc eq R U U R ??

?

???-1=

第三种方法克服了第一和第二种方法的缺点和局限性,在实际测量中常被采用。

图4-5 3. 如果用电压等于开路电压

oc U 的理想电压源与等效电阻eq R 相串连的电路(称为戴维南等

效电路,参见图4-4)来代替原有原二端网络,则它的外特性()I f U =应与有源网络的外特

性完全相同。实验原理电路见图4-5b 。 三、预习内容

在图4-5(a )中设1E =10V , 2E =6V ,1R =2R =1K Ω,根据戴维南定理将AB 以左的电路化简为戴维南等效电路。即计算图示虚线部分的开路电压oc U ,等效内阻eq R 及A 、B 直接短路时的短路电流sc I 之值,填入自拟的表格中。 四、仪器设备

1.电路分析实验箱 一台 2.直流毫安表

一只

3.数字万用表 一台

五、实验内容与步骤

1. 用戴维南定理求支路电流3I

测定有源二端网络的开路电压oc U 和等效电阻eq R

按图4-5(a)接线,经检查无误后,采用直接测量法测定有源二端网络的开路电压oc U 。电压表内阻应远大于二端网络的等效电阻eq R A .采用原理中介绍的方法二测量:

首先利用上面测得的开路电压oc U 和预习中计算出eq R 估算网络的短路电流sc I 大小,在

sc I 之值不超过直流稳压电源电流的额定值和毫安表的 最大量限的条件下,可直接测出短

路电流,并将此短路电流sc I 数据记入表格4-1中。 B .采用原理中介绍的方法三测量:

接通负载电阻L R ,调节电位器4R ,使L R =1K Ω,使毫安表短接,测出此时的负载端电压U ,并记入表格4-1中。

表4-1

取A 、B 两次测量的平均值作为eq R (3I 的计算在实验报告中完成)

2. 测定有源二端网络的外特性

调节电位器4R 即改变负载电阻L R 之值,在不同负载的情况下,测量相应的负载端电压和流过负载的电流,共取五个点将数据记入自拟的表格中。测量时注意,为了避免电表内阻

的影响,测量电压U 时,应将接在AC 间的毫安表短路,测量电流I 时,将电压表从A 、B 端拆除。若采用万用表进行测量,要特别注意换档。

3. 测定戴维南等效电路的外特性。

将另一路直流稳压电源的输出电压调节到等效实测的开路电压oc U 值,以此作为理想电压源,调节电位器6R ,使65R R =eq R ,并保持不变,以此作为等效内阻,将两者串连起来组成戴维南等效电路。按图4-5(b )接线,经检查无误后,重复上述步骤测出负载电压和负载电流,并将数据记入自拟的表格中。 六、实验报告要求

1. 应用戴维南定理,根据实验数据计算R 支路的 电流3I ,并与计算进行比较。

2.在同一坐标纸上作出两种情况下的外特性曲线,并作适当分析。判断戴维南定理的正确性。

实验四 含有受控源电路的研究

一、实验目的

1. 熟悉受控源的特性;

2. 通过理论分析和实验验证掌握含有受控源的线性电路的方法。 二、实验说明

在分析电子电路时将广泛地遇到非独立电源(电压源或电流源),这类电源有时也称为受控源。和独立电源不同地方是,它们中电压源的电压、电流源的电流不是独立的,而是受另一电压或电流的控制。按控制量与受控制量的不同,非独立源一般可以分为四种,即:电压控制的电压源、电流控制的电压源、电压控制的电流源和电流控制的电流源。它们的电路符号分别示于图6-1a 、b 、c 、d 中

图6-1

由图6-1可见,一个受控源可用一个含有来两个支路的二端口网络来表示,其中支路2表示受控电源(电压源或电流源),支路1表示控制支路及控制量。在图6-1a 中支路1示开路的,它的两端的电压为1u ,支路2中由一电压源,其电压12u u μ=,即受控于电压1u ,因此是一个电压控制的电压源。在图6-1b 中支路1是短路的,流经其中的电流1i ,而支路2中的电压源,其电压12i r u m = ,即受控电流1i ,因此是一个电流控制的电压源。于此类推,图6-1c 和图6-1d 分别是电压控制的电流源和电流控制的电流源,表示其特性的方程分别是

1212i i u g i m β==和。

如果在表示受控源的控制的控制量于受控制量的关系式中,比例系数μ、m r 、m g 、β

是常数,这样的受控源便是线性元件。由线性电阻R 、电感L 、电容C 以及线性受控源组成的电路仍是线性电路。分析含有线性受控源的电路,可以先将受控源当作独立电源,写出电路的方程式,再将受控源的特性方程代入,用控制支路的电压(电流)表示受控源的电压(电流),由此得出的方程便可解出电路中的各未知电流、电压。对含有受控源的线性电路,叠加定理、戴维南定理也都是适用的。

在本实验中将通过对一各运算放大器接成的比较器(图6-2),在理想情况下(∞→A ),它的输入电1u 与输出电压2u 有一下关系:

11

2

2u R R u -

= 如果1R 足够大,就可以将它看作图6-1a 的电压控制的电压源,1

2

R R -

=μ。应当注意,对于实际的运算放大器,2u 的大小是有限制的,只有不超过规定的范围,上面的关系才成立。

图6-2

三、仪器设备

1.电路分析实验箱 一台 2.数字万用表 一只 四、预习内容

将受控源接入图6-3的电路,应用一下指定的三个方法求出电路中的电压U 。 a . 列写电路方程求解 b . 应用叠加原理求解 c . 用戴维南定理求解

将用以上方法解得得结果列写在表格中:

预习时μ按1/12-=-=R R μ计算

接线图6-3的等效电路如图6-4所示。预习按此图计算bc u

图6-3 图6-4

五、实验内容与步骤

1.测定所用受控源的特性,即确定其比例系数及适用电压范围。测定线路如图6-3所示,其中Ω=K R 11,Ω=K R 12要求在不同的1u 情况下测量2u 。12R R -=μ为一常数,但因测量所用电表有一定差异。在本实验条件下,如差异超过2%就认为这个非独立已经超出了线性范围。比例系数应取线性范围内的平均值。

实验记录表格由同学自己拟定。

2.实验验证:按图6-3接成实验线路,测量上表中各数值,将结果列表加以比较。实验时系数应取下列值:

21=E V ,42=E V ,KΩ=23R

应用戴维南定理时,需要测出等效内阻Ro,测Ro 的方法可用加压求流或测出开路电压和短路电流然后计算。实验中这两种方法容易造成受控源过载以及超出线性范围,本实验可以在开路端bc 处加一适当负载L R ,并测得这时的出口电压L U 。从等效电路图6-5看,有

L

L

L R R R E U -=00

L L L U U E R R -=∴00

当改变L R 使02

1

E U L =

时,此时的L R 值即等于等效电阻Ro ,而此时电压表的读数为端口开路电压的一半。这个方法还有一个好处,即测量用同一个电压表,由电压表带来的误差,计算时可以在很大程度上互相抵消。L R 大小要选合适,使0E -L U 的差值不要太小。

图6-5 六、思考题

如果仔细观察,测量bc 端开路电压(戴维南定理中的0E )时,所得结果总比计算值略小,为什么?

七、实验报告要求

1.用实测的μ值按图6-4计算bc u (三种方法)

2.将上述计算结果与实验测量值进行比较,分析产生误差的原因。

实验五 运算放大器和受控源

一、实验目的

1.获得运算放大器有源器件的感性认识。 2.测试受控源特性,加深对它的理解。 二、实验说明

1.运算放大器是一种有源三端元件,图5-1(a )为运放的电路符号。

图5-1

它有两个输入端,一个输出端和一个对输入和输出信号的参考地线端。“+”端成称为非倒相输入端,信号从非倒相输入端输入时,输出信号与输入信号对参考地线来说极性相同。“-”端称为倒相输入端,信号从倒相输入端输入时,输出信号与输入信号对参考地线端来说极性相反。运算放大器的输出端电压

()a b u u u -A =0

其中A 为运算放大器的开环电压放大倍数。在理想情况下,A 和输入电阻in R 均为无穷大,因此有

a b u u =

0a a in u i R =

=、0==in

b b R u

i 上述式子说明:

(1)运算放大器的“+”端与“-”端之间等电位,通常称为“虚短路”。 (2)运算放大器的输入端电流等于零。称为“虚断路”。

此外,理想运算放大器的输出电阻为零。这些重要性质是简化分析含运算放大器电路的依据。

除了两个寻输入端、一个输出端和一个参考地线端外,运算放大器还有相对地线端的电源正端和电源负端。运算放大器的工作特性是在接有正、负电源(工作电源)的情况下才具有的。

运算放大器的理想电路模型为一受控电源。如图5-1(b )所示。在它的外部接入不同的电路元件可以实现信号的模拟运算或模拟变换,它的应用极其广泛。含有运算放大器的电路是一种有源网络,在电路实验中主要研究它的端口特性以了解其功能。本次实验将要研究由运算放大器组成的几种基本受控源电路。

2.5-2所示的电路是一个电压控制型电压源(vcvs )。由于运算放大器的“+”和 “-”端为虚短路。有

1u u u a b ==

故 2

1

22R u R u i b R =

=

又因 21R R i i = 所以22112R i R i u R R +=

()212R R i R +=

图5-2

()212

1

R R R u +=

1211u R R ??

?

???+=

图5-3

即运算放大器的输出电压2u 受输入电压1u 的控制,它的理想电路模型如图5-3所示。其电压比2

1121R R u u +==

μ μ无量纲,称为电压放大倍数。该电路是一个非倒相比例放大器,其输入和输出端钮

有公共接地点。这种联接方式称为共地联接。

2. 图5-2电路中的1R 看作一个负载电阻,这个电路就成为一个电压控制型电流源(vccs )

如图5-4所示,运算放大器的输出电流

R

u R u i i a R s 1

==

=

图5-4 图5-5

即I s 只受运算放大器输入电压1u 的控制,与负载电阻L R 无关。图5-5

是它的理想电路模型。

比例系数: R

u i g s m 11==

m g 具有电导的量纲称为转移电导。图5-4所示电路中,输入、输出无公共接地点,这

种联接方式称为浮地联接。

4.一个简单的电流控制型电压源电路如图5-6所示。由于运算放大器地 “+”端接地,即

b u =0,所以“-”端电压a u 也为零,在这种情况下,运算放大器“-”端称为“虚地点”,显然流过电阻R 的电流即为网络输入端口电流1i ,运算放大器的输出电压R i u 12-=,它受电流1i 所控制。图5-7是它的原理电路模型。其比例系数: R i u r m -==

1

2

m r 具有电阻的量纲、称为转移电阻,联接方式为共地联接。

图5-6

图5-7

5.运算放大器还可构成一个电流控制电流源(cccs )如图5-8所示,由于2122R i R i u R c -=-=

3

2133R R

i R u i c R =-

= ∴ 3

2

1

132R R i i i i i R R s +=+= 1321i R R ??

????+=

图5-8

图5-9

即输出电流s i 受输入端口电流1i 的控制,与负载电阻L R 无关,它的理想电路模型如图5-9

所示,其电流比213

1s i R i R β=

=+ β无量纲称为电流放大系数,受控源全部采用直流电源激励(输入),对于交流电源激

励和其它电源激励,实验结果完全相同。由于运算放大器的 输出电流较小,因此测量电压时必须用高内阻电压表,如用万用表等。

三、仪器设备

1.电路分析实验箱 一台 2.直流毫安表 二只

3.数字万用表 一台

图5-10

四、实验内容与步骤

1. 测试电压控制电压源和电压控制电流源特性。 实验线路及参数如图5-10所示。

① 电路接好后,先不给激励电源1,将运算放大器“+”端对地短路,接通实验箱电源工作正常时,应有2U 和s I =0。

② 接入激励电源1U ,取1U 分别为0.5V 、1V 、1.5V 、2V 、2.5V(操作时每次都要注意测定一下),测量2U 及s i 值并逐一记入表5-1中

③ 保持1U 为1.5伏,改变1R (即L R )的阻值,分别测量2U 及s I 值并逐一记入表5-2中。

④ 核算表5-1和 表5-2中的各μ和m g 值,分析受控源特性。 2.测试电流控制电压源特性

实验电路如图5-11所示,输入电流由电压源s U 与串联电阻i R 所提供。

图5-11

给定R 为1K Ω,s U 为1.5V ,改变i R 的阻值,分别测量1I 和2U 的值,并逐一记录于5-3中,注意2U 的实际方向。

表5-3

① 保持U 为1.5V ,给定R i 为1K ,改变R 的阻值,分别测量I 和U 的值,并逐一记录

于表5-4中。

表5-4 ② 核算表5-3和表5-4中的各m r 值,分析受控源特性。

3.测试电流控制电流源特性实验电路及参考数如图5-12所示。

① 给定s U 为1.5伏,i R 为3千欧,2R 和3R 为1千欧,负载分别取0.5千欧、2千欧、3

千欧逐一测量并记录1I 及2I 的数值。

图5-12

② 保持s U 为1.5伏,L R 为1千欧,2R 和3R 为1千欧,分别取i R 为 3千欧、2.5千欧、2千欧、1.5千欧、1千欧,逐一测量并记录1I 及2I 的数值。

③ 保持s U 为1.5伏,L R 为1千欧,i R 为3千欧,分别取2R (或3R )为 1千欧、2千欧、3千欧、4千欧、5千欧,逐一测量并记录1I 及2I 的数值。以上各实验记录表格仿前自拟。 ④ 核算各种电路参考下的 值,分析受控源特性。 五、注意事项

1.实验电路确认无误后,方可接通电源,每次在运算放大器外部换接电路元件时,必须先断开电源。

2.实验中,作受控源的运算放大器输出端不能与地端短接。 3.做电流源实验时,不要使电流源负载开路。 六、实验报告要求

1. 整理各组实验数据,并从原理上加以讨论和说明。 2. 写出通过实验对实际受控源特性所加深的认识。 3. 试分析引起本次实验数据误差的原因。

数字电子技术实验讲义(试用)

数字电子技术实验 简要讲义 适用专业:电气专业 编写人:于云华、何进 中国石油大学胜利学院机械与控制工程学院 2015.3

目录 实验一:基本仪器熟悉使用和基本逻辑门电路功能测试 (3) 实验二:小规模组合逻辑电路设计 (4) 实验三:中规模组合逻辑电路设计 (5) 实验四:触发器的功能测试及其应用 (7) 实验五:计数器的功能测试及其应用 (8) 实验六:计数、译码与显示综合电路的设计 (9)

实验一:基本仪器熟悉使用和常用门电路逻辑功能测试 (建议实验学时:2学时) 一、实验目的: 1、熟悉实验仪器与设备,学会识别常用数字集成芯片的引脚分配; 2、掌握门电路的逻辑功能测试方法; 3、掌握简单组合逻辑电路的设计。 二、实验内容: 1、测试常用数字集成逻辑芯片的逻辑功能:74LS00,74LS02,74LS04,74LS08,74LS20,74LS32,74LS86等(预习时查出每个芯片的逻辑功能、内部结构以及管脚分配)。 2、采用两输入端与非门74LS00实现以下逻辑功能: ① F=ABC ② F=ABC③ F=A+B ④ F=A B+A B 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容)主要包括: 1、实验电路设计原理图;如:实现F=A+B的电路原理图: 2、实验真值表; 3、实验测试结果记录。如: 输入输出 A B F3 00灭

四、实验总结: (学生根据自己实验情况,简要总结实验中遇到的问题及其解决办法)注:本实验室提供的数字集成芯片有: 74LS00, 74LS02,74LS04,74LS08,74LS20,74LS32,74LS74,74LS90,74LS112, 74LS138,74LS153, 74LS161 实验二:小规模组合逻辑电路设计 (建议实验学时:3学时) 一、实验目的: 1、学习使用基本门电路设计、实现小规模组合逻辑电路。 2、学会测试、调试小规模组合逻辑电路的输入、输出逻辑关系。 二、实验内容: 1、用最少的门电路设计三输入变量的奇偶校验电路:当三个输入端有奇数个1时,输出为高,否则为低。(预习时画出电路原理图,注明所用芯片型号) 2、用最少的门电路实现1位二进制全加器电路。(预习时画出电路原理图,注明所用芯片型号) 3、用门电路实现“判断输入者与受血者的血型符合规定的电路”,测试其功能。要求如下:人类由四种基本血型:A、B、AB、O 型。输血者与受血者的血型必须符合下述原则: O型血可以输给任意血型的人,但O型血的人只能接受O型血; AB型血只能输给AB型血的人,但AB血型的人能够接受所有血型的血; A 型血能给A型与AB型血的人;但A型血的人能够接受A型与O型血; B型血能给B型与AB型血的人,而B型血的人能够接受B型与O型血。 试设计一个检验输血者与受血者血型是否符合上述规定的逻辑电路,如果符合规定电路,输出高电平(提示:电路只需要四个输入端,它们组成一组二进制数码,每组数码代表一对输血与受血的血型对)。 约定“00”代表“O”型 “01”代表“A”型 “10”代表“B”型 “11”代表“AB”型(预习时画出电路原理图,注明所用芯片型号) 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容),与实验一说明类似。

电路理论实验讲义

实验一电路元器件伏安特性的测试 一、实验目的 1、认识常用电路元件。 2、掌握线性电阻、非线性电阻元件伏安特性的测绘。 3、掌握仪器、仪表的使用方法。 二、实验仪器 1、RXDI-1A电路原理实验箱1台 2、万用表1台 三、实验原理 任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表示,这条曲线称为该元件的伏安特性曲线。 图1 1、线性电阻器的伏安特性曲线是一条通过坐标原点的直线,图1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。 2、一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1中b所示。正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。 3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但

其反向特性特别,如图1中c所示。在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。 四、实验内容及步骤 1、测定线性电阻器的伏安特性 按图2接线,调节直流稳压电源的输出电压U,从0V开始缓慢地增加,记下相应的电压表和电流表的读数。 图2 图3 2、测定半导体二极管IN4007的伏安特性 按图3接线,R为限流电阻,测二极管的正向特性时,其正向电流不得超过35mA,正向压降可在0~0.75V之间取值。特别0.5~0.75V之间应多取几个测量点。测反向特性实验时,只需将图3中的二极管D反接,且其反向电压可加至24V。 3、测定稳压二极管的伏安特性 将图3中的二极管IN4007换成稳压二极管2CW55,重复实验内容2的测量。 4、根据各实验数据(数据见表1、表2、表3、表4、表5),分别在方格纸上绘制出光滑的伏安特性曲线。(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺),根据实验结果,总结、归纳被测各元件的特性,做必要的误差分析。 五、实验数据及结果 表1线性电阻特性实验数据 U(V) I(mA)

数字电路实验讲义

数字电路实验讲义 课题:实验一门电路逻辑功能及测试课型:验证性实验 教学目标:熟悉门电路逻辑功能,熟悉数字电路实验箱及示波器使用方法 重点:熟悉门电路逻辑功能。 难点:用与非门组成其它门电路 教学手段、方法:演示及讲授 实验仪器: 1、示波器; 2、实验用元器件 74LS00 二输入端四与非门 2 片 74LS20 四输入端双与非门 1 片 74LS86 二输入端四异或门 1 片 74LS04 六反相器 1 片 实验内容: 1、测试门电路逻辑功能 (1)选用双四输入与非门74LS20 一只,插入面包板(注意集成电路应摆正放平),按图1.1接线,输入端接S1~S4(实验箱左下角的逻辑电平开关的输出插口),输出端接实验箱上方的LED 电平指示二极管输入插口D1~D8 中的任意一个。 (2)将逻辑电平开关按表1.1 状态转换,测出输出逻辑状态值及电压值填表。

2、逻辑电路的逻辑关系 (1)用74LS00 双输入四与非门电路,按图1.2、图1.3 接线,将输入输出逻辑关系分别填入表1.2,表1.3 中。 (2)写出两个电路的逻辑表达式。 3、利用与非门控制输出 用一片74LS00 按图1.4 接线。S 分别接高、低电平开关,用示波器观察S 对输出脉冲的控制作用。 4、用与非门组成其它门电路并测试验证。

(1)组成或非门:

用一片二输入端四与非门组成或非门B = =,画出电路图,测试并填 + Y? A B A 表1.4。 (2)组成异或门: ①将异或门表达式转化为与非门表达式; ②画出逻辑电路图; ③测试并填表1.5。 5、异或门逻辑功能测试 (1)选二输入四异或门电路74LS86,按图1.5 接线,输入端1、2、4、5 接电平开关输出插口,输出端A、B、Y 接电平显示发光二极管。 (2)将电平开关按表1.6 的状态转换,将结果填入表中。

电路分析实验报告-第一次

电路分析实验报告

实验报告(二、三) 一、实验名称实验二KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图:

1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。 2.验证KVL: 以左侧的回路为研究对象,运行结果的截图如下:

由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回

模拟电路自主设计实验

姓名_____________________班级_____________________学号_____________________ 日期_____________节次______________成绩__________教师签字__________________ 哈尔滨工业大学模拟电路自主设计实验 实验名称:运算放大器在限幅电路中的应用 一、实验目的 1、深入了解运算放大器的放大作用和深度负反馈; 2、灵活运用运算放大器的多种应用; 二、总体技术路线 2.1 当输入信号电压进入某一范围内,其输出信号的电压不再跟随输入信号电压的变化。 串联限幅电路:当输入电压U i <0或U i为数值较小的正电压时,D1截止,运算放大器的输出电压U0=0;仅当输入电压U i>0且U i为数值大于或等于某一个的正电压U th时,D1才正偏导通,电路有输出,且U0跟随输入信号U i变化。 并联限幅电路:当输入信号U i较小时,输出电压U0也较小,D1和D2没有击穿,U0跟随输入信号U i变化而变化,传输系数为:A uf=-R1 /R2;当U i幅值增大,使U0的幅值增大,并使D1和D2击穿,输出U0的幅度保持+(U z+U D)值不变,电路进入限幅工作状态。 2.2绝对值电路 当输入电压U i>0,则运算放大器的输出电压U1,D1导通,D2截止,输出电压U0 =0;当输入电压U i <0,则运算放大器的输出电压U1 >0,D2导通,D1截止,输出电压U0 =-R1 U i/R2。并通过反向放大器将整流信号放大两倍,再增加一个同相加法器,让输入信号的另一极性电

压不经整流,而直接送到加法器,与来自整流电路的输出电压相加,便构成了绝对值电路。 三、实验电路图 1、串联限幅电路: 2、并联限幅电路:

大学物理实验讲义(rc电路)

用RC 电路测电容 【实验目的】 1、观察电容充放电现象,了解电容特性; 2、利用电容器的充、放电测定电容; 3、根据电容容抗的频率特性测定电容。 【仪器仪器】 两个电容(其中一个为电解电容,电容值470F μ;另一个电容值约为0.1F μ),电阻箱,直流电源,信号发生器,数字万用电表,示波器,导线.开关等。 【实验原理】 1.电容器 电容器是常用电子元件之一,其符号如图l 所示,用C 表示. 常用电容器以两层金属箔(膜)为极板。极板中间有一层绝缘材料作为介质。极板上可积聚等量异号的电荷Q,两极板的电压为U ,两 者成线性关系,其比值即为电容 U Q C = 电容符号电容的基本单位是F ,这个单位太大,常用单位有F μ和pF : F μ610F 1=,pF 610F 1=μ, 电容的种类很多,分为固定电容和可变电容,固定电容有:瓷介质电容、云母电容、薄膜介质电容、纸介质电容和电解电容器等,常用的电解电容器电容值较大,且有正负极性,使用时应注意将正极接高电位,负极接低电位;如果极性接反,会将电容器击穿损坏.电容的主要参数有:电容值和额定工作电压。 由于电容的充放电特性,以及电容具有隔直流和通交流的能力,在电子技术中使用十分普遍,常用于滤渡电路、定时电路、锯齿波发生器电路、微分积分等电路. 2.RC 电路充放电特性 将一个电容和一个电阻串联构成RC 电路,电路如图2所示当开关K 合到图2中的“1”时,直流电源通过电阻R 给电容充电,电容上的电压c u 逐渐增大,最终与电源电压E 相等;然后再将开关合向“2”,电容C 将通过电阻R 放电,c u 逐渐减小,直至为零。 在RC 电路充放电过程中c u 和R u 的变化遵循以下规律: C 图 1 电容符号 R E K 1 2 图 2 电容充放电原理图

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

电力系统分析实验指导书

电力系统分析实验指导书 实验一、 电力系统功率特性和功率极限实验 (一)实验目的 1、初步掌握电力系统物理模拟实验的基本方法; 2、加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3、通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 (二)原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d ∑和X q ∑,则发电机的功率特性为: δδ2sin 2sin 2∑ ∑∑ ∑∑?-?+= q d q d d q Eq X X X X U X U E P 当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。根据一般励磁调节器 的性能,可认为保持发电机E 'q (或E ')恒定。这时发电机的功率特性可表示成: δδ2sin 2sin 2∑ ∑∑∑∑?'-'?+''='q d q d d q Eq X X X X U X U E P 或 δ'''='∑sin d q E X U E P 这时功率极限为 ∑ '='d Em X U E P 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相机或中继电力系统以稳定系统中继点电压等手段实现。

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

数字电路实验讲义

实验一KHD-2型数字电路实验装置的使用和 集成门电路逻辑功能的测试 一、实验目的 1.熟悉和掌握KHD-2型数字电路实验装置的使用。 2.熟悉74LS20和74LS00集成门电路的外形和管脚引线。 3.掌握与门、或门、非门、与非门、或非门和异或门逻辑功能的测试。 二、实验器材及设备 1.KHD-2数字电路实验台 2.4输入2与非门74LS20(1块) 3.2输入4与非门74LS00或CC4011(1块) 三、实验原理 (一)KHD-2型数字电路实验台 KHD-2型数字电路实验台由实验控制屏与实验桌组成。实验控制屏主要由两块单面敷铜印刷线路板与相应电源、仪器仪表等组成。控制屏由两块相同的数电实验功能板组成,其控制屏两侧均装有交流电压220V的单相三芯电源插座。每块实验功能板上均包含以下各部分内容: 1.实验板上装有一只电源总开关及一只熔断器(额定电流为1A)作为短路保护用。 2.实验板上共装有600多个高可靠的自锁紧式、防转、叠插式插座。它们与集成电路插座、镀银针管座以及其他固定器件、线路的连线已设计在印刷线路板上。板正面印有黑线条连接的器件,表示反面已装上器件并接通。 3.实验板上共装有200多根镀银长15mm的紫铜针管插座,供实验时接插小型电位器、电阻、电容、三极管及其他电子器件使用。 4.实验板上装有四路直流稳压电源(±5V、1A及两路0~18V、0.75A可调的直流稳 压电源)。实验板上标有处,是指实验时需用导线将直流电源+5V引入该处,是+5V 电源的输入插口。 5.高性能双列直插式圆集成电路插座18只(其中40P 1只、28P 1只、24P 1只、20P 1只、16P 5只、14P 6只、8P 2只、40P锁紧座1只)。 6.6位十六进制七段译码器与LED数码显示器:每一位译码器均采用可编程器件GAL 设计而成,具有十六进制全译码功能。显示器采用LED共阴极红色数码管(与译码器在反面已连接好),可显示四位BCD十六进制的全译码代号:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E和F。 使用时,只要用锁紧线将+5V在没有BCD码输入时六位译码器均显示“F”。 7.四位BCD码十进制拔码开关组:每一位的显示窗指示出0~9中的任一个十进制数字,在A、B、C、D四个输出插口处输出相对应的BCD码。每按动一次“+”或“ ”键,将顺序地进行加1计数或减1计数。 若将某位拔码开关的输出口A、B、C、D连接在“2”的一位译码显示的输入端口A、B、C、D处,当接通+5V电源时,数码管将点亮显示出与拔码开关所指示一致的数字。

模拟电路实验讲义..

实验一 单级交流放大电路 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图1-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 C E BE B E I R U U I ≈-≈

be L C V r R R β A // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图1-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图1-2(b)所示。这些情况都不符合不失真放大

电路分析基础实验报告 (1).docx

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

数字电路实验讲义

数字电路实验讲义 目录 1 数字电路实验箱简介 2 实验一基本门电路和触发器的逻辑功能测试 3 实验二常用集成组合逻辑电路(MSI)的功能测试及应用 4 实验三常用中规模集成时序逻辑电路的功能及应用 5 实验四组合逻辑电路的设计 6 实验五时序逻辑电路的设计 7 实验六综合设计实验 8 附录功能常用芯片引脚图

数字电路实验箱简介 TPE系列数字电路实验箱是清华大学科教仪器厂的产品,该实验箱提供了数字电路实验所必需的基本条件。如电源,集成电路接线板,逻辑电平产生电路,单脉冲产生电路和逻辑电平测量显示电路,实验箱还为复杂实验提供了一些其他功能。 下面以JK触发器测试为例说明最典型的测试电路,图1为74LS112双JK触发器的测试电路。其中Sd、Rd 、J、K为电平有效的较入信号,由实验箱的逻辑电平产生电路提供。CP为边沿有效的触发信号,由单脉冲产生电路提供。Q和为电路的输出,接至逻辑电平测量显示电路,改变不同输入的组合和触发条件,记录对应的输出,即可测试该触发器的功能。 逻辑电平测量显示 图1. JK触发器测试电路

实验一 基本门电路和触发器的逻辑功能测试 一、 实验目的 1、掌握集成芯片管脚识别方法。 2、掌握门电路逻辑功能的测试方法。 3、掌握RS 触发器、JK 触发器的工作原理和功能测试方法。 二、实验设备与器件 1、数字电路实验箱 2、万用表 3、双列直插式组件 74LS00:四—2输入与非门 74LS86:四—2输入异或门 74LS112:双J-K 触发器 三、实验原理与内容 1、测试与非门的逻辑功能 74LS00为四—2输入与非门,在一个双列直插14引脚的芯片里封装了四个2输入与非门,引脚图见附录。14脚为电源端,工作时接5V,7脚为接地端,1A ,113和1Y 组成一个与非门, B A Y 111?=。剩余三个与非门类似。按图1—1连接实验电路。改变输信号,测量对应输出, 填入表1—1中,验证其逻辑功能。 测 量 显 示 逻 辑 电 平 图1—1 74LS00测试电路

电路实验指导

实验一 基尔霍夫定律 一、实验目的 1、 验证基乐霍夫电流、电压定律,加深对基尔霍夫定律的理解。 2、 加深对电流、电压参考方向的理解。 二、实验原理 基尔霍夫定律是集部电路的基本定律。它包括电流定律和电压定律。 基尔霍夫电流定律(KCL ):在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零。 基尔霍夫电压定律(KVL ):在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零。 三、仪器设备 1、电路分析实验箱 一台 2、直流毫安表 二台 3、数字万用表 一台 四、实验内容与步骤 1、 实验前先任意设定三条支路的电流参考方向,可采用如图1-1中1I 、2I 、3I 所示。 图1-1 2、 按图1-1所示接线。 3、 按图1-1分别将E1,E2两路直流稳压电源接入电路,令1E =3V ,2E =6V , 1R =1K Ω、 2R =1K Ω、3R =1K Ω。 4、 将直流毫安表串联在1I 、2I 、3I 支路中(注意;直流毫安表的“+、-”极与电流的参考方向) 5、 确认连线正确后,再通电,将直流毫安表的值记录在表2-1内。 6、 用数字万用表分别测量两路电源及电阻元件上的电压值,记录在表2-1内

五、实验报告要求 1.选定实路电路中的任一个节点,将测量数据代入基尔霍夫电流定律加以验证。 2.选定实验电路中任一闭合电路,将测量数据代入基尔霍夫电压定律加以验证。 3.将计算值于测量值比较,分析误差原因。

实验二 叠加定理 一、实验目的 1、 验证叠加定律 2、 正确使用直流稳压电源和万用电表。 二、实验原理 叠加原理不仅适用于线性直流电路,也适用于线性交流电路,为了测量方便,我们用直流电路来验证它。叠加原理可简述如下; 在线性电路中,任一支路中的电流(或电压)等于电路中各个独立源分别单独作用时在该支电路中产生的电流(或电压)的 代数和,所谓一个电源单独作用是指除了该电源外其他所有电源的作用都去掉,即理想电压源电压源所在处用短路代替,理想电流源所在处用开路代替,但保留它们的内阻,电路结构也不作改变。 由于功率是电压或电流的二次函数,因此叠加定理不能用来直接计算功率。例如在图2-1中 ''1'11I I I -= ' '2 '22I I I +-= ''3 '33I I I += 显然 12''112'11)()(R I R I P R +≠ 图2-1 三、仪器设备 1、电路分析实验箱 一台 2、直流毫安表 二台 3、数字万用表 一台 四、实验内容与步骤 实验线路如图2-2所示

《数字电路》实验讲义

B A ?B A 电子信息与机电工程学院电子技术实验室编写 2009年9月

目录 实验注意事项 (1) 实验一仪器使用及逻辑电路实验 (2) 实验二集成逻辑门电路的基本应用 (7) 实验三组合逻辑电路的实验分析 (9) 实验四组合逻辑电路设计与测试 (9) 实验五触发器的功能测试....................................... (11) 实验六计数器的应用......................................... (14) 附录A 数字集成电路(TTL电路)的使用规则................... ..16 附录B 常用芯片的引脚号和信号名称.. (17) 附录C DZX-1型电子学综合实验装置使用说明.……...…… .. 16

实验注意事项 1、实验前认真阅读实验指导书,熟悉实验目的、实验内容及实验步骤。 2、进入实验室后,必须严格遵守实验室的一切规章制度。按已分好的小组进行实验。 3、了解并熟悉实验设备及器件(从附录B中查清所选用集成块的引脚及功能,特别注意集成块V CC及GND的接线不能错),按实验要求连好线路,自已检查无误或经指导教师同意,方可通电继续进行实验。 4、发生事故时,应立即断开电源,保持现场,待找出并排除故障后,方可继续进行实验。 5、实验过程中仔细观察实验现象,认真做好记录。 6、需要变更原实验线路进行后面实验内容时,必须先切断电源,不能带电插拔元器件。 7、培养踏实、严谨、实事求是的科学作风。 8、爱护实验室财物,当发生仪器、设备损坏时,必须认真检查原因,并立即告知教师及实验室管理员,以便按实验室有关条例处理。 9、保持实验室内安静、整洁以及良好的秩序。实验结束应将仪器、元件、导线等整理好放妥,并协助实验室管理员搞好清洁卫生。

电路实验讲义(修改版)

实验7 元件参数测量 一. 实验目的 1. 学会用相位法或功率法测量电感线圈、电阻器、电容器的参数,学会根据测量数据计算出串联参数R 、L 、C 和并联参数G 、B L 、B C 。 2. 阅读附录一,正确掌握多功能智能表的使用方法。 二. 实验原理与说明 电感线圈、电阻器、电容器是常用的元件。电感线圈是由导线绕制而成的,必然存在一定的电阻R L ,因此,电感线圈的模型可用电感L 和电阻R L 来表示。电容器则因其介质在交变电场作用下有能量损耗或有漏电,可用电容C 和电阻R C 作为电容器的电路模型。线绕电阻器是用导线绕制而成的,存 在一定的电感'L ,可用电阻R 和电感'L 作为电阻器的电路模型。图9-1是它们的串联电路模型。 R 'L L 'L R C ' C R 图9-1 根据阻抗与导纳的等效变化关系可知,电阻与电抗串联的阻抗,可以用电导G 和电纳B 并联的等效电路代替,由此可知电阻器、电感线圈和电容器的并联电路模型如图9-2所示。 电阻器 线圈 电容器 图9-2 电阻器、电感线圈、电容器的并联电路模型 值得指出的是:对于电阻器和电感线圈可以用万用表的欧姆档测得某值,但这值是直流电阻,而不是交流电阻(且频率越高两者差别越大);而在电容器模型中,RC 也不是用万用表欧姆档测出的电阻,它是用来反映交流电通过电容器时的损耗,需要通过交流测量得出。 在工频交流电路中的电阻器、电感线圈、电容器的参数,可用下列方法测量: 方法一:相位表法 在图9-3中,可直接从各电表中读得阻抗Z 的端电压U ,电流I 及其相位角φ。当阻抗Z 的模I U Z =求得后,再利用相位角便不难将Z 的实部和虚部求出。如:当测出电感线圈两端电压U 、流过电感线圈电流I 及其相位 角φ,显然I U R L ?cos =,ω ? I U L sin =。其并联参数G 、B L 如何根据U 、I 、 φ值计算,由实验者自行推导。

数字电子技术实验指导书

数字电子技术实验指导书 (韶关学院自动化专业用) 自动化系 2014年1月10日 实验室:信工405

数字电子技术实验必读本实验指导书是根据本科教学大纲安排的,共计14学时。第一个实验为基础性实验,第二和第七个实验为设计性实验,其余为综合性实验。本实验采取一人一组,实验以班级为单位统一安排。 1.学生在每次实验前应认真预习,用自己的语言简要的写明实验目的、实验原理,编写预习报告,了解实验内容、仪器性能、使用方法以及注意事项等,同时画好必要的记录表格,以备实验时作原始记录。教师要检查学生的预习情况,未预习者不得进行实验。 2.学生上实验课不得迟到,对迟到者,教师可酌情停止其实验。 3.非本次实验用的仪器设备,未经老师许可不得任意动用。 4.实验时应听从教师指导。实验线路应简洁合理,线路接好后应反复检查,确认无误时才接通电源。 5.数据记录 记录实验的原始数据,实验期间当场提交。拒绝抄袭。 6.实验结束时,不要立即拆线,应先对实验记录进行仔细查阅,看看有无遗漏和错误,再提请指导教师查阅同意,然后才能拆线。 7.实验结束后,须将导线、仪器设备等整理好,恢复原位,并将原始数据填入正式表格中,经指导教师签名后,才能离开实验室。

目录实验1 TTL基本逻辑门功能测试 实验2 组合逻辑电路的设计 实验3 译码器及其应用 实验4 数码管显示电路及应用 实验5 数据选择器及其应用 实验6 同步时序逻辑电路分析 实验7 计数器及其应用

实验1 TTL基本逻辑门功能测试 一、实验目的 1、熟悉数字电路试验箱各部分电路的基本功能和使用方法 2、熟悉TTL集成逻辑门电路实验芯片的外形和引脚排列 3、掌握实验芯片门电路的逻辑功能 二、实验设备及材料 数字逻辑电路实验箱,集成芯片74LS00(四2输入与非门)、74LS04(六反相器)、74LS08(四2输入与门)、74LS10(三3输入与非门)、74LS20(二4输入与非门)和导线若干。 三、实验原理 1、数字电路基本逻辑单元的工作原理 数字电路工作过程是数字信号,而数字信号是一种在时间和数量上不连续的信号。 (1)反映事物逻辑关系的变量称为逻辑变量,通常用“0”和“1”两个基本符号表示两个对立的离散状态,反映电路上的高电平和低电平,称为二值信息。(2)数字电路中的二极管有导通和截止两种对立工作状态。三极管有饱和、截止两种对立的工作状态。它们都工作在开、关状态,分别用“1”和“0”来表示导通和断开的情况。 (3)在数字电路中,以逻辑代数作为数学工具,采用逻辑分析和设计的方法来研究电路输入状态和输出状态之间的逻辑关系,而不必关心具体的大小。 2、TTL集成与非门电路的逻辑功能的测试 TTL集成与非门是数字电路中广泛使用的一种逻辑门。实验采用二4输入与非门74LS20芯片,其内部有2个互相独立的与非门,每个与非门有4个输入端和1个输出端。74LS20芯片引脚排列和逻辑符号如图2-1所示。

电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。 二.实验线路及原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-1。 1) 电源控制屏位于MEL-002T; 2) L平波电抗器位于NMCL-331挂件; 3) 可调电阻R位于NMEL-03/4挂件 4) G给定(Ug)位于NMCL-31调速系统控制单元中; 5) Uct位于NMCL-33F挂件; 6) 晶闸管位于NMCL-33F挂件。 图4-1 三.实验内容 1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。

2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。 四.实验设备及仪表 1.教学实验台主控制屏2.触发电路及晶闸主回路组件 3.电阻负载组件4.示波器 五.注意事项 整流电路与三相电源连接时,一定要注意相序。 六.实验方法 1. 三相半波可控整流电路带电阻性负载。 合上主电源,接上电阻性负载R。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。 2. 三相半波可控整流电路带电阻—电感性负载。 接入的电抗器L=700mH。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。 实验方法的具体内容,可参照表4进行。 七. 实验报告 分析、记录上述“实验方法”中的数据、波形等。 八、触发电路的调试方法 按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 ⑴用示波器观察触发电路及晶闸管主回路的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲。触发脉冲均为双脉冲双脉冲之间间隔60°。

电路分析实验-基尔霍夫定律的验证

《电路分析实验》目录 一、基尔霍夫定律的验证 (1) 二、叠加原理的验证 (2) 三、戴维南定理和诺顿定理的验证 (4) 四、RC一阶电路的响应测试 (7) 五、RLC串联揩振电路的研究 (10) 六、RC选频网络特性测试 (13) 实验一基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、原理说明 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。 运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。 三、实验设备(同实验二) 四、实验内容 实验线路与实验五图5-1相同,用DG05挂箱的“基尔霍夫定律/叠加原理”线路。 1. 实验前先任意设定三条支路和三个闭合回路的电流正方向。图5-1中的I1、I2、I3的方向已设定。三个闭合回路的电流正方向可设为ADEFA、BADCB和FBCEF。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 五、实验注意事项 1. 同实验二的注意1,但需用到电流插座。

2.所有需要测量的电压值,均以电压表测量的读数为准。U1、U2也需测量,不应取电源本身的显示值。 3. 防止稳压电源两个输出端碰线短路。 4. 用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。此时指针正偏,可读得电压或电流值。若用数显电压表或电流表测量,则可直接读出电压或电流值。但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流参考方向来判断。 六、预习思考题 1. 根据图5-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示呢? 七、实验报告 1. 根据实验数据,选定节点A,验证KCL的正确性。 2. 根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。 3. 将支路和闭合回路的电流方向重新设定,重复1、2两项验证。 4. 误差原因分析。 5. 心得体会及其他。 实验二叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容 实验线路如图7-1所示,用DG05挂箱的“基尔夫定律/叠加原理”线路。图7-1

相关主题
文本预览
相关文档 最新文档