当前位置:文档之家› 中考数学专题训练1相似三角形的证明与计算

中考数学专题训练1相似三角形的证明与计算

中考数学专题训练1相似三角形的证明与计算
中考数学专题训练1相似三角形的证明与计算

【基本结论】

1.

比例.

2.三角形相似的判定:

(1)

(2)

对应成比例,且夹角相等,

(3)

3.

的平方。

【基础练习】

1.

相似三角形.

2. 如图,BD、CE是△

△AED∽△ACB.

3. 如图,等边△ABC中,P

上一点,且∠APD=600,BP

长.

4.

5.在△ABC中,D是BC

∠ADE=∠C.求证:

AE?AC.

ABC的边BC上的高,

,求证:△ABE∽△ADC.

都是等边三角形,AD、

F、G,AD、BE交于

(2)AF·FC=BF·FH.

E是AC上的点,延

F.若AE∶EC=1∶2,

的值.

E,过E作EF∥AB,

11

CD EF

=.

AE与BD交于点

α,

且DM 交AC 于F ,ME 交BC 于G .

(1)写出图中三对相似三角形,并证明其中的一对; (2)连结FG ,如果α=45°,AB

=AF =3,求FG 的长.

11. 如图,已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC . (1)求证:ABC POA △∽△; (2)若2OB =,7

2

OP =

,求BC 的长.

12. 如图,⊙O 中,弦AB CD 、相交于AB 的中点E ,连接AD 并延长至点F , 使DF AD =,连接BC 、BF .(1)求证:CBE AFB △∽△;(2)当

58BE FB =时,求

CB

AD

的值

13.在△ABC 中,∠C =90°,AC =3,BC =4.O 为BC 边上一点,以O 为圆心,OB 为半径作半圆与BC 边和AB 边分别交于点D 、点E ,连结DE .过点E 作半圆O 的切线,当切线与AC 边相交时,设交点为F .求证:△F AE 是等腰三角形.

14. 已知,延长BC 到D ,使.取的中点,连结交于点.

(1)求

的值;(2)若,求的长.

15.如图1,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ;

(2)当O 为AC 边中点,2AC AB = 时,

如图2,求OF

OE ; (3) 当O 为AC 边中点,AC

n AB

= 时,请直接写出

OF

OE

的值.

16. 如图,已知抛物线y =

34

x 2

+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0)

ABC △CD BC =AB F FD AC E AE

AC

AB a FB EC ==,

AC B

B

A

A

C

E D D

E

C O F 图1

图2

F

过点C 的直线y =

3

4t

x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1. (1)填空:点C 的坐标是_____,b =_____,c =_____; (2)求线段QH 的长(用含t 的式子表示);

(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有

17. 已知,如图1,过点E(0,-1)作平行于x 轴的直

线l ,抛物线2

14

y x =

上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A 、B

分别作直线l 的垂线,垂足分别为点C 、D ,连接CF 、DF .

(1)求点A 、B 、F 的坐标; (2)求证:CF ⊥DF ;

(3)点P 是抛物线2

14

y x =

对称轴右侧图象上的一动点,过点P 作PQ ⊥PO 交x 轴于点Q ,是否存在点P 使得△OPQ 与△CDF 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.

18. 如图,已知二次函数的

图象与轴相交于两个不同的点、,与轴的交点为.设的外接

圆的圆心为点.

2

2

)(m k m x y -++=x 1(0)A x ,

2(0)B x ,y C ABC △P

(1)求与轴的另一个交点D 的坐标; (2)如果恰好为的直径,且的面积等于,求和

的值.

19.如图,A 、P

B 、

C 是⊙O 上的四点,∠APC =∠BPC = 60?,AB 与PC 交于Q 点.

(1)判断△ABC 的形状,并证明你的结论; (2)求证:

; (3)若∠ABP = 15?,△ABC 的面积为4,求PC 的长.

20. 如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于E ,连接AD . (1)求证:△CDE ∽△CAD ; (2)若AB =2,AC =2,求AE 的长.

21. 已知,如图,直线l 经过A (2,0)和B (0,4)两点,它与抛物线2

ax y =在第一象限内相交于点C ,又知△AOC 的面积为2,

(1)求直线AB 的函数关系式和a 的值.

(2)在y 轴上有点P ,使由P 、C 、B 三点组成的三角形与△AOB 相似,求点P 的坐标. (3)在y 轴上有一点Q ,使△COQ 是以OC 为底边的等腰三角形,求Q 点的坐标;

【巩固练习】

1. 阴影部分是一个正方形,求其边长.

P ⊙y AB P ⊙ABC △5m k QB

AQ

PB AP =3

2、ABCD 是边长为4的正方形,DEFG 是矩形,A 在EF 上,DG=5,求DE 的长.

3、已知CD 是Rt △ABC 斜边AB 上的高,求证:

22AC BC =AD

DB

.

4.四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE=CG ;(2)AN ·DN=CN ·MN .

5. 如图,已知DE ∥BC,CD 和BE 相交于O,若S △DOE ︰S △COB=9︰16,求AD ︰DB.

6、如图,S ADE ?=0.5S ABC ?,且∠1=∠B,求DE ︰BC.

7.已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:∠ADE =∠ABD ;(2)设AD =2,AE =1,求⊙O 直径的长.

8. Rt △ABC 中,有3个内接正方形,DF=9,GK=6,求PQ.

9. 如图,DF ∥EG ∥BC ,AD =DE =EB ,且把△ABC 分成三部分,求这三部分的面积之比S1∶S2∶S3.

A

N

M G

F

E

D

C

B

A

?

A

B

C

D E

O

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

相似三角形基本类型证明题

发现、构造相似三角形的基本图形证题 支其韶 吴复 相似三角形主要有四种基本类型。 一、平行线型 如图1,若DE ∥BC ,则△ADE ∽△ABC 。 例1. 已知,如图2所示,AD 为△ABC 的中线,任一直线CF 交AD 、AB 于E 、F 。 求证:FB AF 2ED AE = 。 例2. 已知,如图3所示,BE 、CF 分别为△ABC 的两中线,交点为G 。 求证:2 GF GC GE GB ==。 例3. 已知,如图4所示,在△ABC 中,直线MN 交AB 、AC 和BC 的延长线于X 、Y 、Z 。 求证: AY CY CZ BZ BX AX ??=1。

二、相交线型 如图5,若∠1=∠B ,则可由公共角或对顶角得△ADE ∽△ABC 。 例4. 已知,如图6所示,△ABC 中,AB=AC ,D 为AB 上的点,E 为AB 延长线上的点, 且AE AD AB 2 ?=。 求证:BC 平分∠DCE 。 例5. 已知,如图7所示,CD 为Rt △ABC 的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G 。 求证:FB FC FG 2 ?=。 三、旋转型 如图8,若∠BAD=∠CAE ,则△ADE 绕点A 旋转一定角度后与△ABC 构成平行线型的相似三角形。

如图9,直角三角形中的相似三角形,若∠ACB=?90,AB ⊥CD ,则△ACD ∽△CBD ∽△ABC 。 例6. 已知,如图10所示,D 为△ABC 内的一点,E 为△ABC 外的一点,且∠EBC=∠DBA ,∠ECB=∠DAB 。 例7. 已知,如图11所示,F 为正方形ABCD 的边AB 的中点,E 为AD 上的一点,AE=41 AD , FG ⊥CE 于G 。 求证:CG EG FG 2 ?=。 例8. 已知,如图12所示,在平行四边形ABCD 中,O 为对角线BD 上的点,过O 作直线分别交DC 、AB 于M 、N ,交AD 的延长线于E ,交CB 的延长线于F 。 求证:OE ·ON=OM ·OF 。

2019年中考几何相似三角形怎么证明

2019年中考几何相似三角形怎么证明 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 初中几何相似三角形怎么证明?很多同学一接触证明题就不会,教育网针对这个问题,给大家具体解答一下。 数学:相似三角形怎么证明 相似三角形定理 :平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 相似三角形判定定理1:两角对应相等,两三角形相似 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2:两边对应成比例且夹角相等,两三角形相似 判定定理3:三边对应成比例,两三角形相似

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2:相似三角形周长的比等于相似比 性质定理3:相似三角形面积的比等于相似比的平方 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DE F”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角

形相似。 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1.两个全等的三角形

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

初中数学经典相似三角形练习题(附)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?

(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. 5.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似? 7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.

8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似? 9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似. 10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.

2018年中考专题相似三角形

2018中考数学专题相似形 (共40题) 1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点. (1)求证:BD=CE; (2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长; 2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F. (1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF?AC. 3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; (2)若AD=3,AB=5,求的值. 4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G. (1)求证:BG=DE; (2)若点G为CD的中点,求的值.

5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论. 6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长. 7.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q. (1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE; (2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 1. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 B C D F A D B C B C

已知:∠1=∠2,CD=DE,EF 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 8.已知:AB知:AB=CD,∠A=∠D,求证:∠B=∠C A D B C B A C D F 2 1 E C D B D C B A F E A B C D A

10. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

15.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交 AP 于D .求证:AD +BC =AB . 16.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 17.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若 AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立请给予证明;若不成立请说明理由. P E D C B A D C B A

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

最新(相似三角形)证明题

1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。 2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由, 3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值, 4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。 5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45. 求AF的长。 6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。 求证: BM·PA=PN·BP

7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。 8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE∥AB交AC的延长线于点E。 9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结 CE,求证:DE2=AE?CE 10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长. 11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB 、AC上,这个正方形零件的边长是多少? N P A

9A-数学6-学生-相似三角形证明计算专题课-数学

源于名校,成就所托 教学内容:相似三角形证明计算专题课 【知识精要】 1、如何将相似三角形应用于证明线段相等或成比例或角相等。 方法:(1)证明三角形相似:遇到角相等,找另一角相等或角的两边线段是否成比例,若还证不出,观察已知条件是否能得到一组三角形相似,再利用相似后的性质进行证明;遇到线段成比例,一般先想SSS 或SAS ,或通过其它三角形相似证明。 (2)证明线段成比例或角相等:一般先想三角形相似,通过线段或角度之间的关系找到对应的三角形相似;如果图中还存在平行线,可考虑平行比例线段。 2、相似三角形中的线段、面积、角度之间的函数关系。 方法:(1)通过证明三角形全等或相似,找出线段与线段之间的关系;(2)通过平行或等底等高或相似比找到线段与面积的关系。 3、相似三角形中猜想类问题的初步 题型:由于题目中出现的图形运动(如旋转),原图形的很多量会发生相应的变换,还有部分一直保持不变,这是因为它们与图形运动没有直接关系。 方法:找特殊点,通过实际操作(如用尺子量,用量角器测)猜想出结论; 【热身练习】 1、如图,在ABC ?中,AD ⊥BC 于D ,AB=AC ,过B 点作射线BP 分别交AD 、AC 于E 、F 两点,与过点C 平行于AB 的直线交于P 点。证明:EP EF EB ?=2 。

2、如图,已知点E 是四边形ABCD 的对角线BD 上一点,且DAE BDC BAC ∠=∠=∠。(1)求证:AE CD AD BE ?=?;(2)根据图形特点,猜想DE BC 可能等于哪两条线段的比,并证明你的结论; A D B C E 【精解名题】 例1:如图,已知ABC ?中,BC AC ACB ==∠,900,点E 、F 在AB 上,0 45=∠ECF 。设ABC ?的面积为S ,求证:S BE AF 2=?。 A C B E F 例2:如图,已知ABC Rt ?中,3,5==BC AB ,P 点在AC 上(与A 、C 不重合),Q 在BC 上。设y BQ x PC ==,,(1)当?PCQ 相似于ABC ?时,写出y 与x 之间的函数关系式,并指出x 的取值范围;(2)AB PQ //时,当PQC ?的面积与四边形PABQ 的面积相等时,当PQC ?的周长与四边形PABQ 的周长相等时,分别求x 的值。(3)AB PQ //时,试问:在AB 上是否存在一点M ,使得PQM ?为等腰直角三角形,若不存在,请简要说明理由;若存在,请求出CP 的长。

相似三角形的比例关系及相似三角形证明的变式

相似三角形的比例关系及相似三角形证明的变式 【知识疏理】 一, 相似三角形边长比,和周长比以及面积比的关系! 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。 二, 相似三角形证明的变式 1,相似三角形当中常以乘积的形式出现,如: 例1、 已知:如图1,BE 、DC 交于点A ,∠E=∠C 。求证:DA ·AC=BA ·AE 图2 题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。 2,对特殊图形的认识 例2、已知:如图3,Rt △ABC 中,∠ABC=90o,BD ⊥AC 于点D 。 图3 (1) 图中有几个直角三角形?它们相似吗?为什么? (2) 用语言叙述第(1)题的结论。 (3) 写出相似三角形对应边成比例的表达式。 总结: (1) 有一对锐角相等的两个直角三角形相似; (2) 本题找对应角的方法是公共角及同角的余角相等; A B C A'B'C'图(4)图1 B A C

双垂直图形中的BD 2=AD ·CD ,AB 2=AD ·AC ,BC 2=CD ·CA ,BC ·AB=AC ·BD 等结论很重要,它们在计算、证明中应用很普遍,但需先证明两个三角形相似得到结论,再加以应用。在此基础上,将双垂直图形转化 为“公边共角”,讨论、探究, A B C 得到结论:由公边共角的两个相似三角形中,公边是两个三角形中落在一条直线上的两边的比例中项,即若△ABD ∽△ACB ,则AB 2=AD ·AC 。 【课堂检测】 一选择题 1、一个三角形的三边长为5,5,6,与它相似的三角形最长边为10,则后一个三角形的面积为( ) A 、3100 B 、20 C 、54 D 、25 108 2、如图,梯形ABCD 中,AB ∥CD ,如果S △ODC :S △BDC =1:3,那么S △ODC :S △ABC 的值是( ) A 、 51 B 、61 C 、71 D 、9 1 D C A D O P A B B C (第2题图) (第4题图) 3、已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比是1:4,则两底的比是( ) A 、1:2 B 、1:4 C 、1:8 D 、1:16 4、已知,梯形ABCD 中,AD ∥BC ,∠ABC=900,对角线AC ⊥BD ,垂足为P ,已知AD :BC=3:4,则BD :AC 的值是 ( ) A、3:2 B、2:3 C、3:3 D、3:4 5、如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC =

【2021版 九年级数学培优讲义】专题16 相似三角形的性质

专题16 相似三角形的性质 阅读与思考 相似三角形的性质有: 1. 对应角相等; 2. 对应边成比例; 3. 对应线段(中线、高、角平分线)之比等于相似比; 4. 周长之比等于相似比; 5. 面积之比等于相似比的平方. 性质3主要应用于三角形内接特殊平行四边形的问题,性质5进一步丰富了面积的有关知识,拓展了我们研究面积问题的视角. 如图,正方形EFGH 内接于△ABC ,AD ⊥BC ,设BC a =,AD h =,试用a 、h 的代数式表示正方形的边长. H G E F D C B A 例题与求解 【例1】如图,已知□ABCD 中,过点B 的直线顺次与AC ,AD 及CD 的延长线相交于E ,F ,G ,若5BE =,2EF =,则FG 的长是 . (“弘晟杯”上海市竞赛试题) 解题思路:由相似三角形建立含FG 的关系式,注意中间比的代换. G E F D C B A

【例2】如图,已知△ABC 中,DE ∥GF ∥BC ,且::1:2:3AD DF FB =, 则:ADE DFGE S S △四边形:FBCG S =四边形( ) (黑龙江省中考试题) A.1:9:36 B.1:4:9 C.1:8:27 D. 1:8:36 解题思路:△ADE ,△AFG 都与△ABC 相似,用△ABC 面积的代数式分别表示△ADE 、四边形DFGE 、四边形FBCG 的面积. G E F D C B A 【例3】如图,在△ABC 的内部选取一点P ,过P 点作三条分别与△ABC 的三边平行的直线,这样所得的三个三角形t 1,t 2,t 3的面积分别为4,9和49,求△ABC 的面积. (第二届美国数学邀请赛试题) 解题思路:由于问题条件中没有具体的线段长,所以不能用面积公式求出有关图形的面积,可考虑应用相似三角形的性质. t 1 t 2 t 3 I P H G E F D C B A 如图所示,经过三角形内一点向各边作平行线(也称剖分三角形),我们可以得到: ① △FDP ∽△IPE ∽△PHG ∽△ABC ; ② 1HG IE DF BC AC AB ++=; ③ 2DE FG HI BC AC AB ++=; ④ 2ABC S =△. 上述性质,叙述简捷,形式优美,巧妙运用它们解某些平面几何竞赛题,简明而迅速,奇特而匠心独

相似三角形几何题

1、如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。 求证:AC AF AB AE ?=?; 2为了加强视力保护意识,小明想在长为米,宽为米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、 丙位同学设计方案新颖,构思巧妙.(10分) (1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立 在对角线AC 上,问:甲生的设计方案是否可行?请说明理由. (2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处. (3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视 力表.如果大视力表中“E ”的长是,那么小视力表中相应“E ”的长是多少cm ? 3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(12分) (1)求证:AB ·AF =CB ·CD ; (2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2 . ①求y 关于x 的函数关系式; ②当x 为何值时,△PBC 的周长最小,并求出此时y 的值. 4已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1. (1)求证:△ABD ∽△CBA ; (2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长. H H (图1) (图2) (图3) ㎝ A C F 3m B 5m D A B C D E F P ·

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

相似三角形推理证明复习题(含答案)

相似三角形推理证明 1.(顺义18期末19)如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G . (1)填空:图中与△CEF 相似的三角形有 ; (写出图中与△CEF 相似的所有三角形) (2)从(1)中选出一个三角形,并证明它与△CEF 相似. 19. (1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形 ∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D ∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分) 2.(大兴18期末19)已知:如图,在△ABC 中,D ,E 分别为AB 、 AC 边上的点, 且AE AD 53= ,连接DE . 若AC =4,AB =5. 求证:△ADE ∽△ACB. 19.证明:∵ AC =3,AB =5,35AD AE = , ∴ AC AB AD AE =.……………………………… 3分 ∵ ∠A =∠A ,……………………………… 4分 ∴ △ADE ∽△ACB .……………………… 5分

3.(丰台18期末18)如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4, 求AC 的长. 18. 解:∵DE ∥BC , ∴AD AE DB EC =.……2分 即243EC =. ∴EC =6.……4分 ∴AC =AE + EC =10. ……5分 其他证法相应给分. 4.(怀柔18期末18)如图,在△ABC 中,D 为AC 边上一点,BC =4,AC =8,CD=2. 求证:△BCD ∽△ACB . 18. 证明:∵BC =4,AC =8,CD =2.…………………………1分 ∴………………………………………3分 又∵∠C =∠C …………………………………………………………………………4分 ∴ △BCD ∽△ACB ……………………………………………………………………5分

相似三角形培优题

1.(2013?雅安)如图,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= 2.(2013?恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=() 3.(2013?自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为() 4.(2013?新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为() A. 2 B.或C.或D. 2或或 5.(2013?孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A, ∠DCE=∠CBD,∠EDF=∠DCE.则EF等于() A.B.C.D.

6.(2013安顺)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= . 7.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 8.(2013东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值() A. 只有1个 B. 可以有2个 C. 可以有3个 D. 有无数个 9.(2013台湾、33)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?() A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙 10、(2013?黔东南州)将一副三角尺如图所示叠放在一起,则的值是. 11、(2013?牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为.

相似三角形经典证明题解析

相似三角形经典证明题 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?

2.如图,已知直线128:33 l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积; (2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; (3)若在运动中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? N

相关主题
文本预览
相关文档 最新文档