当前位置:文档之家› 超声波测距仪实验报告

超声波测距仪实验报告

超声波测距仪实验报告
超声波测距仪实验报告

超声波测距仪

目录

一.超声波测距原理 (3)

二.超声波测距硬件部分 (4)

1.单片机部分及显示电路 (5)

2.发射部分 (7)

3.接受部分 (7)

三.超声波测距仪软件部分 (9)

四.串口 (13)

五.调试 (11)

六.实验心得 (15)

七.实验结果 (16)

八.参考文献 (17)

附录一 (18)

附录二 (21)

一.超声波测距仪原理

超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定 )与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。

超声波仿真采用AT89C52,实际运用AT89S52单片机,晶振:11.0592M,单片机用P1.0口输出超声波换能器所需的40KHZ方波信号,利用外中断1口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用74HC245,位码用三极管驱动。

超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m的时间里,超声波发出到遇到返射物返回的距离,

超声波测距器的系统框图如下图所示:

二.超声波测距仪硬件部分

超声波学习板采用仿真用了AT89C512,实物用的是或AT89S52单片机,晶振:11.0592M,单片机用P1.0口输出超声波换能器所需的40KHZ方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用74HC245,位码用三极管驱动. 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S52来实现对CX20106A红外接收芯片和T40-16系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。T1计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

该测距装置是由超声波传感器、单片机、发射/接收电路和LED 显示器组成。

传感器输入端与发射接收电路相连,接收电路输出端与单片机相连接,单片机的输

出端与显示电路输入端相连接。其时序图如图1-2 所示。

1.单片机系统及显示电路

单片机采用89S51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定的时钟频率,减小测量误差。单片机用P1.0端口输出超声波转化器所需的40KHz方波信号,利用外中断0口检测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS245驱动,位码用PNP三极管驱动。单片机系统及显示电路如下图所示.

74HC245:总线驱动器,典型的TTL型三态缓冲门电路。

由于单片机等CPU的数据/地址/控制总线端口都有一定的负载能力,如果负载

超过其负载能力,一般应加驱动器。

另外,也可以使用74HC244等其他电路,74HC244比74HC245多了锁存器。

74HC245 引脚图

第1脚DIR,为输入输出端口转换用,DIR=“1”高电平时信号由“A”端输入“B”端输出,DIR=“0”低电平时信号由“B”端输入“A”端输出。

第2~9脚“A”信号输入输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”OE=“0”则A1输入B1输出,其它类同。如果DIR=“0”OE=“0”则B1输入A1输出,其它类同。

第11~18脚“B”信号输入输出端,功能与“A”端一样,不再描述。

第19脚OE,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B端才被启用,该脚也就是起到开关的作用。

第10脚GND,电源地。

第20脚VCC,电源正极。

2.发射部分

由单片机产生的40kHz 的方波需要进行放大,才能驱动超声波传感器发射超声波,发射驱动电路其实就是一个信号放大电路,本次试验所选用的是74HC04集成芯片,图1-3 为发射电路图。

74HC04 逻辑图:

3.接收电路

超声波接收头接收到超声波后,转换为电信号,此时的信号比较弱,必需经过放大。本系统采用了CX20106A对接收到的信号进行放大,接收电路如下图所示。

使用CX20106A集成电路对接收探头受到的信号进行放大、滤波。其总放大增益80db。以下是CX20106A的引脚注释。

1脚:超声信号输入端,该脚的输入阻抗约为40kΩ。

2脚:该脚与地之间连接RC串联网络,它们是负反馈串联网络的一个组成部分,改变它们的数值能改变前置放大器的增益和频率特性。增大电阻R1或减小C1,将使负反馈量增大,放大倍数下降,反之则放大倍数增大。但C1的改变会影响到频率特性,一般在实际使用中不必改动,推荐选用参数为R1=4.7Ω,C1=1μF。

3脚:该脚与地之间连接检波电容,电容量大为平均值检波,瞬间相应灵敏度低;若容量小,则为峰值检波,瞬间相应灵敏度高,但检波输出的脉冲宽度变动大,易造成误动作,推荐参数为3.3μf。

4脚:接地端。

5脚:该脚与电源间接入一个电阻,用以设置带通滤波器的中心频率f0,阻值越大,中心频率越低。例如,取R=200kΩ时,f0≈42kHz,若取R=220kΩ,则中心频率f0≈38kHz。

6脚:该脚与地之间接一个积分电容,标准值为330pF,如果该电容取得太大,会使探测距离变短。

7脚:遥控命令输出端,它是集电极开路输出方式,因此该引脚必须接上一个上拉电阻到电源端,推荐阻值为22kΩ,没有接受信号是该端输出为高电平,有信号时则产生下降。

8脚:电源正极,4.5~5V。

三.超声波测距仪软件部分

控制口发一个10US 以上的高电平,就可以在接收口等待高电平输出.一有输出就可以开定时器计时,当此口变为低电平时就可以读定时器的值,此时就为此次测距的时间,方可算出距离.如此不断的周期测,就可以达到你移动测量的值了。

模块工作原理:

(1)采用 IO 触发测距,给至少10us 的高电平信号;

(2)模块自动发送8 个40khz 的方波,自动检测是否有信号返回;

(3)有信号返回,通过IO 输出一高电平,高电平持续的时间就是

(4)超声波从发射到返回的时间.测试距离=(高电平时间*声速(340M/S))/2;

程序流程图下图,(a)为主程序流程图,(b)为定时中断子程序流程图,(c)

为外部中断子程序流程图。

1.延时

void delay_20us()

{ uchar bt ;

for(bt=0;bt<100;bt++);

}

2.中断程序

//外部中断0,用做判断回波电平

INTO_() interrupt 0 // 外部中断是0号

{

outcomeH =TH1; //取出定时器的值

outcomeL =TL1; //取出定时器的值

succeed_flag=1; //至成功测量的标志

EX0=0; //关闭外部中断

}

//****************************************************************

//定时器0中断,用做显示

timer0() interrupt 1 // 定时器0中断是1号

{

TH0=0xfd; //写入定时器0初始值

TL0=0x77;

switch(flag)

{

case 0x00:P0=ge; P2=0xfd;flag++;break;

case 0x01:P0=shi;P2=0xfe;flag++;break;

case 0x02:P0=bai;P2=0xfb;flag++;break;

case 0x03:P0=qian;P2=0xf7;flag=0;break;

}

}

3.显示部分

采用的共阳的显示管

uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9

uint distance[4]={0,0,0,0}; //测距接收缓冲区

//定时器0中断,用做显示

timer0() interrupt 1 // 定时器0中断是1号

{

TH0=0xfd; //写入定时器0初始值

TL0=0x77;

switch(flag)

{

case 0x00:P0=ge; P2=0xfd;flag++;break;

case 0x01:P0=shi;P2=0xfe;flag++;break;

case 0x02:P0=bai;P2=0xfb;flag++;break;

case 0x03:P0=qian;P2=0xf7;flag=0;break;

}

}

4.转换部分:

//显示数据转换程序

void conversion(uint temp_data)

{

uchar ge_data,shi_data,bai_data ,qian_data;

mm=qian_data=temp_data/1000;

temp_data=temp_data%1000;

bb=bai_data=temp_data/100 ;

temp_data=temp_data%100; //取余运算

c=shi_data=temp_data/10 ;

temp_data=temp_data%10; //取余运算

d=ge_data=temp_data;

qian_data=SEG7[qian_data];

bai_data=SEG7[bai_data];

shi_data=SEG7[shi_data];

ge_data =SEG7[ge_data];

EA=0;

qian=qian_data;

bai = bai_data;

shi = shi_data;

ge = ge_data ;

EA=1;

}

5.串口

5.1 发送字符

void send(char dat)

{

SBUF=dat;

while(TI==0);

TI=0;

}

5.2 C52比C51多了一个定时器2(T2),以下为T2的初始设置

// 定时器CT2用于串行通信波特率发生器 //

// 定义为波特率发生器以后,ET2自动失效 //

//////////////////////////////////////////////////////////////////

void uart_init(void)

{

T2CON = 0x35; // 0b0011 0101 16位串行波特率

// 发生器,自动重装

TH2 = 0xff ;

TL2 = 0xdc;

RCAP2H = 0xff;

RCAP2L = 0xdc;

TR2 = 1; // 启动时钟

SCON = 0x50; // 0b0111 1010 第一种工作方式

// 8位单机通信

PCON=0x00;

ES = 1; // 允许通信中断

EA = 1; // 中断打开

}

5.3 main函数中:

Void main()

{

uart_init();

……

send(tab[mm]);

send('.');

send(tab[bb]);

send(tab[c]);

send(tab[d]);

send(' ');

}

四.串口(上位机,下位机见软件部分)本次串口通信模块是用VB做得。见图:

五.调试

由于硬件有问题(怀疑是芯片损坏),我们用的是HC-SR04模块。在往AT89S52芯片中烧入程序代码后,发现数码管只显示3位,于是做了如下修改:

修改后,第四位显示。

之后发现用手挡在换能器前的时候,数码管显示的数字极度不稳定。后来发现,发射与接收探头需要测量一些平稳的平面,且小于15度的角度进行测量。经测验后,数字稳定了很多。

之后是串口通信。首先是用了串口助手,然后先拿别人的(做温度计的同学出)串口代码来用,发现根本无法显示。经同学提醒后得知,串口通信发送数据需要用到波特率发生器,而T0与T1定时器都已经被使用,后得知C52多了一个定时器2 T2,于是经过搜书与上网,自己给定时器2进行初始化配置,T2与T1、T2的初始化配置都不同。当RCLK与TCLK置位后,T2就作为波特率发生器使用。然后需要设置寄存器RCAP2H和RCAP2L,数值分别与相应的TH2和TL2相同。而且,TF2需要软件手动清零。在一系列地修改(比如全局变量与局部变量的冲突,波特率的修改,发送方式的修改,以及延时的增加等)后,终于发送成功。

六.实验心得

此次实验花费的心神较多,首先是设计电路,然后是单片机代码,由于我们做的是超声波测距仪,无法在单片机上仿真,所以比作温度计的同学更加繁琐。当买了元器件后,开始焊电路,用了将近2天的时间进行焊接与调整后,发现发射与接收部分还是不能用,万不得已用到别的模块。在烧了N次代码后终于成功了,期间,由于一开始一点动静都没有,所以在做实验的过程中,始终有一种患得患失的感觉。然后,开始做串口,在反反复复中,在不断的自己探索,与同学的讨论中,终于完成。

期间挫折不断,但是在有一点成功后就会有无与伦比的喜悦,很有成就感。在做串口的过程中,是与大家在一起的,感觉到和大家一起奋斗,一起患得患失,一起吃饭,很有一种温馨,很开心。

七.实验结果

八.参考文献

1.单片机原理及应用;李全利,仲伟峰,许军编著;2010年6月

2.51单片机应用开发范例大全;宋戈黄鹤松等编著;2010年2月

3. C51单片机C程序模板与应用工程实践;刘同法肖志刚彭继卫;

4. Visual Basic与RS-232串行通讯控制(最新版附光盘)/e时代网络编程系列;范逸之等编;2002-01-01

5.超声波测距系统设计

6.超声波测距板学习板

附录一.

电路图(仿真中没有cx20106A及74HC04这两种芯片,所以电路图只能用分段的形式进行。)

显示部分:

发射部分

接受部分:

部分整体(整体,将发射部分与接受部分有上面两图代替)

最小系统(实际):

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

基于51单片机超声波测距仪设计【开题报告】

毕业论文开题报告 电子信息工程 基于51单片机超声波测距仪设计 一、课题研究意义及现状 随着社会的发展,传统的测距方法在很多场合已无法满足人们的需求。例如在井深、液位、管道长度测量等场合。传统的测距方法根本无法完成测量任务。还有在很多要求实时测距的情况下。传统的测距方法也不能很好地完成测量任务。于是一种新的测距方法——超声波测距应运而生。超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。超声测距是一种非接触式的检测方式,它不受光线、被测对象颜色等影响。超声波传感器结构简单、体积小、信号处理可靠,所以检测比较迅速、方便、计算简单、易于做到实时控制。在移动机器人、汽车安全、海洋测量等上得到了广泛的应用。因此,本课题的研究是非常有实用和商业价值。 随着科学技术的快速发展,超声波测距仪的应用将会越来越广,这是一个蓬勃发展而又有无限前景的技术及产业领域。未来的超声波测距技术将朝着更高精度,更大应用范围,更稳定方向发展,死角问题也能得到解决。超声波测距仪将其通过51单片机来实现,成本低、精度高、操作简单、工作稳定可靠,非常适合于短距离测量定位。51单片机为许多控制提供了高度灵活和低成本的解决办法。充分利用它的片内资源,即可在较少外围电路的情况下构成功能完善的超声波测距系统,有很大的市场开发潜力。 二、课题研究的主要内容和预期目标 本课题主要设计一种基于单片机的超声测距系统。该系统以超声波的传播速度为确定条件,利用发射超声波与反射回波时间差来测量待测距离。课题主要内容包括硬件设计和软件设计。硬件设计主要包括单片机系统,超声波发射电路、超声波检测接收电路、数码管显示电路等。软件部分拟采用单片机C语言编程,便于维护和修改,主要是利用中断完成信号发射和接受中间所耗时间的计算,并进行相关的数据处理以得到准确的距离。本课题要求测量精确、可靠、显示正确。 三、课题研究的方法及措施 先通过上网、图书馆等各种途径,搜索与本课题相关的资料进行大量的阅读,从而从整体上对这个课题进行认识。然后根据查阅的资料作出总体方案的设计框图以及确定本设计的实现方法。本设计总体框图如下:

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

开题报告书—泊车用超声波测距仪的研制

- - -.. 毕业设计(论文) 开题报告 题目泊车用超声波测距仪的研制(软、硬件)

毕业设计(论文)开题报告学生:班级:电子信息工程(2)班

一、研究背景 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单。可用于如汽车倒车提醒、液位、井深、管道长度的测量等场合,也可应用于航海、宇航、石油化工等工业领域。在泊车时可用于倒车,有效避免由于倒车造成的经济损失和人身安全问题。因此

研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。 超声波作为一种检测技术,采用的是非接触式测量,由于它具有不受外界因素的影响,对环境有一定的适应能力,且操作简单、测量精度高等优点而被广泛应用。然而超声波测距在实际应用中也有很多局限性。由于超声波在传播过程中,声压会随着距离的增大而呈指数规律衰减,远目标的回波信号幅度小、信噪低,用固定阀值的比较器检波回波,可能导致越过门槛的时间前后移动,从而影响计时的准确性,这必然会影响到检测的准确性。以及超声波脉冲在空气中传播本省有多重的反射路径,均导致回波信号被展宽,也使侧俩个产生较大的误差,影响了测距的分辨率。 二、主要内容 本课题采用单片机控制,超声波测量距离,最终显示距离并声光报警。硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路、超声波接收电路和声光报警电路等模块。单片机输出超声波换能器所需的方波信号,并监测超声波接收电路输出的返回信号。通过硬件和软件实现各个功能模块。可以有效地解决汽车倒车时避开行人和建筑物等问题,保障人身的安全。 设计要求: 1.两路收发同体的空气超声探头,实现汽车尾部左后和右后1.5米内的障碍物探测。 2.单片机组成的控制电路和超声波发射接收电路 3.距离显示电路和声光报警电路 4.探测距离0.25m—1.5m

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

超声波测距课程设计样本

目录 前言 1课题设计目及意义----------------------------------------------- 1 1.1设计目----------------------------------------------------- 1 1.2设计意义----------------------------------------------------- 1 1.3课题设计任务和规定------------------------------------------- 1 正文 1 课程方案设计------------------------------------------------- 2 1.1系统整体方案--------------------------------------------------- 2 1.2系统整体方案论证-------------------------------------------- 2 2系统硬件构造设计------------------------------------- 2 2.1 51系列单片机功能特点及测距原理------------------------------ 3 2.1.1 51系列单片机功能特点------------------------------------- 3 2.1.2 单片机实现测距原理 ----------------------------------------- 3 2.2 超声波电路构造------------------------------------------------ 4 2.3 超声波测距系统硬件电路设计---------------------------------- 4 2.4 PCB版图设计---------------------------------------------------- 5 3 系统软件设计----------------------------------------- 6 3.1 超声波测距仪算法设计---------------------------------------- 7 3.2 主程序流程图--------------------------------------------------- 7 3.3单片机某些C语言程序-------------------------------------------- 8 3.4超声波测距某些C语言程序-------------------------------------- 11

超声波测距开题报告

毕业设计(论文)开题报告 题目名称基于单片机的超声波测距仪 学生姓名专业班级学号 一、选题的目的和意义: 超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法。由于超声波指向性好,能力消耗缓慢,在介质中传播的距离较远,因而超声波经常被用于距离的测量,利用超声波检测距离设计比较简单,计算处理也比较简单,并且在测量精度方面也能达到日常使用要求。超声波是一种频率在20khz以上的声波,作为一种特殊的声波,同样具有声波传输的基本物理特性:反射、折射、干涉、衍射和散射,与物理联系紧密,应用灵活。并且更适合于高温、高粉尘、高湿度和强电磁干扰等恶劣环境下工作。无论从精度还是可靠性方面,超声波测距都做得比较好。利用超声波测距往往比较迅速、方便、计算简单、易于做到实时控制。具有广泛的应用前景。 二、研究概况及发展趋势综述 历史上使用超声波来测量距离是从第二次世界大战时海军的声纳技术的发展开始。声纳是一种利用声波在水下测定目标距离和运动速度的仪器。经过几个世纪,科 学家们对此反复研究,最终发现了超声波的原理。 超声波测距应用于各种工业领域,如工业自动控制,建筑工程测量和机器人视觉 识别等方面。超声波作为一种检测技术,采用的是非接触式测量,由于它具有不受外 界因素影响,对环境有一定的适应能力,且操作简单、测量精度高等优点而被广泛应用。这些特点可使测量仪器不受被测介质的影响,大大解决了传统测量仪器存在的问题,比如,在粉尘多情况下对人引起的身体接触伤害,腐蚀性质的被测物对测量仪器 腐蚀,触电接触不良造成的误测等。此外该技术对被测元件无磨损,使测量仪器牢固 耐用,使用寿命加长,而且还降低了能量耗损,节省人力和劳动的强度。因此,利用 超声波检测既迅速、方便、计算简单,又易于实时控制,在测量精度方面能达到工业 实用的要求。 然而超声波测距在实际应用也有很多局限性。由于超声波在传播过程中,声压会 随距离的增大而呈指数规律衰减,远目标的回波信号幅度小、信噪比低,用固定阀值 的比较器检测回波,可能导致越过门槛的时间前后移动,从而影响计时的准确性,这 必然会影响到测距的准确度。另外就是构成超声波传感器的压电陶瓷片在压电的双向 转换过程中,存在惯性、滞后等现象,以及超声波脉冲在空气中传播本身及多重的反 射路径,均导致回波信号被展宽,也使测量产生较大的误差,影响了测距的分辨率。其他如温度,风速等也会对测量造成一定的影响。 计量学在制造业中越来越重要。直接在机器上测量尤其能推动制造业的发展。目 前为止大部分还是采用视觉的或触觉的测量方法。但是墙的厚度就不能用这些来测量,因此德国人把超声系统结合到机器设计出了测距方法。随着超声波的发展,早在2000年时英国人就设计出了可观察、识别并测距的超声波集成系统。

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

超声波测距仪的设计开题报告

1 课题来源及研究的目的及意义 超声波是一种频率在20kHz以上的机械波,在空气中的传播速度约为340m/s(20℃)。由于超声波测距是一种非接触检测技术,不受光线、被测对象颜色的影响,比其他仪器更卫生,具有不污染、高可靠、长寿命等特点,被广泛应用于纸业、矿业、电厂、化工业、污水处理厂、食品、水文、等行业中,可在不同环境中进行距离的准确度在线标定,可直接用于水酒精、糖等液位控制,能达到工业实用的指标要求。还可以用于移动机器人的视觉系统中,这样可使机器人自动躲避障碍物行走,及时获得障碍物的位置信息,同时超声波测距系统具有以上的这些特点,在汽车倒车雷达的研制方面也得到了广泛应用[1]。 超声波测距仪利用超声波收发探头测量仪器到墙面或其他固定物体的距离,并通过液晶屏显示出来,在实现功能的基础上,尽可能提高测量精度。测量精度要达到分米级。 2 国内外在该方向的研究现状及分析 目前国际国内,在超声波测距方面的研究方向和水平的不同,主要体现在对测距原理、超声波信号处理方法和超声波测距处理器的选用上。常见的超声波测距原理分为渡越时间法和相位差法两种。信号的处理方法大致分为阈值检验法、互相关延时估计法、伪随机码扩频测距法和最小均方法四种。在处理器方面大多以单片机为主,其中以51系列应用最为广泛,采用运算速度更快,效率更高dsp芯片作为处理器,也正成为一个非常活跃的研究方向。目前已研制的超声波测距仪中,量程一般为3-12m,美国AIRMAR公司生产的airducer AR30超声波传感器的作用距离可达30m,但价格昂贵,准确度方面已控制在测量误差的0.4%左右,与真值的差距在厘米级的范围内,若采用互相关或伪随机法,最高可控制在0.05m内,在提高精确度方面,超声波测距还有很大的发展潜力和上升空间[2]。 3 主要研究内容 设计出以单片机为核心控制声波测距仪系统。 (1)研究并总结超声波测距仪设计的基本方法及研究现状; (2)掌握以AT89S51芯片为核心的单片机系统的使用方法; (3)研究74LS04组成的超声波发射电路、声波处理模块、液晶显示等器件组成; (4)研究依据实际的测量精度要求添加温度补偿电路的方法。

超声波测距仪的设计

超声波测距仪的设计 摘要:电子测距仪要求测量范围在0.10~5.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于液位、井深、管道长度的测量等场合。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 该测距仪采用NE555电路、两级放大电路和电平比较电路实现了超声波的发射与接收。单片机为该测距仪的核心单元,实现发射电路的控制和接收数据的处理。本系统在10~200cm的距离内测量精度可达±0.5cm,并且易于调试,成本低廉,具有很强的实用价值和良好的市场前景。 关键字:超声波传感器,测距仪,PIC16F876A Abstract:Ultrasonic Ranging, can be used in car reversing, the construction site and the location of some industrial site monitoring, can also be used if the level, depth and length of the pipeline, such as measurement occasions. Measurement of the requirements in the 0.10-5.00 m, precision 1 cm, with the measurement of detected objects without direct contact, being able to clearly show stable measurement results. Because of the strong point of ultrasonic energy consumption slow, medium of communication in the longer distance, thus frequently used ultrasonic distance measurement, such as the range finder and level measurement and so on can be achieved by ultrasound. Use of ultrasonic testing is often more rapid, convenient and simple terms, easy to achieve real-time control, and measurement accuracy can meet the practical requirements of industry, in the mobile robot has been developed on a wide range of applications.

基于单片机的超声波测距报警系统设计

综合性课程设计报告基于proteus仿真软件的超声波测距报警控制器设计 院系:计算机与通信工程学院 专业:电子信息工程 学号: 姓名: 指导教师: 设计时间:2012/6/27 综合课程设计任务书

专业:电子信息工程班级:4091603: 设计题目:基于proteus仿真软件的超声波测距报警控制器设计 一、设计实验条件 keil C和proteus仿真软件 二、设计任务 1)总体功能设计 2)硬件电路设计 3)软件设计 4)工作总结 三、设计说明书的容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.主体设计部分(各部分设计容、总结分析、结论等) 4.结束语 5.参考文献 (答辩时间18周星期日晚7:30,地点:综合楼1313室) 四、设计时间与设计时间安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、实验、收集资料:2 天 设计计算、绘制技术图纸:5 天 编写课程设计说明书:2 天 答辩:1 天 目录

一、设计题目 (2) 二、设计任务及要求 (3) 三、设计容 (3) 1.绪论 (3) 2.总体方案 (4) 2.1 总体设计方案 (4) 2.2超声波测距框图 (4) 3.系统硬件设计 (5) 3.1 硬件设计方案 (5) 3.2 各主要模块的硬件设计 (6) 4.系统软件设计 (10) 4.1 程序设计 (10) 4.2 程序流程图 (10) 四、结束语 (13) 五、参考文献 (13) 附录A 系统仿真图 (14) 附录B程序代码 (15) 一、设计题目 基于proteus仿真软件的超声波测距报警控制器设计

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

超声波测距仪的工作原理2

超声波测距 (程序原理图安装图) 概述 超声波测距学习板,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量范围在0.27~4.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。 超声波测距原理 超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 CJ-3A超声波学习板采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用 74LS244,位码用8550驱动. 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离,

单片机课程设计超声波测距离

湖南工程学院 课程设计任务书 课程名称单片机原理与应用 课题超声波测距系统设计 专业班级自动化0901班 学生姓名段志勤 学号 200901020130 指导老师李晓秀 审批 任务书下达日期 2012 年 5 月 30 日任务完成日期2012 年 6 月 13 日

目录 序言 (6) 第一章、总体设计原理 (6) 1.1、超声波测距原理 (6) 1.2、超声波测距系统框图 (8) 1.3、程序流程图 (10) 第二章、系统硬件设计 (11) 2.1、超声波模块电路 (11) 2.2、数码管显示电路 (12) 2.3、单片机最小电路 (12) 2.4、键盘连接 (13) 第三章、系统软件设计 (14) 3.1、主程序流程图 (14) 3.2、子程序设计 (15) 第4章、调试结果 (21) 实验总结 (23) 参考文献 (24) 附录 A、整体电路图 (25) 附录B、程序清单 (26)

序言 由于超生波测距是一种非接触检测技术,不受光线、被测对象颜色限制,较其他仪器更卫生,更耐潮湿、粉尘、高温、腐蚀等恶劣环境,具有少维护,不污染,高可靠,长寿命等特点。因此,超声波测距有着广泛的应用领域。利用超声波检测往往比较迅速,简单,计算方便,易于实现实时控制,并且在测量精度方面能达到工业使用要求。超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如:液位、井深、管道长度等场合。 第一章、总体设计原理 本章主要介绍单片机超声波测距的主要原理,包括超声波测距的原理和STC89C52单片机的原理 1.1、超声波测距原理 谐振频率高于20kHz的声波被称为超声波。超声波为直线传播频率越高、绕射能力越弱、但反射能力越强。利用超声波的这种性能就可制成超声传感器、或称为超声换能器、它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能、向外发送超声波、反之,当换能器处在接收状态时它可将声能(机械能)转换为电能。 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超 声波发生器内部结构如图1-1所示,它有两个压电晶片和一个共振板。

毕业设计开题报告—超声波测距

毕业设计(论文)开题报告学生姓名:学号: 所在学院: 专业:通信工程 设计(论文)题目:基于STM32的超声波测距仪 指导教师: 2014年2月25日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一、课题研究背景、目的和意义 传感器技术是现代信息技术的主要内容之一,信息技术主要包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外线传感器、压力传感器等等,其中超声波传感器在测量方面有着广泛、普遍的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。 超声波测距是一种典型的非接触测量方式。超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。且超声波测距系统结构简单、电路易实现、成本低、速度快,所以在工业自动控制、建筑工程测量和机器人视觉识别等领域应用非常广泛。 超声波作为一种特殊的声波,同样具有声波传输的基本物理特性、反射、折射、干涉、衍射、散射与物理紧密联系,应用灵活。它是一种指向性强,能量消耗慢的波。它在介质中传播的距离较远,因而超声波经常用于距离的测量,可解决超长度的测量。二、超声波测距仪的整体设计思路 超声波测距一般采用渡越时间法。超声波测距的实质是时间的测量,即:用超声脉冲激励超声探头向外发射超声波,同时接收从被测物体反射回来的超声波(简称回波),通过精确测量从发射超声波至接收回波所经历的射程时间t(渡越时间),按下式计算超声波探头与被测物体之间的距离S,即 S=12ct 其中,c 为空气介质中声波的传播速度。在常温下,超声波的传播速度为340 m/s,

超声波测距仪说明书

湄洲湾职业技术学院超声波测距仪说明书 系别: 自动化工程系 年级:10级专业: 电气自动化技术姓名: 郑学号:1001020245 导师姓名: 李志杰职称: 讲师 2013年05月29日

目录 1 前言 (1) 2 系统设计参数要求 (2) 3 系统设计 (3) 3.1系统设计总体框图 (3) 3.2超声波测距原理 (4) 3.3系统构成 (5) 3.4硬件电路设计 (5) 3.5传感器介绍 (6) 3.5.1超声波传感器原理 (6) 4 系统模块 (7) 4.1超声波发射模块 (7) 4.2超声波接收模块 (8) 4.3LCD显示模块 (9) 4.4系统印刷电路板的制作图 (9) 5 系统软件设计 (10) 5.1超声波测距的算法 (10) 5.2程序流程图 (10) 5.3超声波温度补偿子程序流程图 (11) 5.4超声波测距子程序流程图 (12) 5.5系统操作说明 (13) 5.6系统操作注意事项 (13) 参考文献 (14) 致谢语 (15) 系统附录 (16) 附录一原理总图 (16) 附录二印刷电路图 (17) 附录三元件清单 (18) 附录四程序流程 (19)

1 前言 本设计是以单片机技术为基础,实现对前方物体距离的测量。根据超声波指向性强,能量消耗慢,在介质中传播距离远的特点,利用超生波传感器对前方物体进行感应,经过单片机中的程序对超声波传感器发射和接收的超声波信号进行分析和计算处理,最后将处理结果在LCD1602上显示。STC89C52单片机的超声波测距系统,此系统根据超声波在空气中传播反射原理,把超声波传感器作为接口部件,利用超声波在空气中传播的时间差来测量距离,设计了一套超声波检测系统。该系统设计主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个基本模块构成,用接收部分接收超声波。本设计利用两个中断,在发射信号时,打开定时器中断0和外部中断0使定时器计时,接收到发射超声波信号时,外部中断0关闭中断,这时定时器中断0计录的时间就为超声波传播经过测距仪到前方物体的来回时间。利用公式S=T×V/2(V为超生波传播速度,本设计设定值340m/s),经过单片机处理得到距离值S并且通过LCD1602显示出来。除此外系统还能显示系统的实时时间。

超声波测距课程设计

课程设计 课程:xxxx课程设计 题目:超声波测距仪 所属院(系) 电气工程学院专业班级自控1201 姓名袁玉坤学号:1217014031 指导老师王春侠 完成地点电气学院实验室 2015年 12 月 08日

目录 摘要 (1) 一课题的方案设计与论证 (2) 1.1超声波测距系统设计的目的和要求 (2) 1.2 超声波测距系统的工作原理 (2) 1.3 方案论证 (4) 1.3.1结构图 (4) 1.3.2 系统整体方案的论证 (5) 二硬件设计 (6) 2.1单片机电路 (6) 2.2超声波集成模块 (6) 2.2.1超声波集成模块实物图 (6) 2.2.2超声波集成模块参数 (7) 2.2.3接口定义 (7) 2.2.4超声波集成模块时序图 (7) 2.2.5注意事项 (8) 2.3 显示模块(四位共阳极数码管) (8) 2.4电源模块 (9) 三软件设计 (10) 3.1 超声波模块 (10) 3.2 显示模块 (10) 3.3 主程序流程图 (10) 四系统调试 (13) 4.1硬件调试 (13) 4.1.1 LED灯不亮的原因 (13) 4.1.2 LED显示 (13) 4.1.3软件调试 (13) 五结论 (14) 六参考文献 (15) 七附录 (16) 附录A:仿真图 (16) 附录B:元器件清单 (17) 附录C:源程序 (18)

摘要 随着科技的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。控制系统核心部分就是超声波测距仪的研制。因此,设计好的超声波测距仪就显得非常重要了。 本设计采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。整个电路采用模块化设计,由主程序、预置子程序、发射子程序、接收子程序、显示子程序等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。 经实验证明,这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以有效地解决汽车倒车、建筑施工工地以及一些工业现场的位置监控。 关键词:AT89c51;超声波;测距

相关主题
文本预览
相关文档 最新文档