当前位置:文档之家› matlab课程设计----连续时间信号傅里叶级数分析及MATLAB实现

matlab课程设计----连续时间信号傅里叶级数分析及MATLAB实现

matlab课程设计----连续时间信号傅里叶级数分析及MATLAB实现
matlab课程设计----连续时间信号傅里叶级数分析及MATLAB实现

课程设计任务书

题目:

连续时间信号傅里叶级数分析及MATLAB实现

初始条件:

MATLAB 6.5

要求完成的主要任务:

深入研究连续时间信号傅里叶级数分析的理论知识,利用MATLAB强大的图形处理功能,符号运算功能以及数值计算功能,实现连续时间周期信号频域分析的仿真波形。

1.用MATLAB实现周期信号的傅里叶级数分解与综合。

2.用MATLAB实现周期信号的单边频谱及双边频谱。

3.用MATLAB实现典型周期信号的频谱。

4.撰写《MATLAB应用实践》课程设计说明书。

时间安排:

学习MATLAB语言的概况第1天

学习MATLAB语言的基本知识第2、3天

学习MATLAB语言的应用环境,调试命令,绘图能力第4、5天

课程设计第6-9天

答辩第10天

指导教师签名:年月日

系主任(或责任教师)签名:年月日

目录

摘要.................................................................................................................................................. I ABSTRACT ................................................................................................................................... II 绪论. (1)

1 MATLAB内容简介 (2)

1.1MATLAB语言功能 (2)

1.2MATLAB语言特点 (2)

2 连续时间周期信号的傅里叶级数—CTFS (3)

2.1连续时间周期信号的分解 (3)

2.1.1 三角形式的傅里叶级数 (3)

2.1.2 指数形式的傅里叶级数 (4)

2.2连续时间周期信号的傅里叶综合 (4)

3 连续时间周期信号的频谱分析 (6)

4 周期信号的傅里叶级数分解与综合的仿真波形 (8)

4.1实现流程 (8)

4.2MATLAB算法提示 (8)

4.3程序运行结果 (9)

5连续时间周期信号的频谱分析的仿真波形 (10)

5.1实现流程 (10)

5.2MATLAB算法提示 (11)

5.3程序运行结果及分析 (12)

5.3.1 程序运行结果 (12)

5.3.2脉冲宽度与频谱的关系 (13)

5.3.3脉冲周期与频谱的关系 (15)

6 典型周期脉冲的频谱 (18)

6.1周期方波脉冲频谱的MATLAB实现 (18)

6.2周期三角波脉冲频谱的MATLAB实现 (20)

结束语 (23)

致谢 (24)

参考文献 (25)

附录 (26)

摘要

MATLAB目前已发展成为由MATLAB 语言、MATLAB 工作环境、MATLAB 图形处理系统、MATLAB 数学函数库和MATLAB 应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计则在深入研究连续时间信号傅里叶级数分析理论知识的基础上,利用MATLAB强大的图形处理功能、符号运算功能以及数值计算功能,通过MATLAB编程进行图形功能仿真,从而实现连续时间周期信号频域分析的仿真波形,包括以下内容:用MATLAB实现周期信号的傅里叶级数分解与综合的波形;用MATLAB实现周期信号的单边频谱及双边频谱的波形与分析;用MATLAB实现典型周期信号的频谱的波形。

关键词:MATLAB;图形处理;傅里叶级数;周期信号;频谱

Abstract

MATLAB now evolved into MATLAB language, MATLAB working environment, MATLAB graphics processing systems, MATLAB math library and the MATLAB application program interface has five major components of the set of numerical computation, graphics processing, program development as one powerful system. The curriculum design, in-depth study Fourier series analysis of continuous-time signal on the basis of theoretical knowledge, using MATLAB a powerful graphics processing capabilities, symbolic computing and numerical computing capabilities, through the functional simulation MATLAB graphical programming in order to achieve continuous time periodic signal frequency domain analysis of the simulation waveforms, including the following: realization of periodic signals using MATLAB Fourier series decomposition and integration of the waveform; periodic signals using MATLAB to achieve unilateral and bilateral spectrum waveform and spectrum analysis; using MATLAB to achieve a typical cycle of the signal wave spectrum.

Keywords: MATLAB; graphics processing; Fourier series; periodic signal; Spectrum

绪论

在科学技术飞速发展的今天,计算机正扮演着愈来愈重要的角色。在进行科学研究与工程应用的过程中,科技人员往往会遇到大量繁重的数学运算和数值分析,传统的高级语言Basic、Fortran 及C 语言等虽然能在一定程度上减轻计算量,但它们均要求应用人员具有较强的编程能力和对算法有深入的研究。另外,在运用这些高级语言进行计算结果的可视化分析及图形处理方面,对非计算机专业的普通用户来说,仍存在着一定的难度。MATLAB 正是在这一应用要求背景下产生的数学类科技应用软件。它具有的顶尖的数值计算功能、强大的图形可视化功能及简洁易学的“科学便捷式”工作环境和编程语言,从根本上满足了科技人员对工程数学计算的要求,并将科技人员从繁重的数学运算中解放出来,因而越来越受到广大科技工作者的普遍欢迎[1]。

MATLAB 是matrix 和laboratory 前三个字母的缩写,意思是“矩阵实验室”,是MathWorks 公司推出的数学类科技应用软件。其Dos 版本(MATLAB 1.0)发行于1984 年,现已推出了Windows 版本(MATLAB 5.3)。经过十多年的不断发展与完善,MATLAB 已发展成为由MATLAB 语言、MATLAB 工作环境、MATLAB 图形处理系统、MATLAB 数学函数库和MATLAB 应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。MATLAB 由“主包”和三十多个扩展功能和应用学科性的工具箱(Toolboxs)组成。

MATLAB 语言是以矩阵计算为基础的程序设计语言,语法规则简单易学,用户不用花太多时间即可掌握其编程技巧。其指令格式与教科书中的数学表达式非常相近,用MATLAB 编写程序尤如在便笺上列写公式和求解,因而被称为“便笺式”的编程语言。另外,MATLAB 还具有功能丰富和完备的数学函数库及工具箱,大量繁杂的数学运算和分析可通过调用MATLAB 函数直接求解,大大提高了编程效率,其程序编译和执行速度远远超过了传统的C 和Fortran 语言,因而用MATLAB 编写程序,往往可以达到事半功倍的效果。在图形处理方面,MATLAB 可以给数据以二维、三维乃至四维的直观表现,并在图形色彩、视角、品性等方面具有较强的渲染和控制能力,使科技人员对大量原始数据的分析变得轻松和得心应手。

正是由于MATLAB 在数值计算及符号计算等方面的强大功能,使MATLAB一路领先,成为数学类科技应用软件中的佼佼者。目前,MATLAB 已成为国际上公认的最优秀的科技应用软件。MATLAB 的上述特点,使它深受工程技术人员及科技专家的欢迎,并很快成为应用学科计算机辅助分析、设计、仿真、教学等领域不可缺少的基础软件。

1 MATLAB内容简介

1.1 MATLAB语言功能

MATLAB功能丰富,可扩展性强。MATLAB软件包括基本部分和专业扩展两大部分的功能。基本部分包括:矩阵的运算和各种变换;代数和超越方程的求解;数据处理和傅立叶变换;数值部分等等,可以充分满足大学理工科本科的计算需要。扩展部分称为工具箱。它实际上是用MATLAB的基本语句辩称的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。

MATLAB 具有以下基本功能:

(1)数值计算功能;

(2)符号计算功能;

(3)图形处理及可视化功能;

(3)可视化建模及动态仿真功能。

1.2 MATLAB语言特点

MATLAB 给用户带来的是最直观、最简洁的程序开发环境。它具有以下特点:

(1)语言简洁紧凑,使用方便灵活,库函数极其丰富。MATLAB 程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。

(2)运算符丰富。由于MATLAB 是用C 语言编写的,MATLAB 提供了和C语言几乎一样多的运算符,灵活使用MATLAB 的运算符将使程序变得极为简短。

(3)MATLAB 既具有结构化的控制语句(如for 循环,while 循环,break 语句和if 语句),又有面向对象编程的特性。

(4)程序限制不严格,程序设计自由度大。例如,在MATLAB 里,用户无需对矩阵预定义就可使用。

(5)程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。

(6)MATLAB 的图形功能强大。在FORTRAN 和C 语言里,绘图都很不容易,但在MATLAB 里,数据的可视化非常简单。MATLAB 还具有较强的编辑图形界面的能力。

(7)功能强大的工具箱是MATLAB 的另一特色。MATLAB 包含两个部分:核心部分和各种可选的工具箱。核心部分中有数百个核心内部函数。其工具箱又分为两类:功能性工具箱和学科性工具箱。功能性工具箱主要用来扩充其符号计算功能,图示建模仿真功能,文字处理功能以及与硬件实时交互功能,而学科性工具箱是专业性比较强的,如control,toolbox,signl proceessing,toolbox,commumnication toolbox 等。

2 连续时间周期信号的傅里叶级数—CTFS

周期信号是定义在()-+∞∞,区间,按一定时间间隔(周期T )不断重复的信号。它可表示为()()f t =f t+m T ,式中m 为任意整数,T 为周期,周期的倒数称为该信号的频率[2]。

2.1 连续时间周期信号的分解

设有周期信号 ()f t ,它的周期为T ,角频率2=2f=

T

ππΩ,且满足狄里赫里条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。傅里叶级数有三角形式和指数形式两种[2]。 2.1.1 三角形式的傅里叶级数

三角形式的傅里叶级数为:

()()()0

122t cos cos 2a f a t a t =+Ω+Ω()()12sin sin 2b t b t +???+Ω+Ω+???

=()()011

cos sin 2n n n n a a n t b n t ∞∞==+Ω+Ω∑∑ 1,2,3,n =??? ()21- 式中系数n a 、n b 称为傅里叶系数,可由下式求得。

()()()()()22

22

22

012cos 2sin T

T T

T T

T n n a f t dt T a f t n t dt T b f t n t dt T ---==Ω=Ω??? ()22- 如果将()21-式中同频率的正弦和余弦分量合并,则三角形式的傅里叶级数可表示为:

()()01

t cos 2n n n A f A n t ?∞==+Ω+∑ 1,2,3,n =??? ()23- 上式中

001,2,arctan n n n n A a A n a b ???=??==??????=-??

()24-

00

cos ,1,2,sin n n n n n n a A a A n b A ??=??==?????=-?

由式()22-可见;傅里叶系数n a 和n b 都是n 或()n Ω的函数,其中n a 是n 或()n Ω的偶函数,即有n a -=n a ;而n b 是n 或()n Ω的奇函数,即有n b -=n b -。

由式()24-可见,n A 是n 或()n Ω的偶函数,即有n A -n A =;而n ?是n 或()n Ω的奇函数,即有n ?-n ?=-。

式()23-表明,任何满足狄里赫里条件的周期信号可分解为一系列不同频率的余弦(或正弦)分量的叠加。其中第一项02A 是常数项,它是周期信号中所包含的直流分量;第二项()11cos A t ?Ω+称为基波或一次谐波,它的角频率与原周期信号相同,1A 是基波振幅,1?是基波初相角;第三项()22cos 2A t ?Ω+称为二次谐波,它的频率是基波频率的二倍, 2A 是二次谐波振幅,2?是其初相角;依此类推,还有三次、四次、… 等谐波。一般而言,()cos n n A n t ?Ω+称为n 次谐波,n A 是n 次谐波振幅,n ?是其初相角。式()23-表明,周期信号可以分解为各次谐波分量的叠加。

2.1.2 指数形式的傅里叶级数

指数形式的傅里叶级数表达式为:

(),0,1,2,3,jn t n n f t F e n ∞Ω=-∞=

=±±±???∑ ()25-

即周期信号可分解为一系列不同频率的虚指数信号之和,式中n F 称为傅里叶复系数,

可由下式求得:

()22

1T

T jn t n F f t e dt T -Ω-=? ()26- 2.2 连续时间周期信号的傅里叶综合

任何满足狄里赫里条件的周期信号,可以表示成式()21-或()25-的和式形式,()

21-

或()25-式常称为CTFS 综合公式。

一般来说,傅里叶级数系数有无限个非零值,即任何具有有限个间断点的周期信号都一定有一个无限项非零系数的傅里叶级数表示。但对数值计算来说,这是无法实现的。在实际的应用中,但我们可以用有限项的傅里叶级数求和来逼近。即对有限项和

()N jn t n n N f t F e Ω=-=

= ()()011

cos sin 2N N n n n n a a n t b n t ==+Ω+Ω∑∑ ()27- 当N 值取得较大时,上式就是原周期信号()f t 的一个很好的近似。()27-式常称作()f t 的截断傅里叶级数表示。

MATLAB 的符号积分函数()int 可以帮助我们求出连续时间周期信号的截断傅里叶级数及傅里叶表示。

求积指令int 的具体使用格式如下:

()int int ,f f ν=给出符号表达式f 对指定变量ν的(不带积分常数的)不定积分。

()int int ,,,f f a b ν=给出符号表达式f 对指定变量ν的定积分。

3 连续时间周期信号的频谱分析

如前所述,周期信号可以分解成一系列正弦(余弦)信号或虚指数信号之和,即 ()N jn t n n N f t F e Ω=-=

=()()011

cos sin 2N N n n n n a a n t b n t ==+Ω+Ω∑∑ ()31- 其中,()1122

n j n n n n F A e a jb ?==- ()32-

或1||2arctan n n n n n F A b a ?=

=??=-?? 幅度和相位 为了直观地表示出信号所含各分量的振幅n A 或||n F ,随频率的变化情况,通常以角频率为横坐标,以各次谐波的振幅n A 或虚指数函数||n F 的幅度为纵坐标,画出如图3.1和3.2所示的各谐波的振幅n A 或||n F 与角频率的关系图,称为周期信号的幅度(振幅)频谱,简称幅度谱。图中每条竖线代表该频率分量的幅度,称为谱线。各谱线顶点连线的曲线(如图中原点所示)称为频谱包络线,它反映了各谐波分量幅度随频率变化的情况。图3.1中幅度谱为单边幅度谱(用n A 绘制的频谱)。图3.2中幅度谱为双边幅度谱(用||n F 绘制的频谱)。

类似地,也可画出各谐波初相角n ?与角频率的关系图,如图3.1和3.2中各谐波初相角n ?与角频率的关系图,称为相位频谱,简称相位谱。图3.1中相位谱为单边相位谱。图3.2中相位谱为双边相位谱。如果n F 为实数,那么可用n F 的正负来表示n ?为0或π也可把幅度谱和相位谱画在一张图上。

由图可见,周期信号的谱线只出现在频率为0,,2,...ΩΩ等原周期信号频率的整数倍的离散频率上,即周期信号的频谱是离散谱。

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

快速傅里叶变更fft的Matlab实现 实验报告

一、实验目的 1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2熟悉并掌握按时间抽取FFT算法的程序; 3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。 二、实验内容 1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序; 用MATLAB语言编写的FFT源程序如下: %% 输入数据f、N、T及是否补零 clc; clear; f=input('输入信号频率f:'); N=input('输入采样点数N:'); T=input('输入采样间隔T:'); C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0 if(C==0) t=0:T:(N-1)*T; x=sin(2*pi*f*t); b=0; e lse b=input('输入补零的个数:'); while(log2(N+b)~=fix(log2(N+b))) b=input('输入错误,请重新输入补零的个数:'); end t=0:T:(N+b-1)*T; x=sin(2*pi*f*t).*(t<=(N-1)*T); end %% fft算法的实现 A=bitrevorder(x); % 将序列按二进制倒序 N=N+b; M=log2(N); % M为蝶形算法的层数 W=exp(-j*2*pi/N); for L=1:1:M %第L层蝶形算法 B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔 K=N/(2^L); % K为每层蝶形算法中独立模块的个数 for k=0:1:K-1 for J=0:1:B-1

matlab频谱分析

设计出一套完整的系统,对信号进行频谱分析和滤波处理; 1.产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2.采集一段含有噪音的语音信号(可以录制含有噪音的信号,或者录制语音后再加进噪音信号),对其进行采样和频谱分析,根据分析结果设计出一合适的滤波器滤除噪音信号。 %写上标题 %设计低通滤波器: [N,Wc]=buttord() %估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc); %设计Butterworth低通滤波器 [h,f]=freqz(); %求数字低通滤波器的频率响应 figure(2); % 打开窗口2 subplot(221); %图形显示分割窗口 plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图 title(巴氏低通滤波器''); grid; %绘制带网格的图像 sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数 subplot(222); plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形 xlabel('时间(seconds)'); ylabel('时间按幅度'); SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换 w= %新信号角频率 subplot(223); plot()); %绘制叠加函数S经过低通滤波器以后的频谱图 title('低通滤波后的频谱图'); %设计高通滤波器 [N,Wc]=buttord() %估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器 [h,f]=freqz(); %求数字高通滤波器的频率响应 figure(3); subplot(221); plot()); %绘制Butterworth高通滤波器的幅频响应图 title('巴氏高通滤波器'); grid; %绘制带网格的图像 sf=filter(); %叠加函数S经过高通滤波器以后的新函数 subplot(222); plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形 xlabel('Time(seconds)'); ylabel('Time waveform'); w; %新信号角频率 subplot(223);

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论 (3) 1.1课题背景及意义 (3) 1.2国内外研究现状 (3) 1.3本课题的研究内容和方法 (4) 1.3.1 研究内容 (4) 1.3.2 开发环境 (4) 2 语音信号处理的总体方案 (4) 2.1 系统基本概述 (4) 2.2 系统基本要求与目的 (4) 2.3 系统框架及实现 (5) 2.3.1 语音信号的采样 (5) 2.3.2 语音信号的频谱分析 (5) 2.3.3 音乐信号的抽取 (5) 2.3.4 音乐信号的AM调制 (5) 2.3.5 AM调制音乐信号的同步解调 (5) 2.4系统设计流程图 (6) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6)

3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (7) 3.4切比雪夫滤波器 (7) 3.5数字滤波器设计原理 (8) 4 语音信号实例处理设计 (8) 4.1语音信号的采集 (8) 4.3.1高频调制与低频调制 (10) 4.3.2切比雪夫滤波 (11) 4.3.3 FIR滤波 (11) 5 总结 (12) 参考文献 (13) 语音信号的处理与分析 【摘要】语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 【关键词】Matlab 语音信号傅里叶变换低通滤波器

信号与系统MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: 姓名:学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数 的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。 实验程序: (1) )()(t t f δ= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2) )()(t t f ε= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3) at e t f =)( a=1时: t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp ()

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

matlab信号处理学习总结

常用函数 1 图形化信号处理工具,fdatool(滤波器设计),fvtool(图形化滤波器参数查看)sptool (信号处理),fvtool(b,a),wintool窗函数设计.或者使用工具箱 filter design设计。当使用离散的福利叶变换方法分析频域中的信号时,傅里叶变换时可能引起漏谱,因此 需要采用平滑窗, 2数字滤波器和采样频率的关系。 如果一个数字滤波器的采样率为 FS,那么这个滤波器的分析带宽为Fs/2。也就是说这 个滤波器只可以分析[0,Fs/2]的信号.举个例字: 有两个信号,S1频率为20KHz,S2频率为40KHz,要通过数字方法滤除S2。 你的滤波器的采样率至少要为Fs=80HKz,否则就分析不到 S2了,更不可能将它滤掉 了!(当然根据采样定理,你的采样率 F0也必须大于80HK,,Fs和 F0之间没关系不大,可以任取,只要满足上述关系就行。) 3 两组数据的相关性分析 r=corrcoef(x,y) 4 expm 求矩阵的整体的 exp 4 离散快速傅里叶 fft信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。Ft为连续傅里叶变换。反傅里叶 ifft 5 ztrans(),Z变换是把离散的数字信号从时域转为频率 6 laplace()拉普拉斯变换是把连续的的信号从时域转为频域 7 sound(x)会在音响里产生 x所对应的声音 8 norm求范数,det行列式,rank求秩 9 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s; 数字频率w:每个采样点间隔之间的弧度,单位rad。 Ω=2pi*f; w = Ω*T 10 RMS求法 Rms = sqrt(sum(P.^2))或者norm(x)/sqrt(length(x) var方差的开方是std标准差,RMS应该是norm(x)/sqrt(length(x))吧. 求矩阵的RMS:std(A(:)) 11 ftshift 作用:将零频点移到频谱的中间 12 filtfilt零相位滤波, 采用两次滤波消除系统的非线性相位, y = filtfilt(b,a,x);注意x的长度必须是滤波器阶数的3倍以上,滤波器的 阶数由max(length(b)-1,length(a)-1)确定。 13 [h,t]=impz(b,a,n,fs),计算滤波器的冲激响应 h为n点冲击响应向量 [h,x]=freqz(b,a,n,fs)计算频响,有fs时,x为频率f,无fs,x为w角频率, 常用于查看滤波器的频率特性 14 zplane(z,p) 画图零极点分布图 15 beta=unwarp(alpha) 相位会在穿越+-180发生回绕,可将回绕的 16 stepz 求数字滤波器的阶跃响应 [h,t] = stepz(b,a,n,fs) fvtool(b1,a1,b2,a2,...bn,an) fvtool(Hd1,Hd2,...) h = fvtool(...) 15 IIR数字滤波器设计方法 1 先根据已知带同参数求出最佳滤波器阶数和截止频率 [n,Wn] = buttord(Wp,Ws,Rp,Rs);

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

基于matlab的信号分析与处理

基于m a t l a b的信号分 析与处理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期: 2014年1月

目录4

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信

MATLAB实验二傅里叶分析及应用

实验二傅里叶分析及应用 、实验目的 (一)掌握使用Matlab 进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab 分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab 分析周期信号的频谱特性 二)掌握使用Matlab 求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab 求连续时间信号的傅里叶变换 2、学会运用Matlab 求连续时间信号的频谱图 3、学会运用Matlab 分析连续时间信号的傅里叶变换的性质 三)掌握使用Matlab 完成信号抽样并验证抽样定理 1、学会运用MATLAB 完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB 改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB 对抽样后的信号进行重建 、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab 符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code: ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t- 1))+(2-t)*(heaviside( t-1)-heaviside(t- 2))' ); fw = simplify(fourier(ft)); subplot(2, 1, 1); ezplot(abs(fw)); grid on; title( 'amp spectrum' ); phi = atan(imag(fw) / real(fw)); subplot(2, 1, 2); ezplot(phi); grid on ; title( 'phase spectrum' ); 符号运算法 Code: dt = 0.01; t = -2: dt: 2; ft (t+2).*(uCT(t+2)- uCT(t+1))+(u CT(t+1)-uCT(t- 1))+(2-t).*(uCT (t-1)- uCT(t-2)); N = 2000; k = -N: N; w = pi * k / (N*dt); fw = dt*ft*exp(-i*t'*w); fw = abs(fw); plot(w, fw), grid on; axis([-2*pi 2*pi -1 3.5]); 数值运算法

信号分析与处理MATLAB仿真程序

一正弦信号 w=pi/6; ns1=0;nf1=48; n1=[ns1:nf1]; x1=sin(w*n1); subplot(1,1,1); stem(n1,x1); axis([0,50,-1.2,1.2]); xlabel('n');ylabel('x');title('正弦信号'); grid on; 二周期信号 x=[1 1 0 -1 -1 1 0 0]; xn1=x'*ones(1,8); xn1=xn1(:); xn1=xn1'; n1=0:length(xn1)-1; subplot(1,1,1); stem(n1,xn1); axis([0,42,-1.5,1.5]); xlabel('n');ylabel('xn');title('周期信号'); grid on; 三高斯随机信号 n1=30; xn1=randn(1,n1); subplot(1,1,1); stem(xn1); axis([0,32,-4,4]); xlabel('n');ylabel('xn');title('高斯随机信号'); grid on; 四正选信号求特征值: >> clear w=pi/6; ns1=0;nf1=48; >> n1=[ns1:nf1]; >> xn1=sin(w*n1); >> x=mean(xn1); >> y=var(xn1); >> x x = -1.0931e-017 >> y y = 0.5000 五周期信号特征值计算: >> clear >> x=[1 1 0 -1 -1 1 0 0]; xn1=x'*ones(1,8);

xn1=xn1(:); xn1=xn1'; n1=0:length(xn1)-1; >> u=mean(xn1); >> v=var(xn1); >> u u = 0.1250 >> v v = 0.6190 六高斯随机信号特征值计算: >> clear >> n1=30; xn1=randn(1,n1); >> m=mean(xn1); >> v=var(xn1); >> m m = -0.1349 >> v v = 1.3187 七信号运算 w=pi/6; ns1=0;nf1=48;n1=[ns1:nf1]; xn1=sin(w*n1); x=[1 1 0 -1 -1 1 0 0]; xn2=x'*ones(1,8); xn2=xn2(:); xn2=xn2'; ns2=0;nf2=length(xn2)-1;n2=0:nf2;ny=0:max(nf1,nf2); y1=zeros(1,length(ny));y2=y1; y1(find(ny<=nf1))=xn1;y2(find(ny<=nf2))=xn2; ya=y1+y2;ys=y1-y2; subplot(3,2,1);stem(n1,xn1); xlabel('n');ylabel('xn');title('正弦信号');grid on; subplot(3,2,2);stem(ny,y1); xlabel('n');ylabel('xn');title('修正后的正弦信号');grid on; subplot(3,2,3);stem(n2,xn2); xlabel('n');ylabel('xn');title('周期信号');grid on; subplot(3,2,4);stem(ny,y2); xlabel('n');ylabel('xn');title('修正后的周期信号');grid on;

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

基于matlab的信号分析与处理

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期:2014年1月

目录 摘要 (Ⅰ) 1 设计目的和要求 (1) 2 设计原理 (2) 3 设计内容 (3) 3.1 程序源代码 (4) 3.2 调试分析与过程描述 (7) 3.3 结果分析 (12) 总结 (13) 致谢 (14) 参考文献 (15)

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通,低通,带通滤波器,得到滤波器的幅频及相频特性。

相关主题
文本预览
相关文档 最新文档