当前位置:文档之家› R语言学习知识中的多元统计之判别分析

R语言学习知识中的多元统计之判别分析

R语言学习知识中的多元统计之判别分析
R语言学习知识中的多元统计之判别分析

前言

判别分析(discriminant analysis)是多元统计分析中较为成熟的一种分类方法,它的核心思想是“分类与判断”,即根据已知类别的样本所提供的信息,总结出分类的规律性,并建立好判别公式和判别准则,在此基础上,新的样本点将按照此准则判断其所属类型。例如,根据一年甚至更长时间的每天的湿度差及压差,我们可以建立一个用于判别是否会下雨的模型,当我们获取到某一天(建立模型以外的数据)的湿度差及压差后,使用已建立好的模型,就可以得出这一天是否会下雨的判断。

根据判别的组数来区分,判别分析可以分为两组判别和多组判别。接下来,我们将学习三种常见的判别分析方法,分别是:

?距离判别

?Bayes判别

?Fisher判别

一、距离判别基本理论

假设存在两个总体和,另有为一个维的样本值,计算得到该样本到两个总体的距离和,如果大于,则认为样本属于总体,反之样本则属于总体;若等于,则该样本待判。这就是距离判别法的基本思想。

在距离判别法中,最核心的问题在于距离的计算,一般情况下我们最常用的是欧式距离,但由于该方法在计算多个总体之间的距离时并不考虑方差的影响,而马氏距离不受指标量纲及指标间相关性的影响,弥补了欧式距离在这方面的缺点,其计算公式如下:

,为总体之间的协方差矩阵

二、距离判别的R实现(训练样本)

首先我们导入数据

# 读取SAS数据

> library(sas7bdat)

> data1 <- read.sas7bdat('disl01.sas7bdat')

# 截取所需列数据,用于计算马氏距离

> testdata <- data1[2:5]

> head(testdata,3)

X1 X2 X3 X4

1 -0.45 -0.41 1.09 0.45

2 -0.56 -0.31 1.51 0.16

3 0.06 0.02 1.01 0.40

# 计算列均值

> colM <- colMeans(testdata)

> colM

X1 X2 X3 X4

0.096304348 -0.006956522 2.033478261 0.431739130

# 计算矩阵的协方差

> cov_test <- cov(testdata)

> cov_test

X1 X2 X3 X4

X1 0.068183816 0.027767053 0.14996870 -0.002566763

X2 0.027767053 0.015363865 0.05878251 0.001252367

X3 0.149968696 0.058782512 1.01309874 0.028607150

X4 -0.002566763 0.001252367 0.02860715 0.033912464

# 样本的马氏距离计算

> distance <- mahalanobis(testdata,colM,cov_test)

> head(distance,5)

[1] 12.726465 11.224681 1.692702 1.347885 2.369820

这样,我们得到了距离判别中最关键的马氏距离值,在此基础上就可以进行进一步的判别分析了。不过我们介绍一个R的第三方包WMDB,该包的wmd()函数可以简化我们的距离判别过程,函数将输出样本的分类判别结果、错判的样本信息以及判别分析的准确度。

> library(WMDB)

> head(data1,3)

A X1 X2 X3 X4

1 1 -0.45 -0.41 1.09 0.45

2 1 -0.56 -0.31 1.51 0.16

3 1 0.06 0.02 1.01 0.40

# 提取原始数据集的A列生成样品的已知类别

> testdata_group <- data1$A

# 转换为因子变量,用于wmd()函数中

> testdata_group <- as.factor(testdata_group)

> wmd(testdata,testdata_group)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

blong 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 2 2 2

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

blong 2 2 2 2 2 2 1 2 2 2 1 1 1 1 1 2 1 2 2

[1] "num of wrong judgement"

[1] 15 16 20 22 23 24 34 38 39 40 41 42 44

[1] "samples divided to"

[1] 2 2 2 1 1 1 1 1 1 1 1 1 1

[1] "samples actually belongs to"

[1] 1 1 1 2 2 2 2 2 2 2 2 2 2

Levels: 1 2

[1] "percent of right judgement"

[1] 0.7173913

由分析结果可知,根据已知分类的训练样品建立的判别规则,重新应用于训练样品后,出现了13个错判样品,拥有71.7%的准确度。

三、距离判别的R实现(测试样本)

接着,当我们获取到未分类的新样本数据时,使用wmd()函数,在训练样本的基础上进行这些数据的距离判别

# 导入数据,一共10个样本

> data2 <- read.sas7bdat('disldp01.sas7bdat')

# 截取所需列数据

> newtestdata <- data2[1:4]

# 进行判别分析

> wmd(testdata,testdata_group,TstX = newtestdata)

1 2 3 4 5 6 7 8 9 10

blong 1 1 1 1 1 1 2 2 2 1

根据马氏距离判别分析得到的结果,10个待判样品中,第一类7个,第二类3个。

距离判别方法简单实用,它只要求知道总体的数字特征,而不涉及总体的分布,当总体均值和协方差未知时,就用样本的均值和协方差矩阵来估计,因此距离判别没有考虑到每个总体出现的机会大小,即先验概率,没有考虑到错判的损失。因此,我们进一步学习贝叶斯判别法。

一、贝叶斯判别基本理论

贝叶斯判别法的前提是假定我们已经对所要分析的数据有所了解(比如数据服从什么分别,各个类别的先验概率等),根据各个类别的先验概率求得新样本属于某类的后验概率。该算法应用到经典的贝叶斯公式,该公式为:

假设有两个总体和,分别具有概率密度函数和,并且根据以往的统计分析,两个总体各自出现的先验概率为和,当一个样本发生时,求该样本属于某一类的概率,计算公式为:

这样,我们得到了该样本属于两类总体的概率,分别为和,属于哪一类总体的概率值大,我们则将样本划分到该类中。

二、贝叶斯判别的R实现

在R中,我们使用klaR包中的NaiveBayes()函数实现贝叶斯判别分析,函数调用公式如下:

> NaiveBayes(formula, data, ..., subset, na.action = na.pass)

# formula指定参与模型计算的变量,以公式形式给出,类似于y=x1+x2+x3

# na.action指定缺失值的处理方法,默认情况下不将缺失值纳入模型计算,也不会发生报错信息,当设为“na.omit”时则会删除含有缺失值的样本

# 数据准备,使用R内置数据集iris

# 通过抽样建立训练样本(70%)和测试样本(30%)

> index <- sample(2,size = nrow(iris),replace = TRUE,prob = c(0.7,0.3)) > train_data <- iris[index == 1,]

> test_data <- iris[index == 2,]

# 载入所用包

> library(klaR)

# 构建贝叶斯模型

> Bayes_model <- NaiveBayes(Species ~ ., data = train_data)

# 进行预测

> Bayes_model_pre <- predict(Bayes_model, newdata = test_data[,1:4]) # 生成实际与预判交叉表

> table(test_data$Species,Bayes_model_pre$class)

setosa versicolor virginica

setosa 20 0 0

versicolor 0 17 0

virginica 0 3 7

从上表生成的交叉表中,我们可以看到在该模型中错判了3个。

# 生成预判精度

> sum(diag(table(test_data$Species,Bayes_model_pre$class)))

+ / sum(table(test_data$Species,Bayes_model_pre$class))

[1] 0.9361702

三、Fisher判别基本理论

Fisher判别法的基本思想是“投影”,将组维的数据向低维空间投影,使其投影的组与组之间的方差尽可能的大,组内的方差尽可能的小。因

此,Fisher判别法的重点就是选择适当的“投影轴”。判别函数为,接下来我们以两类总体举例。

首先我们将样本点投影到一维空间,旋转坐标轴至总体单位尽可能分开的方向,此时分类变量被简化为一个,判别函数;如果划分的效果不理想,可以考虑投影到二维空间(),以此类推。

上图为二维空间的Fisher判别,从图中可以看到,无论我们把总体和投影到还是轴,都不能很好的把两类总体区分出来。

为此,我们需要寻找一条合适的投影线,使得两类总体向该线投影后的区分程度达到最大,线性判别函数即为该投影线的表达形式(这里我们仅介绍Fisher判别的基本原理,不涉及参数的具体推导

和求解,这些都可用R程序求得)。

四、Fisher判别的R实现

在R中,我们使用MASS包中的lda()函数实现Fisher判别分析,函数调用公式如下:

> lda(formula, data, ..., subset, na.action)

# formula:指定参与模型计算的变量,以公式形式给出,类似于y=x1+x2+x3

# na.action:指定缺失值的处理方法,默认情况下,缺失值的存在使算法无法运行,当设置为“na.omit”时则会删除含有缺失值的样本

# 数据准备,使用R内置数据集iris

# 通过抽样建立训练样本(70%)和测试样本(30%)

> index <- sample(2,size = nrow(iris),replace = TRUE, prob = c(0.7,0.3)) > train_data <- iris[index == 1,]

> test_data <- iris[index == 2,]

# 载入所用包

> library(MASS)

# 构建Fisher判别模型

> fisher_model <- lda(Species~., data = train_data)

# 进行预测

> fisher_model_pre <- predict(fisher_model, newdata = test_data[,1:4]) # 生成实际与预判交叉表

> table(test_data$Species,fisher_model_pre$class)

setosa versicolor virginica

setosa 20 0 0

versicolor 0 14 1

virginica 0 0 18

# 生成预判精度

> sum(diag(table(test_data$Species,fisher_model_pre$class)))

+ / sum(table(test_data$Species,fisher_model_pre$class))

[1] 0.9811321

五、Fisher判别进阶——非线性判别

在判别分析的实际应用中,对复杂的数据使用线性判别可能无法得到理想的效果。为此,我们需要使用类似于二次判别函数的非线性分类方法,将样本点投影到若干种二次曲面中,实现理想的判别效果。

在R中,非线性判别使用MASS包的qda()函数来实现,调用公式为:> qda(formula, data, ..., subset, na.action)

# 使用lda()函数同样的数据集

> fisher_model_2 <- qda(Species~., data = train_data)

> fisher_model_pre_2 <- predict(fisher_model_2, newdata =

test_data[,1:4])

> table(test_data$Species,fisher_model_pre_2$class)

setosa versicolor virginica

setosa 20 0 0

versicolor 0 14 1

virginica 0 0 18

> sum(diag(table(test_data$Species,fisher_model_pre_2$class)))

+ / sum(table(test_data$Species,fisher_model_pre_2$class))

[1] 0.9811321

结果我们发现,线性判别法和非线性的二次判别法得到的结果一致,这说明线性判别法已经能够很好的将数据的类别划分出来了,且准确率达到98%。不过我们需要认识到,这一结果主要是由于我们所用的数据集较为简单直观,对于更为复杂的高维数据,非线性判别要比线性判别在准确度上有着较大的提升。

多元统计分析模拟考题及答案.docx

一、判断题 ( 对 ) 1 X ( X 1 , X 2 ,L , X p ) 的协差阵一定是对称的半正定阵 ( 对 ( ) 2 标准化随机向量的协差阵与原变量的相关系数阵相同。 对) 3 典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系 的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4 多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据 分析方法。 ( 错)5 X (X 1 , X 2 , , X p ) ~ N p ( , ) , X , S 分别是样本均值和样本离 差阵,则 X , S 分别是 , 的无偏估计。 n ( 对) 6 X ( X 1 , X 2 , , X p ) ~ N p ( , ) , X 作为样本均值 的估计,是 无偏的、有效的、一致的。 ( 错) 7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 ( 对) 8 因子载荷阵 A ( ij ) ij 表示第 i 个变量在第 j 个公因子上 a 中的 a 的相对重要性。 ( 对 )9 判别分析中, 若两个总体的协差阵相等, 则 Fisher 判别与距离判别等价。 (对) 10 距离判别法要求两总体分布的协差阵相等, Fisher 判别法对总体的分布无特 定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、 样本相关系数矩阵. 2、 设 是总体 的协方差阵, 的特征根 ( 1, , ) 与相应的单 X ( X 1,L , X m ) i i L m 位 正 交 化 特 征 向 量 i ( a i1, a i 2 ,L ,a im ) , 则 第 一 主 成 分 的 表 达 式 是 y 1 a 11 X 1 a 12 X 2 L a 1m X m ,方差为 1 。 3 设 是总体 X ( X 1, X 2 , X 3, X 4 ) 的协方差阵, 的特征根和标准正交特征向量分别 为: 1 2.920 U 1' (0.1485, 0.5735, 0.5577, 0.5814) 2 1.024 U 2' (0.9544, 0.0984,0.2695,0.0824) 3 0.049 U 3' (0.2516,0.7733, 0.5589, 0.1624) 4 0.007 U 4' ( 0.0612,0.2519,0.5513, 0.7930) ,则其第二个主成分的表达式是

多元统计分析期末试题

一、填空题(20分) 1、若),2,1(),,(~)(n N X p 且相互独立,则样本均值向量X 服从的分布 为 2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。 3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。 4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。 5、设样品),2,1(,),,(' 21n i X X X X ip i i i ,总体),(~ p N X ,对样品进行分类常用的距离 2 ()ij d M )()(1j i j i x x x x ,兰氏距离()ij d L 6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。 7、一元回归的数学模型是: x y 10,多元回归的数学模型是: p p x x x y 22110。 8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。 9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。 二、计算题(60分) 1、设三维随机向量),(~3 N X ,其中 200031014,问1X 与2X 是否独立?),(21 X X 和3X 是否独立?为什么? 解: 因为1),cov(21 X X ,所以1X 与2X 不独立。 把协差矩阵写成分块矩阵 22211211,),(21 X X 的协差矩阵为11 因为12321),),cov(( X X X ,而012 ,所以),(21 X X 和3X 是不相关的,而正态分布不相关与相互

多元统计分析期末复习

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: )',...,,(),,,(2121P p EX EX EX EX μμμ='=Λ)')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变),(~∑μP N X μ∑μ p X X X ,,,21Λ),(~∑μP N X ) ,('A A d A N s ∑+μ)()1(,, n X X ΛX )',,,(21p X X X Λ)')(()()(1X X X X i i n i --∑=n 1 X μ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92, 3216___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 1 2 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献1213 30.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.10320 13 R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

最新多元统计分析思考题

多元统计分析思考题

《多元统计分析思考题》 第一章回归分析 1、回归分析是怎样的一种统计方法,用来解决什么问题? 概念:回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。 解决的问题:自变量对因变量的影响程度、方向、形式 2、线性回归模型中线性关系指的是什么变量之间的关系?自变量与因变量之 间一定是线性关系形式才能做线性回归吗?为什么? 3、实际应用中,如何设定回归方程的形式? 4、多元线性回归理论模型中,每个系数(偏回归系数)的含义是什么? 5、经验回归模型中,参数是如何确定的?有哪些评判参数估计的统计标准? 最小二乘估计两有哪些统计性质?要想获得理想的参数估计值,需要注意一些什么问题? 6、理论回归模型中的随机误差项的实际意义是什么?为什么要在回归模型中 加入随机误差项?建立回归模型时,对随机误差项作了哪些假定?这些假定的实际意义是什么? 7、建立自变量与因变量的回归模型,是否意味着他们之间存在因果关系?为什么? 8、回归分析中,为什么要作假设检验?检验依据的统计原理是什么?检验的 过程是怎样的?

9、回归诊断可以大致确定哪些问题?回归分析有哪些基本假定?如果实际应 用中不满足这些假定,将可能引起怎样的后果?如何检验实际应用问题是否满足这些假定?对于各种不满足假定的情形,分别采用哪些改进方法? 10、回归分析中的R2有何意义?它能用来衡量模型优劣吗? 11、如何确定回归分析中变量之间的交互作用?存在交互作用时,偏回归系 数的意义与不存在交互作用的情形下是否相同?为什么? 12、有哪些确定最优回归模型的准则?如何选择回归变量? 13、在怎样的情况下需要建立标准化的回归模型?标准化回归模型与非标准 化模型有何关系?形式有否不同? 14、利用回归方法解决实际问题的大致步骤是怎样的? 15、你能够利用哪些软件实现进行回归分析?能否解释全部的软件输出结 果? 第二章判别分析 1、判别分析的目的是什么? 根据分类对象个体的某些特征或指标来判断其属于已知的某个类中的哪一类。 2、有哪些常用的判别分析方法?这些方法的基本原理或步骤是怎样的?它 们各有什么特点或优劣之处? 3、判别分析与回归分析有何异同之处? 4、判别分析对变量与样本规模有何要求? 5、如何度量判别效果?有哪些影响判别效果的因素?

多元统计与分析课后练习答案

第1章 多元正态分布 1、在数据处理时,为什么通常要进行标准化处理? 数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是0-1标准化和Z 标准化。 2、欧氏距离与马氏距离的优缺点是什么? 欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。 缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。每个坐标对欧氏距离的贡献是同等的。当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。没有考虑到总体变异对距离远近的影响。 马氏距离表示数据的协方差距离。为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。 优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。由标准化数据和中心化数据计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。 缺点:夸大了变化微小的变量的作用。受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。 3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致? 统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。 4、如果正态随机向量12(,,)p X X X X '=的协方差阵∑为对角阵,证明X 的分量是相互独立的随机变量。 解: 因为12(,,)p X X X X ' =的密度函数为 1/2111(,...,)exp ()()2p p f x x --??'=---????Σx μΣx μ

(完整word版)实用多元统计分析相关习题

练习题 一、填空题 1.人们通过各种实践,发现变量之间的相互关系可以分成(相关)和(不相关)两种类型。多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相关系数。 2.总离差平方和可以分解为(回归离差平方和)和(剩余离差平方和)两个部分,其中(回归离差平方和)在总离差平方和中所占比重越大,则线性回归效果越显著。3.回归方程显著性检验时通常采用的统计量是(S R/p)/[S E/(n-p-1)]。 4.偏相关系数是指多元回归分析中,(当其他变量固定时,给定的两个变量之间的)的相关系数。 5.Spss中回归方程的建模方法有(一元线性回归、多元线性回归、岭回归、多对多线性回归)等。 6.主成分分析是通过适当的变量替换,使新变量成为原变量的(线性组合),并寻求(降维)的一种方法。 7.主成分分析的基本思想是(设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来替代原来的指标)。 8.主成分表达式的系数向量是(相关系数矩阵)的特征向量。 9.样本主成分的总方差等于(1)。 10.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为(方差贡献度)。主成分的协方差矩阵为(对称)矩阵。主成分表达式的系数向量是(相关矩阵特征值)的特征向量。 11.SPSS中主成分分析采用(analyze—data reduction—facyor)命令过程。 12.因子分析是把每个原始变量分解为两部分因素,一部分是(公共因子),另一部分为(特殊因子)。 13.变量共同度是指因子载荷矩阵中(第i行元素的平方和)。 14.公共因子方差与特殊因子方差之和为(1)。 15.聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的(亲疏程度)进行科学的分类。 16.Q型聚类法是按(样品)进行聚类,R型聚类法是按(变量)进行聚类。 17.Q型聚类统计量是(距离),而R型聚类统计量通常采用(相关系数)。 18.六种Q型聚类方法分别为(最长距离法)、(最短距离法)、(中间距离法)、(类平均法)、(重心法)、(离差平方和法)。 19.快速聚类在SPSS中由(k-均值聚类(analyze—classify—k means cluster))过程实现。 20.判别分析是要解决在研究对象已(已分成若干类)的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。 21.用判别分析方法处理问题时,通常以(判别函数)作为衡量新样本点与各已知组别接近程度的指标。 22.进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有(Fisher准则)、(贝叶斯准则)。 23.类内样本点接近,类间样本点疏远的性质,可以通过(类与类之间的距离)与(类内样本的距离)的大小差异表现出来,而两者的比值能把不同的类区别开来。这个比值越大,说明类与类间的差异越(类与类之间的距离越大),分类效果越(好)。24.Fisher判别法就是要找一个由p个变量组成的(线性判别函数),使得各自组内点的

多元统计分析题

多元统计分析模拟试题(两套:每套含填空、判断各二十道) A卷 1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐步 判别法。 2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类。 3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分。 4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、极 大似然法 5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析 6)分组数据的Logistic回归存在异方差性,需要采用加权最小二乘估计 7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为 P e=√1?R2 8)最短距离法适用于条形的类,最长距离法适用于椭圆形的类。 9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转化 为几个综合指标的多元统计方法。 10)在进行主成分分析时,我们认为所取的m(m

实用多元统计分析相关习题学习资料

实用多元统计分析相 尖习题 练习题 一、填空题 1?人们通过各种实践,发现变量之间的相互矢系可以分成(相尖)和(不相尖)两种 类型。多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相尖系数。 2?总离差平方和可以分解为(回归离差平方和)和(剩余离差平方和)两个部分,其中(回归离差平方和)在总离差平方和中所占比重越大,则线性回归效果越显著。 3 ?回归方程显著性检验时通常采用的统计量是(S R/P)/[S E/ (n-p-1) ]O 4?偏相尖系数是指多元回归分析中,(当其他变量固定时,给定的两个变量之间的) 的相尖系数。 5. Spss中回归方程的建模方法有(一元线性回归、多元线性回归、岭回归、多对多线性回归)等。

6 ?主成分分析是通过适当的变量替换,使新变量成为原变量的(线性组合),并寻求 (降维)的一种方法。 7 ?主成分分析的基本思想是(设法将原来众多具有一定相尖性(比如P个指标),重 新组合成一组新的互相无矢的综合指标来替代原来的指标)。 8 ?主成分表达式的系数向量是(相尖系数矩阵)的特征向量。 9 ?样本主成分的总方差等于(1)。 10 ?在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为(方差贡献度)。主成分的协方差矩阵为(对称)矩阵。主成分表达式的系数向量是(相尖矩阵特征值)的特征向量。 11. SPSS 中主成分分析采用(analyze—data reduction — facyor)命令过程。 12?因子分析是把每个原始变量分解为两部分因素,一部分是(公共因子),另一部

分为(特殊因子)。 13 ?变量共同度是指因子载荷矩阵中(第i行元素的平方和)。 14 ?公共因子方差与特殊因子方差之和为(1) o 15 ?聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的(亲疏 程度)进行科学的分类。 16. Q型聚类法是按(样品)进行聚类,R型聚类法是按(变量)进行聚类。 17. Q型聚类统计量是(距离),而R型聚类统计量通常采用(相尖系数)。 18. 六种Q型聚类方法分别为(最长距离法)、(最短距离法)、(中间距离法)、(类平均法)、(重心法)、(离差平方和法)。 19?快速聚类在SPSS中由(k■均值聚类(analyze— classify— k means cluste))过程实 现。 20. 判别分析是要解决在研究对象已(已分成若干类)的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。 21. 用判别分析方法处理问题时,通常以(判别函数)作为衡量新样本点与各已知组别接近程度的指标。 22. 进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有 (Fisher准则)、(贝叶斯准则)。 23. 类内样本点接近,类间样本点疏

多元统计分析课后习题解答_第四章知识讲解

第四章判别分析 4.1 简述欧几里得距离与马氏距离的区别和联系。 答:设p维欧几里得空间中的两点X=和Y=。则欧几里得距离为 。欧几里得距离的局限有①在多元数据分析中,其度量不合理。②会受到实际问题中量纲的影响。 设X,Y是来自均值向量为,协方差为 的总体G中的p维样本。则马氏距离为D(X,Y)= 。当 即单位阵时, D(X,Y)==即欧几里得距离。 因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。 4.2 试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk 是p 维空 间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一 个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划 分”,这个“划分”就构成了一个判别规则。 4.3 简述距离判别法的基本思想和方法。 答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。 ①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X , 要判断它来自哪个总体。计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2 (X ,G 2),则 X ,D 2 (X ,G 1) D 2(X ,G 2) X ,D 2(X ,G 1)> D 2 (X ,G 2, 具体分析, 2212(,)(,) D G D G -X X 111122111111 111222********* ()()()() 2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2() 22()2() ---''=-++-' +? ?=--- ?? ?''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为

多元统计分析复习整理

一、聚类分析的基本思想: 我们认为,所研究的样品或指标之间存在着程度不同的相似性。根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另一些彼此之间相似程度较大的样品又聚合到另外一类。把不同的类型一一划分出来,形成一个由小到大的分类系统。最后,用分群图把所有的样品间的亲疏关系表示出来。 二、聚类分析的方法 系统聚类法、模糊聚类法、K-均值法、有序样品的聚类、分解法、加入法 三、系统聚类法的种类 最短距离法、最长距离法、重心法、类平均法、离差平方和法 四、判别分析的基本思想 判别分析用来解决被解释变量是非度量变量的情形,预测和解释影响一个对象所属类别。识别一个个体所属类别的情况下有着广泛的应用 判别分析将对象进行分析,通过人们选择的解释变量来预测或者解释每个对象的所属类别。 五、判别分析的假设条件 判别分析的假设条件之一是每一个判别变量不能是其他判别变量的线性组合;判别分析的假设之二是各组变量的协方差矩阵相等。判别分析最简单和最常用的形式是采用线性判别函数。判别分析的假设之三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。当违背该假设时,计算的概率将非常的不准确。 六、判别分析的方法 距离判别法、Bayes判别法、Fisher判别法、逐步判别法

七、距离判别法的判别准则 设有两个总体1G 和2G ,x 是一个p 维样品,若能定义样品到总体1G 和2G 的距离d (x ,1G )和d (x ,2G ),则用如下规则进行判别:若样品x 到总体1G 的距离小于到总体2G 的距离,则认为样品x 属于总体1G ,反之,则认为样品x 属于总体样品x 属于总体2G ,若样品x 到总体1G 和2G 的距离相等,则让它待判。 八、Fisher 判别的思想 Fisher 判别的思想是投影,将k 组p 维数据投影到某一个方向,使的它们的投影与组之间尽可能地分开。 九、Bayes 判别的思想 Bayes 统计的思想是:假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识,得到后验概率分布,各种统计推断都通过后验概率分布来进行。将Bayes 统计的思想用于判别分析,就得到Bayes 判别。 十、判别分析的方法和步骤 1.判别分析的对象 2.判别分析的研究设计 3.判别分析的假定 4.估计判别模型和评估整体拟合 5.结果的解释 6.结果的验证 十一、提取主成分的原则 1.累计方差贡献率大于85%, 2.特征根大于1 ,3碎石图特征根的变化趋势。 十二、因子分析的步骤 1.根据研究问题选取原始变量。 2.对原始变量进行标准化并求其相关阵,分析变量之间的相关性。 3.求解初始公共因子及因子载荷矩阵。 4.因子旋转。 5.因子得分。 6.根据因子得分值进行进一步分析。

多元统计分析简答题..

1、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设H0和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 协差阵的检验 检验0=ΣΣ 0p H =ΣI : /2/21exp 2np n e tr n λ????=-?? ?????S S 00p H =≠ΣΣI : /2/2**1exp 2np n e tr n λ????=-?? ????? S S 检验12k ===ΣΣΣ012k H ===ΣΣΣ: 统计量/2/2/2/211i i k k n n pn np k i i i i n n λ===∏∏S S 2. 针对一个总体均值向量的检验而言,在协差阵已知和未知的两种情形下,如何分别构造的统计量? 3. 作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系? 答:作多元线性回归分析时,自变量与因变量之间的影响关系不一定是线性形式。当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做回归分析。 多元线性回归分析的线性关系指的是随机变量间的关系,因变量y 与回归系数βi 间存在线性关系。 多元线性回归的条件是: (1)各自变量间不存在多重共线性; (2)各自变量与残差独立; (3)各残差间相互独立并服从正态分布; (4)Y 与每一自变量X 有线性关系。 4.回归分析的基本思想与步骤 基本思想:

多元统计分析期末复习试题

第一章: 多元统计分析研究的容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X均值向量: 随机向量X与Y的协方差矩阵: 当X=Y时Cov(X,Y)=D(X);当Cov(X,Y)=0 ,称X,Y不相关。 随机向量X与Y的相关系数矩阵: 2、均值向量协方差矩阵的性质 (1).设X,Y为随机向量,A,B 为常数矩阵 E(AX)=AE(X); E(AXB)=AE(X)B; D(AX)=AD(X)A’; )' ,..., , ( ) , , , ( 2 1 2 1P p EX EX EX EXμ μ μ = ' = )' )( ( ) , cov(EY Y EX X E Y X- - = q p ij r Y X ? =) ( ) , (ρ

Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变量之间的比较。 4、对数变换:对数变换是将各个原始数据取对数,将原始数据的对数值作为变换后的新值。它将具有指数特征的数据结构变换为线性数据结构。 三、样品间相近性的度量 研究样品或变量的亲疏程度的数量指标有两种:距离,它是将每一个样品看作p 维空),(~∑μP N X μ∑μp X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ)()1(,,n X X X )',,,(21p X X X )')(()()(1X X X X i i n i --∑=n 1X μ ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

(完整版)多元统计分析思考题答案

《多元统计分析》思考题答案 记得老师课堂上说过考试内容不会超出这九道思考题, 如下九道题题目中有错误的或不清楚 的地方,欢迎大家指出、更改、补充。 1、 简述信度分析 答题提示:要答可靠度概念,可靠度度量,克朗巴哈 系数、拆半系数、单项 与总体相 关系数、稀释相关系数等(至少要答四个系数,至少要给出两个指标的公式) 答: 信度( Reliability )即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果 的一致性程度。 信度指标多以相关系数表示, 大致可分为三类: 稳定系数 (跨时间的一致性) 等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性) 。信度分析的方法主要 有以下四种: 1)、重测信度法 这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测, 计算两次施测结果 的相关系数。 重测信度属于稳定系数。 重测信度法特别适用于事实式问卷, 如果没有突发事 件导致被调查者的态度、 意见突变, 这种方法也适用于态度、 意见式问卷。 由于重测信度法 需要对同一样本试测两次, 被调查者容易受到各种事件、 活动和他人的影响, 而且间隔时间 长短也有一定限制,因此在实施中有一定困难。 2)、复本信度法 复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复 本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和 对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求, 因此采用这种方法者较少。 3)、折半信度法 折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信 度。折半信度属于内在一致性系数, 测量的是两半题项得分间的一致性。 这种方法一般不适 用于事实式问卷(如年龄与性别无法相比) ,常用于态度、意见式问卷的信度分析。在问卷 调查中,态度测量最常见的形式是 5 级李克特( Likert )量表。进行折半信度分析时,如果 量表中含有反意题项, 应先将反意题项的得分作逆向处理, 以保证各题项得分方向的一致性, 然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数。 为了校正差异,两半测验的方差相等时,常运用斯皮尔曼 - 布朗公式( Spearman- Brown Formula ):rxx=2rhh/(1+rhh ) ,其中, rhh :两半测验的相关系数; rxx :估计或修正后的信度。 该公式可以估计增长或缩短一个测验对其信度系数的影响。 当两半测验的方差不同时, 应采 用卢伦公式( Rulon Formula )或弗拉纳根公式( Flanagan Formula )进行修正。 4)、α信度系数法 Cronbach α信度系数是目前最常用的信度系数,其公式为: S i 从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。其中, n n1 i1 S X S i 2 为每一项目的方差; S X 2 为测验总分方差。

应用多元统计分析习题解答_因子分析

第七章 因子分析 7.1 试述因子分析与主成分分析的联系与区别。 答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。 因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。 7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,①因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常用。③因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。 7.3 简述因子模型中载荷矩阵A 的统计意义。 答:对于因子模型 1122i i i ij j im m i X a F a F a F a F ε=++ ++ ++ 1,2, ,i p = 因子载荷阵为1112 121 22212 12 (,, ,)m m m p p pm a a a a a a A A A a a a ????? ?==?????? ? ?A i X 与j F 的协方差为: 1Cov(,)Cov(,)m i j ik k i j k X F a F F ε==+∑ =1 Cov( ,)Cov(,)m ik k j i j k a F F F ε=+∑ =ij a 若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了

多元统计分析期末考试考点整理共5页

多元统计分析 题型一定义、名词解释 题型二计算(协方差阵、模糊矩阵) 题型三解答题 一、定义 二名词解释 1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广 2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。使类内对象的同质性最大化和类间对象的异质性最大化 3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。它是由于随机而获得的非确定值,是概率中的一个基本概念。即每个分量都是随机变量的向量为随机向量。类似地,所有元素都是随机变量的矩阵称为随机矩阵。 4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量 三、计算题 解: 答:

答: 题型三解答题 1、简述多元统计分析中协差阵检验的步骤 答: 第一,提出待检验的假设和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 2、简述一下聚类分析的思想 答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。把相似的样品或指标归为一类,把不相似的归为其他类。直到把所有的样品(或指标)聚合完毕. 3、多元统计分析的内容和方法 答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。(1)主成分分析(2)因子分析(3)对应分析等 2、分类与判别,对所考察的变量按相似程度进行分类。(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。(2)判别分析:判别样本应属何种类型的统计方法。

多元统计分析期末考试考点整理

二名词解释 1、 多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理 论和方法,是一元统计学的推广 2、 聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方 法。将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。 使类内对象的同质性最大化和类间对象的异质性最大化 3、 随机变量:是指变量的值无法预先确定仅以一定的可能性 (概率)取值的量。它是由于随 机而获得的非确定值,是概率中的一个基本概念。即每个分量都是随机变量的向量为随机向 量。类 似地,所有元素都是随机变量的矩阵称为随机矩阵。 4、统计量:多元统计研究的是多指标问题 ,为了了解总体的特征,通过对总体抽样得到代表 总体的样本,但因为信息是分散在每个样本上的 ,就需要对样本进行加工,把样本的信息浓缩 到不包含未知量的样本函数中,这个函数称为统计量 二、计算题 ^16 -4 2 k 设H = 其中启= (1Q —纣眉=-4 4-1 [― 试判断叼+ 2吟与 「花一? [是否独立? 解: "10 -6 -15 -6 1 a 2U -16 20 40 故不独立口 -r o 2丿 按用片的联合分帚再I -6 lti 20 -1G 20 ) -1V16 -4 0 -4 A 2 丿"-1

2.对某地区农村的百名2周宙男翌的身高、胸圉、上半骨圉进行测虽,得相关数据如下』根据汶往资料,该地区城市2周岁男婴的遠三个指标的均值血二(90Q乩16庆现欲在多元正态性的假定下检验该地区农村男娶是否与城市男婴有相同的均值?伽厂43107-14.62108.946^1 ]丼中乂=60.2x^)-1=(115.6924)-1-14.6210 3.172-37 3760 、8.9464-37 376035.S936」= 0.01, (3,2) = 99.2, 03) =293 隔亠4) =16.7) 答: 2、假设检验问题:比、# =险用‘//H地 r-8.o> 经计算可得:X-^A 22 厂 「3107 -14.6210 ST1=(23J3848)-1 -14.6210 3.172 8 9464 -37 3760 E9464 -37.3760 35.5936 构造检验统计量:尸=旳(丟-間)〃丿(巫-角) = 6x70.0741=420.445 由题目已知热“(3,)= 295由是 ^I =^W3,3)^147.5 所以在显著性水平ff=0.01下,拒绝原设尽即认 为农村和城市的2周岁男婴上述三个指标的均 值有显著性差异 (] 4、设盂=(耳兀.昂工/ ~M((XE),协方差阵龙=P P (1)试从匸出发求X的第一总体主成分; 答: (2)试|可当卩取多大时才链主成分册贡蕭率达阳滋以上.

相关主题
文本预览
相关文档 最新文档