当前位置:文档之家› 计算机图形学 实验一直线生成算法报告

计算机图形学 实验一直线生成算法报告

计算机图形学 实验一直线生成算法报告
计算机图形学 实验一直线生成算法报告

实验一直线生成算法

一、实验目的及要求:

1.学习C语言的基本绘图方法;

2. 实习直线基本生成算法;

3.了解光栅图形显示器的工作原理和特点;

4.掌握课本所介绍的图形算法的原理和实现。

5. 基于光栅图形显示器,在c环境中使用基本图形生成算法画根粗细不同的直线。

1.)写出完整的DDA画线算法程序,使其可以画任意直线;

2.)写出完整的中点画线算法程序,使其可以画任意直线;

3.)写出完整的Breaenham画线程序,使其可以画任意直线;

二、理论基础:

1、DDA算法:实现的关键是如何步进和步进的方向:步进的正或负,决定能否正确的到达终点。步进的大小:它控制了变化最大的步进,令其为单位步进,而另一个方向的步进必小于1 ,这样不论斜率|m|≤1否,都会使直线的亮度均匀。

依公式:则下一点坐标为:

2、中点画法:假设x坐标为xp的各像素点中,与直线最近者已确定,为(xp,yp)。那么,下一个与直线最近的像素只能是正右方的P1(xp+1,yp)或右上方的P2(xp+1,yp+1)两者之一。再以M表示P1与P2的中点,即M=(xp+1,yp+0.5)。又设Q是理想直线与垂直线x=xp+1的交点。若M在Q的下方,则P2离直线近,应取为下一个像素;否则应取P1。

3、Bresenham算法:假设我们需要由 (x0, y0) 这一点,绘画一直线至右下角的另一点(x1, y1),x,y分别代表其水平及垂直座标。在此我们使用电脑系统常用的座标系,即x座标值沿x轴向右增长,y座标值沿y轴向下增长。因此x及y之值分别向右及向下增加,而两点之水平距离为x1 ? x0且垂直距离为y1-y0。由此得之,该线的斜率必定介乎于1至0之间。而此算法之目的,就是找出在x0与x1之间,第x行相对应的第y列,从而得出一像素点,使得该像素点的位置最接近原本的线。

三、算法设计与分析:

1、DDA算法:

(1)已知过端点P0 (x0, y0), P1(x1, y1)的直线段L :y=kx+b

(2)直线斜率为 :k=(y1-y0)/(x1-x0)

(3)Xi+1=Xi+ε*ΔX

Yi+1=Yi+ε*ΔY 其中,

ε=1/max(|ΔX|,|ΔY|)

max(|ΔX|,|ΔY|)= |ΔX| (|k|<=1)

|ΔY| (|k|>1)

(4)|k|<=1时:Xi+1=Xi+(或-)1

Yi+1=Yi+(或-)k

|k|>1时:Xi+1=Xi+(或-)1/k

Yi+1=Yi+(或-)1

这种方法直观,但效率太低,因为每一步需要一次浮点乘法和一次舍入运算。

2、中点画法:

(1)输入直线的起点坐标P

0(x

,y

)和终点坐标P

1

(x

1

,y

1

).

(2)定义直线当前点坐标x和y,定义中点偏差判别式d、直线斜率k、像素点颜色rgb

(3) x= x

0,y= y

计算d=0.5-k,k=( y

1

-y

)/(x

1

-x

),

rgb=RGB=(0,0,255).

(4)绘制点(x,y),判断d的符号,若d<0,则(x, y)更新为(x+1,y+1),d更新为d+1-k,否则(x, y)更新为(x+1,y),d更新为d-k.

如果当前点x小于(x

1

,重复步骤(4),否则结束。

3、Bresenham算法:

(1)假定直线段的0<=k<=1(k=ΔY/ΔX) ,P0(X0,Y0)和P1(X1,Y1)

(2)基本原理:

d:直线与垂直网格线的交点到网格线的距离。

所以有 Xi+1=Xi+1

Yi+1= Yi+1(d>0.5)

Yi (d<=0.5)

四、程序调试及结果的分析:

1、DDA源程序:

int x0=sp[0],x1=ep[0],y0=sp[1],y1=ep[1];

{

double x, dx,dy,k,y;

if(x0==x1)

{

if(y0>=y1)

{

for(y=y0;y<=y1;y++)

{

pDC->SetPixel(x,y,color) ;

y++;

}

}

else

{

for(y=y0;y<=y1;y--)

{

pDC->SetPixel(x,y,color) ;

y--;

}

}

}

dx=x1-x0;

dy=y1-y0;

k=dy/dx;

if(fabs(k)<=1)

{

if(x0

{

y=y0;

for(x=x0;x<=x1;x++)

{

pDC->SetPixel(x,y,color) ;

y=y+k;

}

}

if(x0>x1)

{

y=y0;

for(x=x0;x>=x1;x--)

{

pDC->SetPixel(x,y,color) ;

y=y-k;

}

}

}

else

{

if(y0

{

x=x0;

for(y=y0;y<=y1;y++)

{

pDC->SetPixel(x,y,color) ;

x=x+1/k;

}

}

else

{

x=x0;

for(y=y0;y>=y1;y--)

{

pDC->SetPixel(x,y,color) ;

x=x-1/k;

}

}

}

}

2、中点画法源程序:

float a,b,delta1,delta2,d,x,y;

int x0,y0,x1,y1;

if (sp[0]

{

x0=sp[0];y0=sp[1];x1=ep[0];y1=ep[1];

}

else

{

x1=sp[0];y1=sp[1];x0=ep[0];y0=ep[1];

}

float k;

a=y0-y1;

b=x1-x0;

k=-a/b;

x=x0;y=y0;

pDC->SetPixel(x,y,color);

if(b==0)

{

if(y0 < y1)

{

for(y=y0;y <= y1;y++)

pDC->SetPixel(x0,y,color);

}

else

{

for(y=y0;y >=y1;y--)

pDC->SetPixel(x0,y,color);

}

}

//

if( 0<=k &&k<= 1)

{

d=2*a+b; delta1=2*a; delta2=2*a+2*b;

while(x

{

if(d < 0)

{

x++;

y++;

d+=delta2;

}

else

{

x++;

d+=delta1;

}

pDC->SetPixel(x,y,color);

}

}

if (k >=-1 && k <=0)

{

d=2*a-b;delta1=2*(a-b);delta2=2*a;

while(x

{

if(d<=0)

{

x++;

d+=delta2;

}

else

{

x++;

y--;

d+=delta1;

}

pDC->SetPixel(x,y,color);

}

}

if(k >1)

{

d=2*b+a;delta1=2*b;delta2=2*(a+b);

while (y < y1)

{

if (d<=0)

{

y++;

d+=delta1;

}

else

{

x++;y++;

d+=delta2;

}

pDC->SetPixel(x,y,color);

}

}

if(k <-1)

{

d=a-2*b;delta1=-2*b;delta2=2*(a-b);

while (y >y1)

{

if(d >0)

{

y--;

d+=delta1;

}

else

{

x++;y--;

d+=delta2;

}

pDC->SetPixel(x,y,color);

}

}

3、Bresenham源程序:

int x, y, dx, dy, zjx, zjy, e, temp, tag, i;

int x0, x1, y0, y1;

x0 = sp[0];

x1 = ep[0];

y0 = sp[1];

y1 = ep[1];

x = x0;

y = y0;

dx = abs(x1 - x0);

dy = abs(y1 - y0);

// 判断x递增还是递减

if (x1 > x0)

zjx = 1;

else

zjx = -1;

// 判断y递增还是递减

if (y1 > y0)

zjy = 1;

else

zjy = -1;

if(dy > dx)

{

temp = dx;

dx = dy;

dy = temp;

tag = 1;

}

else

tag = 0;

e = 2 * dy - dx;

for(i=1; i<=dx; i++)

{

pDC -> SetPixel(x, y, color);

if(e >= 0)

{

if(tag == 0)

y = y + zjy;

else

x = x + zjx;

e = e - 2 * dx;

}

if (tag == 0)

x = x + zjx;

else

y = y + zjy;

e = e + 2 * dy;

}

4、运行结果:

五、实验心得及建议:

在这次的图形学作业中,使我了解了图形界面的编程基础,也对VC中的MFC有了一定的了解,这会使得我能继续深入的了解VC中的其它的部分,使我了解编写图形界面也会带来乐趣。

姓名班级学号实验日期指导教师实验成绩

魏苗凤10011008 2010302565 2012.3.18

评语:

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学实验一

实验一二维基本图元的生成与填充 实验目的 1.了解并掌握二维基本图元的生成算法与填充算法。 2.实现直线生成的DDA算法、中点算法和Bresenham算法。 3.实现圆和椭圆生成的DDA和中点算法, 对几种算法的优缺点有感性认识。 二.实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VC++。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现生成直线的DDA算法、中点算法和Bresenham算法。 4.实现圆弧生成的中点算法。 5.实现多边形生成的常用算法, 如扫描线算法,边缘填充算法。 6.实现一般连通区域的基于扫描线的种子填充算法。 7.将生成算法以菜单或按钮形式集成到用户界面上。 8.直线与圆的坐标参数可以用鼠标或键盘输入。 6. 可以实现任何情形的直线和圆的生成。 实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 直线生成程序设计的步骤如下: 为编程实现上述算法,本程序利用最基本的绘制元素(如点、直线等),绘制图形。如图1-1所示,为程序运行主界面,通过选择菜单及下拉菜单的各功能项分别完成各种对应算法的图形绘制。 图1-1 基本图形生成的程序运行界面 2.创建工程名称为“基本图形的生成”单文档应用程序框架 (1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“基本图形的生成”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

插入排序算法实验报告

算法设计与分析基础 实验报告 应用数学学院 二零一六年六月

实验一插入排序算法 一、实验性质设计 二、实验学时14学时 三、实验目的 1、掌握插入排序的方法和原理。 2、掌握java语言实现该算法的一般流程。 四、实验内容 1、数组的输入。 2、输入、输出的异常处理。 3、插入排序的算法流程。 4、运行结果的输出。 五、实验报告 Ⅰ、算法原理 从左到右扫描有序的子数组,直到遇到一个大于(或小于)等于A[n-1]的元素,然后就把A[n-1]插在该元素的前面(或后面)。 插入排序基于递归思想。 Ⅱ、书中源代码 算法InsertionSort(A[0..n-1]) //用插入排序对给定数组A[0..n-1]排序 //输入:n个可排序元素构成的一个数组A[0..n-1] //输出:非降序排列的数组A[0..n-1] for i ←1 to n-1 do v ← A[i] j ← i-1 while j ≥0and A[j] > v do A[j+1] ← A[j] j ← j-1 A[j+1] ← v

Ⅲ、Java算法代码: import java.util.*; public class Charu { public static void main(String[] args) { int n = 5; int a[] = new int[n]; int s = a.length; int i = 0, j = 0, v = 0; System.out.println("请输入若干个数字:"); Scanner sc = new Scanner(System.in); try { while (i < s) { a[i] = sc.nextInt(); i++; } for (i = 1; i = 0 && a[j] > v) { a[j + 1] = a[j]; j--; } a[j + 1] = v; } System.out.println("插入排序结果显示:"); for (i = 0; i < s; i++) { System.out.println(a[i]); } } catch (Exception es) { System.out.println(es); } } } Ⅳ、运行结果显示:

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学实验内容汇总

计算机图形学实验 肖加清

实验一图形学实验基础 一、实验目的 (1)掌握VC++绘图的一般步骤; (2)掌握OpenGL软件包的安装方法; (3)掌握OpenGL绘图的一般步骤; (4)掌握OpenGL的主要功能与基本语法。 二、实验内容 1、VC++绘图实验 (1)实验内容:以下是绘制金刚石图案。已给出VC++参考程序,但里面有部分错误,请改正,实现以下图案。 N=3 N=4

N=5 N=10 N=30

N=50 (2)参考程序 //自定义的一个类 //此代码可以放在视图类的实现文件(.cpp) 里class CP2 { public: CP2(); virtual ~CP2(); CP2(double,double); double x; double y; }; CP2::CP2() { this->x=0.0; this->y=0.0; } CP2::~CP2() { } CP2::CP2(double x0,double y0) { this->x=x0; this->y=y0; }

//视图类的一个成员函数,这个成员函数可以放在OnDraw函数里调用。 //在视图类的头文件(.h)里定义此函数 void Diamond(); //在视图类的实现文件(.cpp)里实现此函数 void CTestView::Diamond() { CP2 *P; int N; double R; R=300; N=10; P=new CP2[N]; CClientDC dc(this); CRect Rect; GetClientRect(&Rect); double theta; theta=2*PI/N; for(int i=0;i #include #include #include //定义输出窗口的大小 #define WINDOW_HEIGHT 300

算法设计实验报告一(简单算法设计)

实验报告一 课程C++ 实验名称简单算法设计第 1 页专业_数学与应用数学_ __ 班级__ 双师一班学号105012011056 姓名陈萌 实验日期:2013 年 3 月9 日报告退发(订正、重做) 一、实验目的 1. 理解算法设计与分析的基本概念,理解解决问题的算法设计与实现过程; 2. 掌握简单问题的算法设计与分析,能设计比较高效的算法; 3. 熟悉C/C++语言等的集成开发环境,掌握简单程序设计与实现的能力。 二、实验内容 (一)相等元素问题 1.问题描述 元素唯一性问题:给出一个整数集合,假定这些整数存储在数组A[1…n]中,确定它们中是否存在两个相等的元素。请设计出一个有效算法来解决这个问题,你的算法的时间复杂性是多少? 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1767题 输入:输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由两行组成,其中第一行为一个正整数n (n<=500),表示整数序列的长度,第二行给出整数序列,整数之间用一个空格隔开。 输出:对于每个测试例输出一行,若该组测试例中存在两个相等的元素则输出”Yes”,否则,输出”No”。每个测试例的输出数据用一行表示。 3. 测试数据 输入:3 10 9 71 25 64 38 52 5 31 19 45 16 26 35 17 92 53 24 6 57 21 12 34 2 17 86 75 33 20 15 87 32 7 84 35 26 45 78 96 52 22 37 65 9 43 21 3 33 91 输出:No Yes No (二) 整数集合分解 1.问题描述 设计算法把一个n个元素的整数集合(n为偶数)分成两个子集S1和S2,使得:每个新的集合中含有n/2个元素,且S1中的所有元素的和与S2中的所有元素的和的差最大。 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1768题 输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由两行组成,其中第一行为一个正整数n (n为偶数,且n<=500),表示原整数集合的长度,第二行给出这n个整数序列,整数之间用一个空格隔开。 输出:对于每个测试例输出两行,分别表示新生成的整数集合。其中,第一行是元素和比较小的整数集合,第二行是元素和比较大的整数集合,整数之间用一个空格隔开。两个测

《数据结构》实验报告——排序.docx

《数据结构》实验报告排序实验题目: 输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。 实验所使用的数据结构内容及编程思路: 1. 插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。 一般情况下,第i 趟直接插入排序的操作为:在含有i-1 个记录的有序子序列r[1..i-1 ]中插入一个记录r[i ]后,变成含有i 个记录的有序子序列r[1..i ];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r [0]处设置哨兵。在自i-1 起往前搜索的过程中,可以同时后移记录。整个排序过程为进行n-1 趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2 个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。 2. 快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序的序列为{L.r[s] ,L.r[s+1],…L.r[t]}, 首先任意选取一个记录 (通常可选第一个记录L.r[s])作为枢轴(或支点)(PiVOt ),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。由此可以该“枢轴”记录最后所罗的位置i 作为界线,将序列{L.r[s] ,… ,L.r[t]} 分割成两个子序列{L.r[i+1],L.[i+2], …,L.r[t]}。这个过程称为一趟快速排序,或一次划分。 一趟快速排序的具体做法是:附设两个指针lOw 和high ,他们的初值分别为lOw 和high ,设枢轴记录的关键字为PiVOtkey ,则首先从high 所指位置起向前搜索找到第一个关键字小于PiVOtkey 的记录和枢轴记录互相交换,然后从lOw 所指位置起向后搜索,找到第一个关键字大于PiVOtkey 的记录和枢轴记录互相 交换,重复这两不直至low=high 为止。 具体实现上述算法是,每交换一对记录需进行3 次记录移动(赋值)的操作。而实际上,

计算机图形学实验报告

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include

#include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glV ertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre; y+=yIncre; } } void Display(void) { glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush(); }

算法设计实验报告

《算法设计》实习报告 班级 XXXX 名 XX 学号 XXXXXXX 1.给出Dijkstra算法的思想,并用C或C++实现,并分析该算法的复杂度。对下 图所示的有向网,试利用Dijkstra算法求出从源点1到其他顶点的最短路径。 实习报告的内容: <一>解决问题和算法思想 这个问题即为单源最短路问题。解决单源最短路径的基本思想是把图中所有结点分为两组,每一个结点对应一个距离值。设置两个结点的集合S和T,集合S中存放已找到最短路径的结点,集合T存放当前还未找到最短路径的结点。初始状态时,集合S只包含源点,设为V0,然后不断从集合T中选择到源点V0路径长度最短的结点u加入到集合S中,集合S每加入一个新的结点u都要修改从源点V0到集合T中剩余结点的当前最短路径长度值,集合T中各结点的新的当前路径最短路径,为原来的最短路径与从源点过结点u到达该结点的路径长度中的较小者。此过程不断重复,直到集合T中的结点全部加入到集合S中为止。 <二>调试通过的源程序 (1)顺序表打包文件:seqlist.h typedef struct { datatype list[maxsize]; int size; }seqlist; void listinitiate(seqlist *l) { l->size=0; } int listlength(seqlist l) { return l.size; } int listinsert(seqlist *l,int i,datatype x) { int j; if(l->size>=maxsize)

{ printf("it is too full!\n"); return 0; } else if(i<0||i>l->size) { printf("error!\n"); return 0; } else { for(j=l->size;j>i;j--) l->list[j]=l->list[j-1]; l->list[i]=x; l->size++; return 1; } } int listdelete(seqlist *l,int i,datatype *x) { int j; if(l->size<=0) { printf("it is empty!\n"); return 0; } else if(i<0||i>l->size-1) { printf("error!\n"); return 0; } else { *x=l->list[i]; for(j=i+1;j<=l->size-1;j++) l->list[j-1]=l->list[j]; l->size--; return 1; } } int listget(seqlist l,int i,datatype *x) { if(i<0||i>=l.size-1) { printf("error!\n"); return 0; } else { *x=l.list[i]; return 1; } } (2)邻接矩阵打包文件:adjmgraph.h

算法排序问题实验报告

《排序问题求解》实验报告 一、算法的基本思想 1、直接插入排序算法思想 直接插入排序的基本思想是将一个记录插入到已排好序的序列中,从而得到一个新的,记录数增1 的有序序列。 直接插入排序算法的伪代码称为InsertionSort,它的参数是一个数组A[1..n],包含了n 个待排序的数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 to n do key←A[i] //key 表示待插入数 //Insert A[i] into the sorted sequence A[1..i-1] j←i-1 while j>0 and A[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法的基本思想是,通过一趟排序将待排序序列分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序序列为数组A[1..n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大的数都排在它的位置之前,将所有比A[0] 小的数都排在它的位置之后,由此以A[0]最后所在的位置i 作为分界线,将数组A[1..n]分成两个子数组A[1..i-1]和A[i+1..n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1..i-1]和A[i+1..n]排序。 一趟快速排序算法的伪代码称为Partition,它的参数是一个数组A[1..n]和两个指针low、high,设枢轴为pivotkey,则首先从high 所指位置起向前搜索,找到第一个小于pivotkey 的数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 的数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确的位置上。用伪代码表示一趟快速排序算法如下: Partition ( A, low, high) A[0]←A[low] //用数组的第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小的记录移到低端 while low

计算机图形学实验三报告

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目二维图形变换 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

二维图形变换 1. 实验内容 完成对北极星图案的缩放、平移、旋转、对称等二维变换。 提示:首先要建好图示的北极星图案的数据模型(顶点表、边表)。另外,可重复调用“清屏”和“暂停”等函数,使整个变换过程具有动态效果。 2. 实验环境 软硬件运行环境:Windows XP 开发工具:visual studio 2008 3. 问题分析

4. 算法设计 程序框架: //DiamondView.h class CDiamondView : public CView { …… public: //参数输入和提示对话框 void Polaris();//北极星 …… }; //DiamondView.cpp void CDiamondView::OnMenuDiamond() { IsCutting = FALSE; if(dlgDiamond.DoModal()==IDOK) DrawDiamond(dlgDiamond.m_nVertex,dlgDiamond.

m_nRadius,100);//调用绘制金刚石的函数 } //北极星 void CDiamondView::Polaris() {......} 5. 源代码 //北极星 void hzbjx(CDC* pDC,long x[18],long y[18]) { CPen newPen1,*oldPen; newPen1.CreatePen(PS_SOLID,2,RGB(255,0,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex1[11]={{x[1],y[1]},{x[2],y[2]},{x[3],y[3]},{x[4],y[4]},{x[5],y[5]},{x[3],y[3]},{x[1],y[1]}, {x[6],y[6]},{x[3],y[3]},{x[7],y[7]},{x[5],y[5]}}; pDC->Polyline(vertex1, 11); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(0,255,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex2[5]={{x[6],y[6]},{x[8],y[8]},{x[9],y[9]},{x[3],y[3]},{x[8],y[8]}}; pDC->Polyline(vertex2, 5); POINT vertex3[5]={{x[4],y[4]},{x[10],y[10]},{x[11],y[11]},{x[3],y[3]},{x[10],y[10]}}; pDC->Polyline(vertex3, 5);

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生:俞梦真 指导教师:郝晓丽 2018年05月04 日

实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011

010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

计算机图形学实验报告

计算机图形学 实验报告 姓名:谢云飞 学号:20112497 班级:计算机科学与技术11-2班实验地点:逸夫楼507 实验时间:2014.03

实验1直线的生成 1实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析 实验数据的能力; 编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的 直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记 录两种算法的绘制时间;利用excel等数据分析软件,将试验结果编 制成表格,并绘制折线图比较两种算法的性能。 2实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One(自制平台)。 本实验提供名为 Experiment_Frame_One的平台,该平台提供基本 绘制、设置、输入功能,学生在此基础上实现DDA算法和Mid_Bresenham 算法,并进行分析。 ?平台界面:如错误!未找到引用源。所示 ?设置:通过view->setting菜单进入,如错误!未找到引 用源。所示 ?输入:通过view->input…菜单进入.如错误!未找到引用 源。所示 ?实现算法: ◆DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) Mid_Bresenham法:void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)

3实验结果 3.1程序流程图 1)DDA算法流程图:开始 定义两点坐标差dx,dy,以及epsl,计数k=0,描绘点坐标x,y,x增 量xIncre,y增量yIncre ↓ 输入两点坐标x1,y1,x0,y0 ↓ dx=x1-x0,dy=y1-y0; _________↓_________ ↓↓ 若|dx|>|dy| 反之 epsl=|dx| epsl=|dy| ↓________...________↓ ↓ xIncre=dx/epsl; yIncre=dy/epsl ↓ 填充(强制整形)(x+0.5,y+0.5); ↓←←←← 横坐标x+xIncre; 纵坐标y+yIncre; ↓↑ 若k<=epsl →→→k++ ↓ 结束 2)Mid_Bresenham算法流程图开始 ↓ 定义整形dx,dy,判断值d,以及UpIncre,DownIncre,填充点x,y ↓ 输入x0,y0,x1,y1 ______↓______ ↓↓ 若x0>x1 反之 x=x1;x1=x0;x0=x; x=x0;

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

《算法设计与分析》实验报告

算法设计与分析课程实验项目目录 学生:学号: *实验项目类型:演示性、验证性、综合性、设计性实验。 *此表由学生按顺序填写。

本科实验报告专用纸 课程名称算法设计与分析成绩评定 实验项目名称蛮力法指导教师 实验项目编号实验项目类型设计实验地点机房 学生学号 学院信息科学技术学院数学系信息与计算科学专业级 实验时间2012年3月1 日~6月30日温度24℃ 1.实验目的和要求: 熟悉蛮力法的设计思想。 2.实验原理和主要容: 实验原理:蛮力法常直接基于问题的描述和所涉及的概念解决问题。 实验容:以下题目任选其一 1).为蛮力字符串匹配写一段可视化程序。 2).写一个程序,实现凸包问题的蛮力算法。 3).最著名的算式谜题是由大名鼎鼎的英国谜人 H.E.Dudeney(1857-1930)给出的: S END +MORE MONEY . 这里有两个前提假设: 第一,字母和十进制数字之间一一对应,也就是每个字母只代表一个数字,而且不同的字母代表不同的数字;第二,数字0不出现在任何数的最左边。求解一个字母算术意味着找到每个字母代表的是哪个数字。请注意,解可能并不是唯一的,不同人的解可能并不相同。3.实验结果及分析: (将程序和实验结果粘贴,程序能够注释清楚更好。)

该算法程序代码如下: #include "stdafx.h" #include "time.h" int main(int argc, char* argv[]) { int x[100],y[100]; int a,b,c,i,j,k,l,m,n=0,p,t1[100],num; int xsat[100],ysat[100]; printf("请输入点的个数:\n"); scanf("%d",&num); getchar(); clock_t start,end; start=clock(); printf("请输入各点坐标:\n"); for(l=0;l

算法排序问题实验报告

《排序问题求解》实验报告 一、算法得基本思想 1、直接插入排序算法思想 直接插入排序得基本思想就是将一个记录插入到已排好序得序列中,从而得到一个新得, 记录数增 1 得有序序列。 直接插入排序算法得伪代码称为InsertionSort,它得参数就是一个数组A[1、、n],包含了n 个待排序得数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 ton do key←A[i]//key 表示待插入数 //Insert A[i] into thesortedsequence A[1、、i-1] j←i-1 while j>0 andA[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法得基本思想就是,通过一趟排序将待排序序列分割成独立得两部分,其中一 部分记录得关键字均比另一部分记录得关键字小,则可对这两部分记录继续进行排序,以达 到整个序列有序。 假设待排序序列为数组A[1、、n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大得数都排在它得位置之前,将所有比 A[0]小得数都排在它得位置之后,由此以A[0]最后所在得位置i 作为分界线,将数组 A[1、、n]分成两个子数组A[1、、i-1]与A[i+1、、n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1、、i-1]与A[i+1、、n]排序。 一趟快速排序算法得伪代码称为Partition,它得参数就是一个数组A[1、、n]与两个指针low、high,设枢轴为pivotkey,则首先从high所指位置起向前搜索,找到第一个小于pivotkey得数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 得数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确得位置上。用伪代码表示一趟快速排序算法如下: Partition ( A,low,high) A[0]←A[low] //用数组得第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low<high //从表得两端交替地向中间扫描 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小得记录移到低端 while low<high &&A[low]<=pivotkey)dolow←low+1 A[high]←A[low] //将比枢轴记录大得记录移到高端

相关主题
文本预览
相关文档 最新文档