当前位置:文档之家› 丝杆传力计算

丝杆传力计算

丝杆传力计算
丝杆传力计算

如何计算丝杆传动方向的推力

推力P=2πηT/L

η:丝杆传动效率,大约为0.9~0.95

T:转矩

L:丝杆导程

济宁利兴丝杠希望能帮助

一、已知电机与滚珠丝杠参数,如何计算推力?

1.电机扭矩:35NM,额定转速1500转

2.丝杠螺距10mm,直径80. 如何得到在丝杠端产生的推力.

一位教授要我按照F = 2* M /(d*tan(A+B)) [M:力矩,D2丝杆中径,A为螺蚊升角,B为当量磨擦角] 但我计算的结果与机械设计的参数出入很大,不知道哪里有问题,这个公式是正确的吗?

此法不对。1、丝杠中径在扭矩推力关系中没有直接联系,仅通过影响螺旋升角间接影响(但在校验时,须在计算推力与对应中径的丝杠的轴向额定负载中取小值);2、当量摩擦角仅影响滚道受力状态(参与丝杠副受力分析),但对推力扭矩的关系不产生影响;3、上例为:F=2πM/P=18692 N;(相同扭矩下,推力仅是导程的函数)4、转速对推力没有影响,但对于运动过程表征其与机械效率的函数,功率校验时建议取η=0.85核定。注:目前业内常常将机械效率在受力分析中体现,实为误区,效率是一个过程量,力则是点量,好比电压与电流分别跟电阻的关系。祝成功。

二、已知电机扭矩0.39NM,减速比5.57,滚珠丝杆直径D=20mm.导程L=4mm 螺纹升角φ=3.65度,运动方式为:旋转运动改直线运动,计算丝杆直线运动的推力是多少?

1、输出扭矩T=0.39X5.57=2.17NM T= FL / 2×3.1415926×0.9 F=2.17×6.28×0.9×1000÷4=3066N

2、tanρ=0.0025 (ρ当量摩擦角) T= F×D×tan(φ+ρ)÷1000÷2 F=3277N

第一种算法,推力与导程有关(摘至丝杆选型手册),计算电机所需扭矩时,要考虑恒速和加速时扭矩;

第二算法,推力与丝杆直径和螺纹升角有关(摘至机械设计大典),计算电机所需扭矩时,要考虑轴承摩擦扭矩和零件惯性。请教一下,上面两种算法,哪种正确,或者两种都不正确,具体该怎么算推力?

答:殊途同归两种算法是一样的计算结果的差异是效率的选择不同造成的

匀速运行,非精确计算可以套用以下公式:

Ta=(Fa*I)/(2*3.14*n1)

式中 Ta:驱动扭矩kgf.mm;

Fa:轴向负载N(Fa=F+μmg),

F:丝杠的轴向切削力N,

μ:导向件的综合摩擦系数,

m:移动物体重量(工作台+工件)kg,g=9.8 ;

I:丝杠导程mm;

n1:进给丝杠的正效率。

计算举例:假设工况:水平使用,伺服电机直接驱动,2005滚珠丝杠传动,25滚珠直线导轨承重和导向,理想安装,垂直均匀负载1000kg,求电机功率:Fa=F+μmg,设切削力不考虑,设综合摩擦系数μ=0.01,

得Fa=0.01*1000*9.8=98N;

Ta=(Fa*I)/(2*3.14*n1),

设n1=0.94,得Ta=98*5/5.9032≈83kgf.mm=0.83N.M

根据这个得数,可以选择电机功率。以台湾产某品牌伺服为例,查样本得知,额定扭矩大于0.83N.M的伺服电机是400W。(200W是0.64N.M,小了。400W额定1.27N.M,是所需理论扭矩的1.5倍,满足要求)当然咯,端部安装部分和滚珠丝杠螺母预压以及润滑不良会对系统产生静态扭矩,也称初始扭矩,实际选择是需要考虑的。另外,导向件的摩擦系数不能单计理论值,比如采用滚珠导轨,多套装配后的总摩擦系数一定大于样本参数。而且,该结果仅考虑驱动这个静止的负载,如果是机床工作台等设备,还要考虑各向切削力的影响。若考虑加速情况,较为详细的计算可以参考以下公式(个人整理修正的,希望业内朋友指点):水平使用滚珠丝杠驱动扭矩及电机功率计算:

实际驱动扭矩:

T=(T1+T2)*e

T:实际驱动扭矩;

T1:等速时的扭矩;

T2:加速时的扭矩;

e:裕量系数。

等速时的驱动扭矩:T1=(Fa*I)/(2*3.14*n1)T1:等速驱动扭矩kgf.mm; Fa:轴向负载N【Fa=F+μmg,F:丝杠的轴向切削力N,μ:导向件综合摩擦系数,m:移动物体重量(工作台+工件)kg,g:9.8 】; I:丝杠导程mm; n1:进给丝杠的正效率。加速时的驱动扭矩:T2=T1+J*W T2:加速时的驱动扭矩kgf.m; T1:等速时的驱动扭矩kgf.m; J:对电机施加的惯性转矩kg.m2【J=Jm+Jg1+(N1/N2)2*[Jg2+Js+m(1/2*3.14)2]】W:电机的角加速度rad/s2; Jm:电机的惯性转矩kg.m2 ;Jg1:齿轮1的惯性转矩kg.m2; Jg2:齿轮2的惯性转矩kg.m2; Js:丝杠的惯性转矩kg.m2 (电机直接驱动可忽略Jg1 、Jg2)若采用普通感应电机,功率根据以下公式计算:P=TN/9549 P:功率;T:扭矩;N:转速

力学计算公式

? 常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA @ 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 … 对y轴的惯性矩I y=∫A z2dA

其中:A为图形面积,z为形心到y轴的距离,单位为m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 " 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12(二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 》 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

力学计算公式

力学计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA 为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标 轴的静矩不同,如果参考轴通过图形的形心,则 x c=0,y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为 m4

常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩 I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正 应力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。8.抗弯截面模量 W x=I x/y c

压杆稳定计算

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干

怎样推导压杆的临界力和临界应力公式.

06、基本知识 怎样推导压杆的临界力和临界应力公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.doczj.com/doc/b26237213.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出及其对策 (1) 1.1 问题的提出及其对策 ........................................................................................................ 1 1.2 压杆稳定分析概述——与强度、刚度分析对比 ............................................................ 2 2 压杆临界压力F cr 的计算公式 ................................................................................................. 3 2.1 压杆稳定的力学模型——弯曲平衡 ................................................................................ 3 2.2梁的平衡理论——梁的挠曲微分方程 ............................................................................. 4 2.3 按梁的平衡理论分析两端铰支的压杆临界压力 ............................................................ 6 2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力 ............................................ 8 2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力 .......................................... 10 2.6 按梁的平衡理论分析两端固定的压杆临界压力 .......................................................... 14 2.7 将四种理想压杆模型的临界力公式及其推导分析图示的汇总 .. (18) 1 * 问题的提出及其对策 1.1 问题的提出及其对策 试计算长度为400mm ,宽度为10mm ,厚度为1mm 的钢锯条,在一端固定、一端铰支的情况下,许用的轴向压力。材料的许用应力为160MPa 。 解:1、按轴向拉压强度计计算 []2/160160120mm N MPa mm mm F A F N N ==≤?== σσ 2、按压杆稳定临界力公式计算 ()43 33 5120121121mm mm mm bh I Z =??== ()()N mm mm MPa l EI F CR 28.123 4002102000002 4 222=????==πμπ 分析:1、按轴向拉压杆的强度条件计算结果,该钢板尺可以安全承压 3.2kN 。这是一 个什么概念呢?一袋水泥重50kg ,对应重力N s m kg mg W 500/10502 =?==,即该钢 kN N mm N mm mm F N 2.33200/1601202==??≤

材料力学的基本计算公式

材料力学的基本计算 公式 Revised on November 25, 2020

材料力学的基本计算公式外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹 角a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试 样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性 材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关 系式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭 矩T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均 半径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的 关系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

压杆稳定性计算

第16章压杆稳定 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5

力学计算公式

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σ=N/A≤[σ]maxmax其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q其中,Q为剪力,A为剪切面面积Q4.静矩(是对一定的轴而言,同一图形对不同的坐标轴的静矩不同,如果参考轴通过图形的形心,则x=0,c y=0,此时静矩等于零)c对Z轴的静矩S=∫ydA=yA czA其中:S为静矩,A为图形面积,y 为形心到坐标轴的c3m。距离,单位为惯性矩5. 轴的惯性矩=∫dAy对Ay轴的距离,单位为y为形心到z为图2zI 形面积,A其中: 常用简单图形的惯性矩33/12=bh/12,I=hbI矩形:yx4=πd/64 4m 圆形:I z44(πD1-a)/64,a=d/D=空心圆截面:I z(一)、求通过矩形形心的惯性矩 ∫Ay求矩形通过形心,的惯性矩I=x3h/2h/223 2dA

/3]/12=bh=[bybdy=IdydA=b·,则∫y()-h/2-h/2x(二)、求过三角 形一条边的惯性矩 /h·(h-y,dA=b·dy,b=bAyI=∫dA xxx32h2h dy yb/h)∫b(h-y)2) /h)dy=(yb –y=则I∫(0x03h4h3=bh=[by/3]-[by/4h]/1200 梁正应力强度条件(梁的强度通常由横截面上的正应 6.力控制)[/Wσ=M≤σ]zmaxmax为抗弯截面系数。M为弯矩,W其中:超静 定问题及其解法7.根据静力学平衡1对一般超静定问题的解决 办法是:()、根据变形协调条件列出、2条件列出应有的平衡方程;()根据力学与变形间的物理关系将变3()、变形几何方程;形几何方程改写成所需的补充方程。抗弯截面模量8. W=I/y cxx其中I为对形心轴的惯性矩x9.抛物线形曲线的主要特 性

杆件的内力计算

第三章 杆件的内力计算 内力的大小及其分布规律与杆件的变形与失效密切相关,因此内力分析是解决构件承载能力的基础。本章主要研究杆件的内力及其沿杆件轴线的变化规律,以便为杆件的强度、刚度和稳定性计算提供基础。 内容提要 一、内力与截面法 1畅内力的概念 作用于杆件上的载荷和支座约束力称为外力。由外力引起的杆件内部作用力的改变量,称为附加内力,简称为内力。 机械工程力学主要研究受力杆件横截面上的内力。根据连续性假设可知,内力在横截面上是连续分布的,组成一分布内力系,通常所说的内力是指该分布内力系的简化结果。 2畅截面法 将杆件假想地截开以显示内力,并由平衡方程确定内力的方法,称为截面法,它是计算杆件内力的基本方法,其步骤可归结为: (1)截———沿欲求内力的截面假想地将杆件截为两部分; (2)取———任取其中一部分为研究对象; (3)代———用欲求的内力代替另一部分对研究对象的作用; (4)平———列出研究对象的平衡方程,确定内力的大小和方向。 应用截面法时应注意: (1)截面不能取在集中力或集中力偶的作用面上; (2)未知的内力均设为正。 二、轴向拉压杆的内力与内力图 1畅轴向拉压杆件的受力与变形特征 杆件是直杆,作用于杆件上的外力合力作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。这种变形形式称为轴向拉伸或轴向压缩,这类杆件称为拉杆或压杆。 2畅拉压杆横截面上的内力———轴力 杆件轴向拉伸或压缩时,横截面上的内力与轴线重合,这种与杆件轴线重合的内力称为轴力,用FN表示。 使杆件受拉伸时的轴力为正,此时轴力背离截面,称为拉力;使杆件受压缩时的轴力为负,此时轴力指向截面,称为压力。 ·45·

材料力学的基本计算公式

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比

7.

8.圆轴扭转时横截面上任一点切应力计算公式(扭矩T, 所求点到圆心距离r) 9.圆截面周边各点处最大切应力计算公式 10.扭转截面系数,(a)实心圆 (b)空心圆 11.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半 径)扭转切应力计算公式 12.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关 系式 13.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 14.等直圆轴强度条件 15.塑性材料;脆性材料 16.扭转圆轴的刚度条件? 或 17.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

18.平面应力状态下斜截面应力的一般公式 , 19.平面应力状态的三个主应力 , , 20.主平面方位的计算公式 21.面内最大切应力 22.受扭圆轴表面某点的三个主应力,, 23.三向应力状态最大与最小正应力 , 24.三向应力状态最大切应力 25.广义胡克定律

26.四种强度理论的相当应力 27.一种常见的应力状态的强度条件 , 28.组合图形的形心坐标计算公式, 29.任意截面图形对一点的极惯性矩与以该点为原点 的任意两正交坐标轴的惯性矩之和的关系式 30.截面图形对轴z和轴y的惯性半径? , 31.平行移轴公式(形心轴z c与平行轴z1的距离为a, 图形面积为A) 32.纯弯曲梁的正应力计算公式 33.横力弯曲最大正应力计算公式

相关主题
文本预览
相关文档 最新文档