当前位置:文档之家› 道康宁硅烷偶联剂用法简要说明(二)

道康宁硅烷偶联剂用法简要说明(二)

道康宁硅烷偶联剂用法简要说明(二)
道康宁硅烷偶联剂用法简要说明(二)

道康宁硅烷偶联剂用法简要说明(二)

东莞市之升化工有限公司

道康宁硅烷偶联剂用法说明

一、树脂类

1.1不饱和聚酯

在聚酯层压板中的玻璃纤维上用多种不饱和硅烷偶联剂进行了对比,基中有不少是很有效的偶联剂,其中性能优越和详作较多的见表2所示。对于大多数通用聚酯来说,常选用含甲基丙烯酸酯的硅烷偶联剂(如6030)。在典型的含填料聚酯浇铸件中,采用各种填料和甲基丙烯酸酰氧基官能团硅烷可使其性能获得不同程度的改进。

1.2环氧树脂

许多硅烷对环氧树脂都相当有效,但可订出一些通则为某特定体系选择最适宜的硅烷。偶联剂的反应性至少与环氧树脂所用的特定固化体系的反应性相当。对于含缩水甘油官能团的环氧树脂来说,显然是选用缩水甘油氧丙基硅烷(如:6040)为宜,对于脂肪族环氧化合物或用酸酐固化的环氧树脂,建议用脂肪族硅烷。

在实际应用中,硅烷偶联剂的应用机理并非总是很清楚,但可结合经验来选择,如何用伯胺基团的硅烷(如6011)可使室温固化的环氧树脂获得最佳性能,但不可用于酸酐固化的环氧树脂获得最佳性能;含氯丙基官能团的硅烷对高温固化的环氧树脂是一种很可靠的偶联剂;含甲基丙烯酸酯的硅烷(如6030)是双氰胺固化的环氧树脂的有效偶联剂。

1.3酚醛树脂

硅烷偶联剂可用来改善几乎所有的含有酚醛树脂的复合材料。氨基硅烷可与酚醛树脂粘结料一起用于玻璃纤维绝缘材料;与间苯二酚—甲醛—胶乳浸渍液中间苯二酚—甲醛树脂或酚醛树脂一起用于玻璃纤维轮胎帘线上,与呋喃树脂与酚醛树脂一起用作金属铸造用砂芯的粘结料;氨基硅烷

与酚醛树脂并用,可用于油井中砂层的固定,其中6011、6020效果理想。

1.4其它热固性树脂

表1中6300、6030可作为以邻苯二甲酸二烯丙脂、丙烯酸类单体以及可交联的聚烯烃为基础的其它不饱和树脂的偶联剂。6040、6011、适合用作三聚氰酰胺树脂、呋喃树脂及聚酰亚胺树脂的偶联剂

二、热塑性树脂

用硅烷处理颗粒状无机填料可显著改善含填料热塑性树脂的流变性能,并在诸如混炼挤出或注模等高剪切力的作业中,保护填料免受机械损伤。

2.1聚烯烃

供压出法制电缆包层用的含填料聚乙烯可用硅烷改性,以提高复合材料在潮湿状态下的电性能。填充高岭土、硅酸钙和石英的聚乙烯复合材料,在掺加了6030、6040后其性能均有明显的提高。2.2热塑性工程塑料

适用于环氧树脂的有机官能团硅烷,在填充无机材料的尼龙中也能产生良好效果。氨基硅烷可用于为数众多的热塑性塑料中,如ABS、缩醛树脂、尼龙、聚碳酸酯、聚砜、聚苯乙烯、聚酯、聚氯乙烯、苯乙烯—丙烯腈共聚物等。

三、弹性体

在橡胶中使用硅烷来处理炭黑、二氧化硅及其它无机填料已有历史。子午线轮胎、胶辊、高级鞋底等橡胶制品中已大量使用硅烷偶联剂,含水硫硅烷已成为这些橡胶配方中不可缺少的处理剂。研究表明,在各种橡果胶中加入硅烷后,随着粘接强度的提高,其它性能也相应在地发生变化,其变化性况因胶种而异。

硅烷偶联剂的使用说明资料

硅烷偶联剂的使用说 明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个 /μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用 Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆

硅烷偶联剂kh

硅烷偶联剂kh570 一、概述: 偶联剂kh570是一类具有两不同性质官能团的物质,它们分子中的一部分官能团可与有机分子反应,另一部分官能团可与无机物表面的吸附水反应,形成牢固的粘合。偶联剂在复合材料中的作用在于它既能与增强材料表面的某些基团反应,又能与基体树脂反应,在增强材料与树脂基体之间形成一个界面层,界面层能传递应力,从而增强了增强材料与树脂之间粘合强度,提高了复合材料的性能,同时还可以防止不与其它介质向界面渗透,改善了界面状态,有利于制品的耐老化、耐应力及电绝缘性能。 化学名称:γ―甲基丙烯酰氧基丙基三甲氧基硅烷 化学结构式:CH3CCH2COO(CH2)3Si(OCH3)3 对应牌号:中科院KH-570、美国联碳公司A-174、美国道康宁公司Z-603、日本信越公司KBM-503 典型特征:偶联剂570为甲基丙烯酰氧基官能团硅烷,外观为无色或微黄透明液体,溶于丙酮、苯、乙醚、四氯化碳,与水反应。沸点为255℃,密度P25'g/m1:1.040,折光率ND:1.429,闪点:88℃,含量为≥97% 二、应用领域: 1、用于玻璃纤维的表面处理,能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,即使在湿态时,它对复合材料机械性能的提高,效果也十分显着。目前,

在玻璃纤维中使用硅烷偶联剂已相当普遍,用于这一方面的硅烷偶联剂约占其消耗总量的50%,其中用得较多的品种是乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷等。 2、用于无机填料填充塑料。可预先对填料进行表面处理,也可直接加入树脂中。能改善填料在树脂中的分散性及粘合力,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。 3、用作密封剂、粘接剂和涂料的增粘剂,能提高它们的粘接强度、耐水、耐气候等性能。硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。硅烷偶联剂作为增粘剂的作用原理在于它本身有两种基团;一种基团可以和被粘的骨架材料结合;而另一种基团则可以与高分子材料或粘接剂结合,从而在粘接界面形成强力较高的化学键,大大改善了粘接强度。硅烷偶联剂的应用一般有三种方法:一是作为骨架材料的表面处理剂;二是加入到粘接剂中,三是直接加入到高分子材料中。从充分发挥其效能和降低成本的角度出发,前两种方法较好。 三、使用方法 1、表面预处理法:将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

常用硅烷偶联剂 (2)

常用硅烷偶联剂——K H550、KH560、KH570、KH792、DL602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质:

外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X ,而与有机聚合物的反应活性则取于碳官能团C-丫。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeC、OOVi 及CH2-CHOCH-2O 的硅烷偶联剂;环氧树脂多选用含CH2- CHCH2及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NC0NH硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而, 光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕 3 种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中丫与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si—OH含量。已知,多数硅质基体的Si —OH含是来4-12 个/卩叭因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用丫3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因丫3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si —OH数为5.3个/卩川硅质基体,经在400C或800C 下加热处理后,则Si —OH值可相应降为2.6个/卩卅或V 1个/卩讥反之,使用湿热盐酸处理基体,则可得到高Si —OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS,是指ig硅烷偶联剂的溶液所能覆

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

硅烷偶联剂

硅烷偶联剂kh560 CAS号:2530-83-8 国外牌号: A-187(美国奥斯佳有机硅有限公司)(原联碳公司),美国道康宁Z-6040,日本信越KBM-403。 KBM-403(日本信越化学工业株式会社) 化学名称及分子式:γ-缩水甘油醚氧丙基三甲氧基硅烷 硅烷偶联剂KH560性质:物理形态:无色或微黄色液体。沸点:290℃。折光率:(nD25) 1.4260-1.4280,比重(dD25)1.065-1.072。溶解性:溶于水,同时发生水解反应,水解反应释放甲醇。溶于醇、丙酮和在5%以下的正常使用水平溶于大多数脂肪族酯。硅烷偶联剂KH560用途: 1.是一种含环氧基的偶联剂,用于多硫化物和聚氨酯的嵌缝胶和密封胶,用于环氧树脂的胶粘剂、填充型或增强型热固性树脂、玻璃纤维胶粘剂和用于无机物填充或玻璃增强的热塑料性树脂等。 2.硅烷偶联剂kh560增强基于环氧树脂电子密封剂和封装材料及印刷电路板的电性能,提高树脂与基体或填充剂之间的粘结力。 3.硅烷偶联剂KH-560能够增强许多无机物填充的尼龙,聚丁烯对苯二酸酯在内的复合材料的电学性能。 对范围广泛的填充剂和基体,象粘土、滑石、硅灰石、硅石、石英或铝、铜和铁在内的金属都有效。 4.从添加硅烷偶联剂KH560获益的具体应用,包括:用石英填充的环氧密封剂、预混配方,用砂填充的环氧树脂混凝土修补材料或涂层和用于制模工具和金属填充的环氧树脂材料。 5.免除了对多硫化物和聚氨酯密封胶和嵌缝化合物中独立底漆的要求。 6.硅烷偶联剂KH560还可以改进含水丙烯酸胶乳嵌缝胶和密封胶,基于聚氨酯和环氧树脂的涂层中的粘合。 7.生产包装运输:KH560用塑料桶包装,每桶净重5kg, 10kg, 20kg,代办托运。 (用量注意:硅烷偶联剂处理无机表面材料并非用量越多越好,理想的添加量是能够使硅烷偶联剂在无机材料表面里形成一层单分子层,与无机材料表面羟基反应,从而提高无机材料的亲油性。如果硅烷偶联剂用量过多,则偶联剂自身水解后发生交联反应,从而是材料力学性能降低。) 硅烷偶联剂kh560使用方法 KH560若要配成水溶液处理无机物,浓度为0.1-0.5%的硅烷。水溶液首先用0.1%醋酸到调至PH值为 3.0- 4.5然后搅拌下滴加硅烷,通常搅15分钟可形成澄清的水溶液。一定时期内由于KH-560点浓度高可能会不稳定,放置一些天后沉降出油状的聚硅氧缩聚物。当然KH-560还可以溶于许多有机溶剂配成溶液使用。在不用任何溶剂时,亦可以在很高的剪切作用下几分钟内与矿物填料混合来处理填料。经硅烷处理的玻璃或矿物填料可在105℃至120℃下加热干燥促使硅醇基缩合在表面上并除去副产物甲醇。最佳应用干燥条件如时间与湿度应依工艺来选择。 用作底胶时,将99份KH-560及1份有机胺如苯基二甲胺(记为混合物A)用约900份甲醇稀释来用。底胶可用于玻璃或金属等固体表面,而聚合物亦可热压或交联在表面上。混合物A或KH-560亦可以0.5至2.0pph 直接加入树脂体系以促进未打底胶的粘合。 硅烷偶联剂KH560MSDS 突发事件概述: 外观:洁净、无色液体。注意:如果吸入皮肤,可能有害健康。易受潮,可导致眼睛和皮肤发炎,可导致呼吸道和消化道疼痛、发炎。造成再生和胎儿的效应。与水分的接触产生甲醛。 目标器官:不详。

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍标准化管理部编码-[99968T-6889628-J68568-1689N]

常用硅烷偶联剂介绍 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂的原液。 (1)表面预处理法 将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇(甲氧基硅烷选择甲醇,乙氧基硅烷选择乙醇)、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%)、醇(72%)、水(8%),醇一般为乙醇(对乙氧基硅烷)甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷)因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值,除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4—5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,最好在一小时内用完。 (2)直接添加方法 将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。 硅烷偶联剂具体使用方法 (1)预处理填料法 将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍 1. KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-Triethoxysilylpropylamine APTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 【3-Aminpropyltriethoxysilane AMEO】分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃

折光率nD25: 1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2. KH560 一、国外对应牌号:

硅烷偶联剂的产品分类与用途.pdf

硅烷偶联剂介绍

目录 1 硅烷偶联剂 (1) 有机硅烷偶联剂的选择原则 (3) 偶联剂用量 (4) 硅烷偶联剂作用机理 (5) 硅烷偶联剂使用方法 (6) 硅烷偶联剂分类与用途 (7) 硅烷偶联剂A-151 (7) 硅烷偶联剂A-171 (8) 硅烷偶联剂A-172 (9) 硅烷偶联剂KH-540 (9) 硅烷偶联剂KH-550 (10) 硅烷偶联剂KH-551 (10) 硅烷偶联剂KH-560 (11) 硅烷偶联剂KH-570 (12) 硅烷偶联剂KH-580 (13) 硅烷偶联剂KH-602 (13) 硅烷偶联剂KH-791 (14) 硅烷偶联剂KH-792 (15) 硅烷偶联剂KH-901 (16) 硅烷偶联剂KH-902 (16) 硅烷偶联剂nd-22 (17) 硅烷偶联剂ND-42(南大42) (17) 硅烷偶联剂ND-43 (17) 硅烷偶联剂SI-69 (18) 苯基三甲氧基硅烷 (18) 苯基三乙氧基硅烷 (19) 甲基三乙氧基硅烷 (20)

钛酸酯偶联剂 (20) 钛酸酯偶联剂101(钛酸酯TTS) (20) 钛酸酯偶联剂102 (21) 钛酸酯偶联剂105 (21) 有机硅烷偶联剂的选择原则 有机硅烷偶联剂的选择一般凭借对有机硅烷偶联剂侧试数据进行经脸总结,准确.地预测有机硅烷偶联剂是非常困难的。使用有机硅烷偶联剂后增大的键强度是一系列复杂因素的综合,如浸润、表面能、边界层的吸附、极性吸附,酸碱相互作用等. 预选有机硅烷偶联剂可遵循以下规津:不饱和聚醋可选用乙烯纂、环氧基及甲基丙烯陈氧基型有机硅烷偶联剂;环氧树脂宜选用环氧基或氨基型有机硅烷偶联剂;酚醛树脂宜选用氨基或服基型有机硅烷偶联剂;烯烃聚合物宜选用乙烯基型右机硅烷偶联剂;硫磺硫化的橡胶宜选用疏基型有机硅烷偶联剂等, 一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验,预选并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOOVi及CH2-CHOCH2O的硅烷偶联剂:环氧树脂多选用含CH2CHCH2O及H2N硅烷偶联剂:酚醛树脂多选用含H2N及H2NCONH硅烷偶联剂:聚烯烃多选用乙烯基硅烷:使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接强度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应:改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性:后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 硅烷偶联剂牌号偶联剂应用领 域 偶联剂作用 KH-540 KH-550 胶黏剂行业●提高粘接力及粘接寿命 ●在潮湿和干燥的条件下仍具有良好的粘结效果●更佳的耐溶剂性、提高储存寿命 KH-560 KH-570 KH-792 Si-602 Si-563 KH-540 KH-550 涂料行业●有机聚合物和无机表面之间的附着力促进剂●粘合体系的交联剂和固化剂,共聚单体 ●填料和颜料的分散剂 ●在抗刮和抗腐蚀涂料中充当粘结组分及涂层 KH-560 KH-570 KH-792 Si-602 Si-563 A-151

偶联剂的运用

1.钛酸酯偶联剂 钛酸酯偶联剂的分子可以划分为六个功能区,它们在偶联机制中分别发挥各自的作用。六个功能区如下图所示: 功能区①(RO)m -起无机物与钛偶联。 钛酸酯偶联剂通过它的烷氧基直接和填料或颜料表面所吸附的微量羧基或羟基进行化学作用而偶联。 由于功能区①基团的差异开发了不同类型偶联剂,每种类型对填料表面的含水量有选择性,各类型特点: 1、单烷氧基型; 单烷氧基钛酸酯在无机粉末和基体树脂的界面上产生化学结合,它所具有的极其独特的性能是在无机粉末的表面形成单分子膜,而在界面上不存在多分子膜。 因为依然具有钛酸酯的化学结构,所以在过剩的偶联剂存在下,使表面能变化,粘度大幅度降低,在基体树脂相由于偶联剂的三官能基和酯基转移反应,可使钛酸酯分子偶联,这就便于钛酸酯分子的变型和填充聚合物体系的选用。 该类偶联剂(除焦磷酸型外)特别适合于不含游离水,只含化学键合水或物理键合水的干燥填充剂体系,如碳酸钙、水合氧化铝等。 2、单烷氧基焦磷酸酯型: 该类钛酸酯适合于含湿量较高的填充剂体系,如陶土、滑石粉等,在这些体系中,除单烷氧基与填充剂表面的羟基反应形成偶联外,焦磷酸酯基还可以分解形成磷酸酯基,结合一部份水。 i-单烷氧脂肪酸酯型

ii-单烷氧磷酸酯型 iii-单烷氧焦磷酸酯型 3、配位型: 可以避免四价钛酸酯在某些体系中的副反应。如在聚酯中的酯交换反应,在环氧树脂中与羟基的反应,在聚氨酯中与聚醇或异氰酸酯的反应等。该类偶联剂在许多填充剂体系中都适用,有良好的偶联效果,其偶联机理和单烷氧基型类似。 4、螫合型: 该类偶联剂适用于高湿填充剂和含水聚合物体系,如湿法二氧化硅、陶土、滑石粉、硅酸铝、水处理玻璃纤维、灯黑等,在高湿体系中,一般的单烷氧基型钛酸酯由于水解稳定性较差,偶联效果不高,而该型具有极好的水解稳定性,在此状态下,显示良好的偶联效果。 氧乙酸螯合型 乙二醇螯合型 功能区② -(--O……)--具有酯基转移和交联功能。 该区可与带羧基的聚合物发生酯交换反应,或与环氧树脂中的羧基进行酯化反应,使填充剂、钛酸酯和聚合物三者交联。 酯交换反应性受以下几个因素支配: 1、钛酸酯分子与无机物偶联部份的化学结构;

硅烷偶联剂kh-550化学品安全技术说明书

硅烷偶联剂KH-550化学品安全技术说明书 (MSDS) 第一部分:化学品名称 化学品中文名称:硅烷偶联剂KH-550 化学品英文名称:?Silanc Coupling?Agcm KH-550? 中文名称2: 分子式: 分子量: 第二部分:成分/组成信息 主要成分:γ-氨丙基-乙氧基硅烷? 含量:≥97% CAS No. 919-30-2 第三部分:危险性概述 危险性类别:腐蚀性。对眼睛、皮肤和粘膜组织有腐蚀性。该物质和水或湿气接触时会反应生成乙醇。乙醇可能对中枢神经系统造成影响。 侵入途径:吸入、食入、皮肤接触、眼睛接触 健康危害:眼睛:接触液体或蒸汽可能导致眼睛疼痛、红肿和烧伤 皮肤:可能导致疼痛、红肿和皮肤烧伤 吸入:吸入可能引起呼吸道刺激,烧灼感,咳嗽,咽喉痛 食入:误食可能导致消化道刺激、烧灼感和灼伤。吞咽有害 第四部分:急救措施 皮肤接触:立即就医。移除受污染衣物和鞋子。擦去后用水和肥皂清洗至少15分钟。化学烧伤必须由医生及时处理。衣物和鞋子再次使用前应彻底清洗。 眼睛接触:立即就医。立即用清水冲洗眼睛至少15分钟,反复提起上下眼睑。如果可行,检查并移除隐形眼镜。化学烧伤必须由医生及时处理。 吸入:立即就医。移至通风良好处。患者应注意保暖和休息。如果出现呼吸停止、呼吸困难和呼吸不规则,由受过训练的人员进行人工呼吸或给予氧气。如果患者失去意识,将其处于复原体位,立即就医。保持气道畅通。放松患者紧束的衣物,如衣领、领带、皮带或腰带。食入:立即就医。切勿催吐。如果患者清醒,漱口后饮用足量的清水。患者应注意保暖和休息。如果患者失去意识,切勿从口腔给其服用任何物品。 第五部分:消防措施 危险特性:可燃液体。和水反应生成乙醇 有害燃烧产物:碳氧化物、碳氢化物、氦氧化物、二氧化硅 灭火方法:砂、专用粉末和合适的泡沫,严禁灭火剂接触容器内容物。禁用含水灭火剂,禁用水。可以用水雾冷却暴露于火场中的容器。禁止让水进入容器 特殊的灭火方法:如果发生火灾,及时疏散和隔离人群。在不危及人员安全情况下,由受过训练的专业人员进行灭火。在不危及人员安全情况下尽可能将容器从火场移至空旷处。灭火时应处于上风处,以避免接触有害蒸汽和有毒分解产物。采取措施避免该物质和灭火的流出物进入溪流或供水系统。

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

硅烷偶联剂kh-550化学品安全技术说明书(MSDS)

硅烷偶联剂kh-550化学品安全技术说明书 (MSDS) 硅烷偶联剂KH-550化学品安全技术说明书 (MSDS) 第一部分:化学品名称 1.1 化学品中文名称:硅烷偶联剂KH-550 1.2 化学品英文名称: Silanc Coupling Agcm KH-550 1.3 中文名称2: 1.4 分子式: 1.5 分子量: 第二部分:成分/组成信息 2.1 主要成分:γ-氨丙基-乙氧基硅烷 2.2 含量:≥97% 2.3 CAS No. 919-30-2 第三部分:危险性概述 3.1 危险性类别:腐蚀性。对眼睛、皮肤和粘膜组织有腐蚀性。该物质和水或湿气接触时 会反应生成乙醇。乙醇可能对中枢神经系统造成影响。 3.2 侵入途径:吸入、食入、皮肤 接触、眼睛接触 3.3 健康危害:眼睛:接触液体或蒸汽可能导致眼睛疼痛、红肿和烧伤皮肤:可能导致疼痛、红肿和皮肤烧伤 吸入:吸入可能引起呼吸道刺激,烧灼感,咳嗽,咽喉痛食入:误食可能导致消化道刺激、烧灼感和灼伤。吞咽有害 第四部分:急救措施 4.1 皮肤接触:立即就医。移除受污染衣物和鞋子。擦去后用水和肥皂清洗至少15分钟。化学烧伤必须由医生及时处理。衣物和鞋子再次使用前应彻底清洗。 4.2 眼睛接触:立即就医。立即用清水冲洗眼睛至少15分钟,反复提起上下眼睑。如果 可行,检查并移除隐形眼镜。化学烧伤必须由医生及时处理。 4.3 吸入:立即就医。移至通风良好处。患者应注意保暖和休息。如果出现呼吸停止、呼 吸困难和呼吸不规则,由受过训练的人员进行人工呼吸或给予氧气。如果患者失去意识,将其处于复原体位,立即就医。保持气道畅通。放松患者紧束的衣物,如衣领、领带、皮带或腰带。

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

偶联剂在涂料中的应用

偶联剂在涂料中的应用 1、应用机理: 偶联剂和表面活性剂的区别: 在涂料制造过程中,需要将属于亲水的极性物质颜、填料分散到属于疏水的非极性物质有机基料中去。为了增加无机物与有机高分子之间的亲合性,一般要用偶联剂或其它表面活性剂等处理无机物的表面,使它由亲水变为疏水性,从而促进无机物和有机物之间的界面结合。 偶联剂和表面活性剂在分子结构和应用性能方面有些相似,但也有差别。二者都是由亲水和疏水两种基团组成。表面活性剂通过分子中亲水基团定向吸附在无机颜、填料表面形成单分子层,这是一种物理吸附现象,从而提高颜填料在基料中的分散性和润湿性,因此仅是物理吸附,所以表面活性剂有迁移现象影响光泽,外观和附着力。偶联剂是通过化学反应和无机颜填料表面进行偶联结合并和高分子基料进行交联,把两种不同性质的物质结合起来,起桥梁作用,从结合强度,提高颜、填料在基料中的分散程序以及降低界面自由能的幅度,偶联剂都大大胜过表面活性剂。 (2)偶联剂的偶联机理: 关于偶联剂的作用机理,一般认为是在单烷氧钛酸酯偶联剂中只有一个异丙氧基团是能和无机物偶联的水解基团,因此就可以在无机颜、填料的表面形成单分子层相比之下,钛酸酯偶联剂更能紧密地把无机颜产填料和有机高分子材料连接起来,充分发挥每个钛酸酯分子的作用。因此,用量小、效果大。由于钛酸酯偶联剂以单分子状态包复在无机颜、填料表面取代原来吸附的微量水分及气体,同时通过分子中长碳链疏水性非水介基闭,增加了和有机高分子基料的相容性,降低界面的自由能,从而有利于粉体聚集体被有机高分子基料所润湿和分散。 2、实用研究 鉴于钛酸酯偶联剂在涂料工业中的应用前景非常广阔。国内一些单位正在研制、生产钛酸酯偶联剂,在钙、塑材料方面已经有一定程序的应用和发展,涂料品种结构正由低档向中、高档产品发展。涂料品种正由传统的溶剂型涂料逐步向水性高固体分子溶剂,粉末和无机涂料方向发展,除明显提高涂料的装饰性和保护性外,又要求涂料向高效能、多功能、特效和专用方向发展,需要各种各样新型功能涂料。由于钛酸酯偶联剂独特的结构和多品种、多功能的特性。虽然用量少,却能满足涂料多方面的性能要求。 钛酸酯偶联剂应用在涂料中的研究,国外报导得较多,国内研究尚未大量投入。我公司联合国内部分大专院校及研究单位,投入较大科技力量,做了大量的工作,以各类钛酸酯偶联剂为主,辅以多种添加剂,推出了系列十余品种的涂料、油墨、专用助剂,堪与进口助剂比美,价格适中。 3、应用功能: 由于钛酸酯偶联剂分子结构中6个不同的功能区的特点,可以根据涂料工业的需要设计出不同基团的钛酸酯偶联剂,使其成为特定的,或兼有多种功能的偶联剂,赋于涂料\油墨具有如下功能。 (1)良好的分散润湿功能,能明显提高大部分无机与有机颜、填料在有机基料中的分散性,对炭黑、酞箐兰、铁红、中铬黄等分散也特有效。 (2)防沉性能好,提高贮存稳定性。 (3)有助磨作用,能缩短研磨道数和时间,同样研磨时间可使粒子研磨得更细。 (4)能增加漆膜对基材的附着力,提高漆膜对各种金属,玻璃及无机材料的粘结性,改善耐磨擦性,提高冲击强度,增加柔软性。

相关主题
文本预览
相关文档 最新文档