当前位置:文档之家› 物理所碳纳米管薄膜简洁超级电容器研究取得新进展

物理所碳纳米管薄膜简洁超级电容器研究取得新进展

物理所碳纳米管薄膜简洁超级电容器研究取得新进展

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管吸波材料的研究现状与展望

3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com 碳纳米管吸波材料的研究现状与展望3 王生浩,文 峰,李 志,郝万军,曹 阳 (热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如 吸波材料,但目前国内关于此类研究的报道还不多。较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。 关键词 碳纳米管 吸波材料 吸波性能 复合 The R esearch Status and Prospect of Electromagnetic W ave 2 absorbing C arbon N anotubes WAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang (Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science , School of Science and Engineering ,Hainan University ,Haikou 570228) Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemical properties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM. K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagnetic wave absorbing properties ,composite   0 引言 随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。 自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。近 年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的 热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。 1 碳纳米管的吸波机理 碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管基薄膜材料报告

碳纳米管基薄膜材料报告 引言: 碳纳米管是典型的一维纳米材料,自1991年被发现以来,由于其优异的力学性能、电学特性、极高的热导率、良好的热稳定性和化学稳定性等特点,都使其在纳米结构及功能复合材料、场效应晶体管、透明电极、锂离子电池、超级电容器等诸多领域中具有广阔的应用前景,受到人们的广泛关注。其具有特异的物理和化学性能,是由石墨层片卷曲后形成的无缝管,在范德华力作用下可形成2种不同的晶体结构:单壁碳纳米管和多壁碳纳米管。研究表明,只有将碳纳米管组装成宏观材料,如薄膜,才能充分发挥碳纳米管的优越性能,实现其潜在应用。因此,如何连续制备碳纳米管薄膜并保持单根碳纳米管的优良性能就成为了科学界和产业界人士的共同梦想。 一、制备方法 碳纳米管可以通过电弧法、化学气相沉积法和激光烧蚀法等方法直接在各种衬底上生长。在实际应用上,需将碳纳米管在低温情况下沉积到诸如ITO 玻璃、柔性透明薄膜上以实现大面积制备。这种需求可以通过溶液法将碳纳米管沉积到衬底上来实现场致电子发射的冷阴极也可以通过溶液法制备。但碳纳米管和衬底 间的附着力较差,从而成为阻碍溶液法制备均匀碳纳米管薄膜的一个关键问题。单壁碳纳米管 多壁碳纳米管

为了克服此缺陷,在沉积碳纳米管之前,需要在衬底上覆盖一层缓冲层来提高碳纳米管与衬底之间的粘附性。 目前制备碳纳米管薄膜的方法有很多,主要有:化学气相沉积法、电泳沉积法、电弧放电法、浇铸法、层-层吸附自组装法、电化学沉积法、自组装成膜法、浸渍涂布法、改性表面吸附法、过滤-转移法和LB技术等方法。 但是这些方法在制备过程中需要高温作用、表面活性剂、催化剂,设备昂贵,制备过程较为复杂。所以本文主要介绍一种由喷涂和旋涂相结合的方法,在优化工艺参数的条件下,可以制备出透明导电碳纳米管薄膜,成本低廉,制备工艺简洁,为其在场发射器件、透明导电薄膜、电磁屏蔽材料等方面的应用提供了有效的理论依据。 1.碳纳米管溶液的制备 取20mg碳纳米管,溶于100 mL无水乙醇中,在室温下,置于超声波清洗器中(通冷却循环水)分散24 h,得到高浓度的分散均匀的碳纳米管溶液,分别配置成不同浓度(0.008、0.010、0.012、0.014mg/mL)的碳纳米管溶液,待用。 2.碳纳米管薄膜的制备 用去离子水、丙酮(分析纯)、无水乙醇(分析纯)依次清洗石英基片,然后在真空干燥箱中烘干备用;用手持式喷雾器将碳纳米管分散液喷洒在石英玻璃衬底上(或采用匀胶机对其进行旋涂),待分散剂自然挥发干燥后,再进行第二层喷涂(或旋涂),如此反复多次,得到不同厚度的碳纳米管薄膜。 3.碳纳米管薄膜的表征 碳纳米管的透射电镜测试:JEM-2010 F 型高分辨率透射电子显微镜. 薄膜的导电性能测试:RTS-8型四探针电阻测试仪. 薄膜的透光率测试:UV-2550型紫外可见分光光度计. 二、实验原理 旋转涂膜是在衬底旋转时利用离心力的作用成膜的。影响薄膜性能的溶液性质主要是流变性能和表面张力,如溶液的粘度、浓度、触变性和表面张力等。影响薄膜厚度的因素也比较复杂。Emslie,Bonner和Pecr等人认为,在简化条件

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

超级电容器电极材料——碳纳米管

超级电容器电极材料——碳纳米管碳纳米管(Carbon Nano Tubes,CNTs)是1991年NEC公司的电镜专家Iijima通过高分辨率电子显微镜观察电弧法设备中产生的球状分子时发现的一种管状新型纳米碳材料,如下图所示:理想CNTs是由碳原子形成的石墨烯卷成的无缝?中空的管体,根据管中碳原子层数的不同,CNTs可分为单壁碳纳米管 (Single-walled Nano Tubes SWNTs)和多壁碳纳米管 (Multi-walled Nano Tubes,MWNTs)?CNTs的管径一般为几纳米到几十纳米,长度一般为微米量级,由于CNTs具有较大的长径比,因此可以将其看做准一维的量子线?CNTs因其独特的力学?电子学和化学特性而迅速成为世界范围内的研究热点之一,并在复合增强材料?场发射?分子电子器件和催化剂等众多领域得到了广泛的应用? Niu等首先报道使用催化裂解法生长的直径为8nm的CNTs制备了厚度为25.4μm?比表面积为430m2/g的薄膜电极,在38%的H2SO4水溶液中,获得了49~113F/g的质量比容,而且在频率为 11Hz时,其相角非常接近-90°,并且具有大于8kW/g的高功率? E.Frakcowaik等以钴盐为催化剂,二氧化硅为模板催化裂解乙炔制得比表面积为400m2/g的MWNTs,其比容量达135F/g,而且在高达50Hz的工作频率下,其比容量下降也不大?这说明CNTs的比表面

积利用率?功率特性和频率特性都远优于活性炭?碳纳米管的比容与其结构有直接关系? 江奇娜等研究了MWNTs的结构与其容量之间的关系,结果发现比表面积较大?孔容较大和孔径尽量多的分布在30~40nm区域的CNTs会具有更好的电化学容量性能?从CNTs的外表来看,管径为30~40nm?管长越短?石墨化程度越低的CNTs的容量越大?另外,由于SWNTs通常成束存在,管腔开口率低,形成双电层的有效表面积低,所以MWNTs更适合用做双电层电容器的电极材料?由于CNTs的绝大部分孔径都在2nm以上,而2nm以上的孔非常有利于双电层的形成,所以CNTs电容器具有非常高的比表面积利用率,但由于CNTs的比表面积都很低,一般为100~400m2/g,所以CNTs的比容都较低? 提高CNTs比容的最直接办法是提高其比表面积,采用高速球磨将CNTs打断能在一定程度上提高CNTs的比表面积,进而提高其比容?另外,通过化学氧化或电化学氧化的方法在CNTs表面产生电活性官能团,利用这些表面官能团在充放电过程中产生的赝电容也可以有效提高CNTs的比容?CNTs与金属氧化物或导电聚合物相复合,可以制备同时具有双电层电容和法拉第赝电容的复合型电容器,这种电容器同时具有较高的能量密度和功率密度?马仁志等制备的CNTs-RuO2·xH2O 复合材料的比容高达600F/g,而且基于该复合材料的电化学电容器具有良好的功率特性?

碳纳米管薄膜制备及应用研究进展

1 碳纳米管薄膜的制备 1.1 高密度高取向碳纳米管膜的制备 由浮动催化化学气相沉积制备方法(FCCVD)所制备的薄膜具有良好的取向性,但密度较低。然而,制备出的碳纳米管的丝带聚集在一起用乙醇溶液进行喷雾致密,当乙醇蒸发后形成一层疏松的碳纳米管膜,然后将疏松的碳纳米管薄膜从主轴上剥离出来放在两个光滑的压力为100N的压力板之间挤压,即可以获得高取向、高密度的CNT薄膜[1-2]。如图1所示,为高密度、高取向碳纳米管薄膜的制备过程。其中,图1(a)为高密度高取向碳纳米管薄膜的制备过程,图1(b)、图1(c)、图1(d)分别为碳纳米管丝带、疏松碳纳米管薄、高密度高取向碳纳米管薄膜膜宏观图像。 图1 高密度高取向碳纳米管薄膜的制备过程 1.2 浮动化学气相沉积法制备高强度薄膜 王健农教授课题组创新性地利用浮动化学气相沉积法连续制备出碳纳米管宏观筒状物,并在开放大气环境下将 CNT 薄膜,图2(b)为拉伸曲线,图2(c)为端口形貌。 图2 所制备CNT薄膜、拉伸曲线和端口形貌综上所述可以看出,直接合成机械性能优异、高密度、高取向度的碳纳米管薄膜的研究工作还处于实验研究阶段。要想获得可应用的具有优越性能的碳纳米管纤维和早日将其应用于实际生活,还需要做很多研究工作。 2 碳纳米管薄膜的应用 2.1 碳纳米管长度优化制备透明导电薄膜基板 初始长度为10~15μm多壁碳纳米管经过30min、60min和120min的回流,其长度分别降低到1200nm、205nm、168nm。然后,将多壁纳米管分别在285℃退火24小时,所得碳纳米管薄膜的电气和光学性能将大大提高。薄膜的光学和电气性能强烈依赖于碳纳米管的长度。制备薄膜的多壁碳纳米管回流30min所得到的薄膜光学透过率分别高于回流60min和120min薄膜的2.6%和6.6%。多壁碳纳米管回流30min所得的样品薄膜的薄层电阻也降低了45%和80%。此时,薄膜还具有最小粗糙度[5-10]。图3为透明导电薄膜基板。 2.2 碳纳米管薄膜在应力传感器中的应用 单壁碳纳米管兼具极优异的导电性、稳定性、柔韧性以及拉伸强度,因此在应力传感器方面有着巨大的应用潜力。传统的碳纳米管应力传感器基于碳纳米管的电阻值变化监测外部应力的大小。国家纳米科学中心孙连峰研究员小组的刘政在攻读博士期间发现,基于单壁碳纳米管薄膜两端的开路电压可以构建成功高性能的应力传感器。他们利用极性液滴在悬空碳纳米管薄膜和液滴之间产生毛细管 摘 要:膜状碳纳米管保留了碳纳米管微观性状,也保留了优异的导电能力。它具有良好的机械性能、独特的形貌与结构特征,在储能电池技术、人工肌肉、智能材料以及电子显示屏中的应用越来越普遍。本文介绍碳纳米管薄膜的特点,对几种碳纳米管薄膜制备方法做了简要介绍说明。通过对当前碳纳米管薄膜几大应用方向如超级电容、柔性电池以及场发射装置等的分析,展示了碳纳米管薄膜的巨大应用潜力。 关键词:碳纳米管薄膜 制备 超级电容 柔性电池

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

超级电容器的研究进展

超级电容器的研究进展

超级电容器的研究进展 摘要:超级电容器是一种新型储能装置,它具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。近年来,各种新兴材料 的发展,为超级电容器电极材料的选取提供了更多的选择条件,促进了超级电 容器的快速发展。本文总结了超级电容器的特点,重点介绍了超级电容器的工 作原理、分类以及超级电容器的材料。并简要展望了超级电容器电极材料的发 展方向和前景。 关键词:超级电容器碳电极贵金属氧化物导电聚合物 Abstract: Super capacitor is a new type of energy storage device. It has the characteristics of high power density, short charging time, long service life, good temperature characteristics, energy saving and green environmental protection. In recent years, the development of a variety of new materials, for the selection of the super capacitor electrode materials to provide more options to promote the rapid development of the super capacitor. This paper summarizes the characteristics of the super capacitor, and introduces the working principle of the super capacitor, classification and the material of the super capacitor. And briefly discussed the developing direction of super capacitor electrode materials and prospect. Key words: Super capacitor Carbon electrode Precious metal oxide Conducting polymer 一、引言 超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双 电层理论基础上的一种全新的电容器,又叫电化学电容器(Electrochemcial Capacitor, EC)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电

自组装半导体碳纳米管薄膜的光电特性

[Article] https://www.doczj.com/doc/b23981625.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2014,30(7),1377-1383 July Received:February 26,2014;Revised:May 6,2014;Published on Web:May 9,2014.? Corresponding author.Email:shengwang@https://www.doczj.com/doc/b23981625.html,;Tel:+86-136********. The project was supported by the National Key Basic Research Program of China (973)(2011CB933002,2011CB933001)and National Natural Science Foundation of China (61370009,61271051,61321001). 国家重点基础研究发展规划项目(973)(2011CB933002,2011CB933001)和国家自然科学基金(61370009,61271051,61321001)资助 ?Editorial office of Acta Physico-Chimica Sinica doi:10.3866/PKU.WHXB201405093 自组装半导体碳纳米管薄膜的光电特性 赵青靓1 刘旸1,2魏楠1王胜1, * (1北京大学电子学系,纳米器件物理与化学教育部重点实验室,北京100871; 2 北京大学前沿交叉学科研究院,北京100871) 摘要:采用自组装的方法制备99%高纯度半导体碳纳米管平行阵列条带,以金属钯和钪为非对称接触电极制 备碳纳米管(CNT)薄膜晶体管(TFTs)器件.主要研究不同沟道长度碳纳米管薄膜晶体管器件的电输运特性和红外光电响应特性,分析了其中的载流子输运和光生载流子分离的物理机制.我们发现薄膜晶体管器件的电学性能和光电性能依赖于器件沟道长度(L )和碳纳米管的平均长度(L CNT ).当沟道长度小于碳纳米管的平均长度时,器件开关比最低;当沟道长度超过碳纳米管平均长度时,随着沟道长度的增加,器件开关比增加,光电流减小.相关研究结果为高纯碳纳米管薄膜晶体管器件在红外光探测器方面的进一步应用提供参考依据.关键词: 碳纳米管; 自组装;非对称接触;光电响应; 红外; 沟道长度;薄膜晶体管 中图分类号: O649 Photoelectric Characteristics of Self-Assembled Semiconducting Carbon Nanotube Thin Film s ZHAO Qing-Liang 1 LIU Yang 1,2 WEI Nan 1 WANG Sheng 1,* (1Key Laboratory for the Physics and Chemistry of Nanodevices,Department of Electronics,Peking University, Beijing 100871,P .R.China ;2Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,P .R.China ) Abstract:We used the self-assembly method to form high purity (99%)semiconducting carbon nanotube (CNT)aligned arrays.Thin-film transistors (TFTs)were fabricated with asymmetric Pd and Sc electrodes.We studied the electronic transport characteristics and infrared photoelectronic properties of the TFTs with different channel lengths.The physical mechanism of carrier transport and the dissociation of photoexcited carries are also discussed.We found that the electronic and photoelectronic properties of the TFTs were dependent on the channel length and the average length of the CNTs.The on/off ratio of the device was the lowest when the channel length of the device (L )was less than the average length of the CNTs (L CNT ),and it increased with increasing L when L was larger than L CNT .In addition,the short circuit current of the device also decreased.These results provide an effective reference for further infrared detector applications based on high-purity semiconducting carbon nanotube TFTs. Key Words:Carbon nanotube;Self-assembly;Asymmetric contact; Photoelectric response; Infrared;Channel length;Thin film transistor 1引言 碳纳米管(CNTs)自1991年被发现以来,1在纳 米电子和光电应用领域以其优异的性能和广阔的应用潜力得到了广泛的关注.在电学方面,半导体 1377

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

碳纳米管的性能综述

碳纳米管的性能综述 摘要 碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。 关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性 碳纳米管/FeS类Fenton催化剂催化性能 杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。CNTs /FeS类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。 碳纳米管的连接性能 2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。 2006年,Chen等提出一种新颖的超声纳米焊接技术该技术使用超高频微幅振动的压头,成功地将CNTs压焊到金属电极上,形成可靠的电接触结果表明,焊接后的结构具有较高的机械强度和较低的接触电阻采用这种超声纳米焊接技术,能极大地改善基于CNTs的场效应晶体管性能。目前的纳米连接技术主要包括局部焦耳热法高温退火法电子束焊接法超声纳米焊接和原子力显微镜操纵法。 2011年,Karita等研究了多壁碳纳米管( MWCNTs) 和金电极间的电接触,并在接触处施加电流结果表明,当电流密度达到108A /cm2时,金表面沿着MWCNTs端开始熔化当电流密度提高2倍时,观察到接触区域的金表面结构发生显著性改变,从而减少了接触阻抗该研究组还针对开口和封口CNTs与金电极的纳米连接进行了研究发现,在与Au电极接触的区域中,采用开口CNTs所获单位面积电导率约为封口CNTs电导率的4倍但同时观测到,采用局部焦耳热法时,所产生的大电流引起连接区域材料过度熔化及表面形貌的改变,进而影响器件的性能。 碳纳米管的稳定性能

相关主题
文本预览
相关文档 最新文档