当前位置:文档之家› 金属在硫化氢环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验

金属在硫化氢环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验

金属在硫化氢环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验
金属在硫化氢环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验

I C S77.060

H25

中华人民共和国国家标准

G B/T4157 2017

代替G B/T4157 2006

金属在硫化氢环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验方法

L a b o r a t o r y t e s t i n g o fm e t a l s f o r r e s i s t a n c e t o s u l f i d e s t r e s s c r a c k i n g

a n d s t r e s s c o r r o s i o n c r a c k i n g i nH2S e n v i r o n m e n t

2017-09-29发布2018-06-01实施中华人民共和国国家质量监督检验检疫总局

目 次

前言Ⅰ

1 范围1

2 规范性引用文件1

3 术语和定义2

4 总则2

5 试剂3

6 试验试样和材料性能3

7 试验装置3

8 试验溶液4

9 高温高压试验6 10 方法A :拉伸试验8 11 方法B :三点弯曲试验14 12 方法C :C 形环试验19 13 方法D :双悬臂梁试验(D C B )23 14 方法E :四点弯曲试验33 附录A (规范性附录) 硫化氢操作和处理安全指南37 附录B (规范性附录) E C 试验方法的补充说明38 附录C (资料性附录) 用碘量法测定试验溶液中H 2S 浓度

39 附录D (资料性附录) 试验方法D 结果确定力学质量保证的推荐方法42 附录E (资料性附录) 试验方法D 中确定K I a p p l i e d 和K L I M I T 的方法44 G B /T 4157 2017

前言

本标准按照G B/T1.1 2009给出的规则起草三

本标准代替G B/T4157 2006‘金属在硫化氢环境中抗特殊形式环境开裂实验室试验“三

与G B/T4157 2006相比主要技术变化如下:

明确了惰性气体的纯度(见第5章);

增加了不同试验方法用试样的硬度测试要求(见第6章);

修订了不同试验溶液的配方二适用范围及试验要求,溶液类型,增加了试验溶液D,并明确了试

验溶液除氧要求(见第8章,2006年版第7章);

对于不同的试验方法涉及的试验溶液中,均修订了通入H2S气体的要求,明确了试验溶液补

充H2S气体饱和后的浓度测试方法二验收要求以及试验过程中浓度测试周期(见第10章~

第14章);

修订了试验方法A二方法B及方法D的试样尺寸及表面粗糙度的要求(见第10章二第11章二第13章);

增加了四点弯曲试验(见第14章);

增加了资料性附录C采用碘量法测量溶液中H2S浓度的方法;

增加了资料性附录D试验方法D试验结果确定力学质量保证的推荐方法;

增加了资料性附录E确定K I a p p l i e d和K L I M I T的推荐方法三

本标准由中国钢铁工业协会提出三

本标准由全国钢标准化技术委员会(S A C/T C183)归口三

本标准起草单位:中国石油集团工程设计有限责任公司西南分公司二中国石油天然气集团公司管材研究所二冶金工业信息标准研究院三

本标准主要起草人:李天雷二李科二姜放二张雷二施岱艳二侯捷二曹晓燕二冯超二张仁勇二尹成先二李林辉二吴知谦二韩燕二李倩三

本标准所代替标准的历次版本发布情况为:

G B/T4157 2006三

金属在硫化氢环境中抗硫化物应力开裂

和应力腐蚀开裂的实验室试验方法

1范围

本标准规定了在含H2S的低p H值水溶液环境中,金属材料在受拉伸应力作用下的抗硫化物应力开裂(S S C)和应力腐蚀开裂(S C C)的实验室试验方法三

本标准规定了试验用的试剂二试验装置二试样制备方法和试验程序等要求三本标准包括五种试验方法:

方法A:拉伸试验;

方法B:三点弯曲试验;

方法C:C形环试验;

方法D:双悬臂梁(D C B)试验;

方法E:四点弯曲试验三

本标准规定的试验方法包含金属在常温常压和高温高压条件下进行的抗S S C和S C C试验三

本标准适用于:

a)满足标准要求的产品验收评定试验,或产品满足规定的最低抗环境开裂(E C)性能的产品验收

评定试验三

b)提供产品抗E C性能的研究或资料的量化试验,不同试验方法提供的信息如下:

方法A:720h内不失效的最高单轴拉伸应力;

方法B:720h内基于统计50%失效可能性的临界应力(S c)值;

方法C:720h内不失效的最高环向应力;

方法D:重复试验试样中有效试样的平均K I S S C(S S C的应力场强度因子临界值);

方法E:720h内不失效的最高拉应力三

2规范性引用文件

下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三

G B/T228.1金属材料拉伸试验第1部分:室温试验方法

G B/T228.2金属材料拉伸试验第2部分:高温试验方法

G B/T230.1金属材料洛氏硬度试验第1部分:试验方法(A二B二C二D二E二F二G二H二K二N二T标尺) G B/T1031产品几何技术规范(G P S)表面结构轮廓法表面粗糙度参数及其数值

G B/T4340.1金属材料维氏硬度试验第1部分:试验方法

G B/T6682 2008分析试验室用水规格和试验方法

G B/T10123金属和合金的腐蚀基本术语和定义

G B/T11060.1天然气含硫化合物的测定第1部分:用碘量法测定硫化氢含量

G B/T15970.5金属和合金的腐蚀应力腐蚀试验第5部分:C型环试样的制备和应用

G B/T16825.1静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准

应力腐蚀断裂精编版

应力腐蚀断裂精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

应力腐蚀断裂 一.概述 应力腐蚀是材料、或在静(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有 害物质浓度往往很低,如大气中微量的H 2S和NH 3 可分别引起钢和铜合金的应力腐蚀

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

硫化氢腐蚀

硫化氢(H2S)的特性及来源 1.硫化氢的特性 硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。 H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。 H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。 2.石油工业中的来源 油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。。 3.石化工业中的来源 石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。 硫化氢腐蚀机理 1.湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准: ⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥ 0.0003MPa; ⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。(2)国内湿硫化氢环境的定义 “在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。 (3)硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:

腐蚀疲劳与应力腐蚀开裂的关系

腐蚀疲劳与应力腐蚀开裂的关系 河南邦信防腐材料有限公司 2017年3月整理

尽管腐蚀疲劳和腐蚀开裂在许多不同的情况下都可能发生,但是在某种程度上,它们被认为具有很大的相关性。当这两者同时发生时,会在许多行业内造成不可估量的经济损失。 近一个世纪以来,工程材料(主要是金属材料)的腐蚀疲劳已成为全球最重要的研究主题之一。第一次世界大战期间,这种腐蚀疲劳失效现象首先是在英国皇家海军某个设备的电缆中观察到的。如今,腐蚀疲劳已被认为是研究最为广泛的腐蚀失效类型之一。而自1960年代初以来,应力腐蚀开裂(SCC)也逐渐引起了人们的广泛关注。尽管在许多不同情况下腐蚀疲劳和应力腐蚀开裂会单独发生,但它们仍然被认为具有很大的相关性。众所周知,当这两种现象同时发生时,会在许多行业中导致设备失效并带来巨大的经济损失。这些失效都是突发性的和灾难性的,是近年来人们进行广泛的科学和工程研究的重要主题。但是,要了解腐蚀疲劳和应力腐蚀开裂如何相互作用,必须首先了解每种腐蚀类型涉及的机理。 什么是应力腐蚀开裂? 应力腐蚀开裂(SCC)被定义为由于机械应力和腐蚀的相互作用而发生的开裂现象。造成应力腐蚀开裂有很多因素,但与其中任何一种单独作用的因素相比,腐蚀性环境这一因素在材料中引起的应力产生的破坏一般更大。尽管SCC最常见于金属中,但它也可以存在于一些其他材料中,例如聚合物和玻璃等。 SCC带来的结果通常被认为是灾难性的,因为材料的强度会因此发生降低,随后材料的结构也可能发生破坏。 通常情况下,细微的腐蚀裂纹仅在材料的晶界处形成,而其余的区域则不受破坏。因此,在临时检查中通常很难检测到SCC损伤现象,并且不容易预测损伤的程度。 导致SCC进一步发展的原因之一是某些金属的晶界缺乏钝性。由于杂质在这些位置的偏析现象改变了材料的微观结构,使材料的表面钝化难以在边界界面处发生。

管道的应力腐蚀断裂参考文本

管道的应力腐蚀断裂参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月 管道的应力腐蚀断裂参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 四川省的天然气管线由于介质未处理好,在被输送的天然气中H2S大大超过规走的含量,曾发生多次爆破事故。 据国外文献介绍,美国1955年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词Stress Corrosion CracKing而来的,其定义为:在应力和介质联合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a小时临界裂纹长度2ac时,管线是不会断裂的’但由于疲劳或(和)环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac时”则管道产生断

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀 是材料、或在静 (主要是拉应力 )和腐蚀的共同作用下产生的失效现 象。 它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧 急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜 被腐蚀而受 到破坏 , 破坏的表面和未破坏的表面分别形成阳极和阴极 , 阳极处的金属 成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电 流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹, 裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还 能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应 力腐蚀, 不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合 避免使用对应力腐蚀敏感的材料 , 可以采用抗应力腐蚀开裂的不锈钢系列 工作状态下构件所承受的外加载荷形成的抗应力。 加工,制造,热处理 引起的内应力。 装配,安装形成的内应力。 温差引起的热应力。 裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要 的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开 裂,合金比纯金属更易发生应力腐蚀开裂。 下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金 可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有害物 质浓度往往很低,如大气中微量的 H 2S 和NH 可分别引起钢和铜合金的应力腐蚀开裂。 空气中少量NH 是鼻子嗅不到 而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响 理选材, 如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构 件,减 少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。 采用金属或 非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也 可减小或停止应力 腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究, 并分析比较应力腐蚀断裂 其他环境作用条件下发生失效的特征。,由于应力腐蚀的 测试方法与本文中重点分析之处 结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1. 2. 3 . 4 .

关于抗氢致开裂开裂及抗硫化物应力腐蚀开裂试验R-HIC钢板的问答

通常抗氢致开裂HIC(Hydrogen Induced Crack)主要是针对低碳高强度结构钢制压力管线讲的( 现代管线钢属于低碳或超低碳的微合金化钢)。目前国内生产的此类专用钢(抗HIC专用钢)主要材料牌号有:16MnR(HIC),20R(HIC),SA516(HIC)。该类钢的碳当量可用 Ce=C+Mn6+(Cr+Mo+V)5+(Ni+Cu)15计算。 质保书中C:0.022,Mn:1.05,Cr:18.20,Ni:8.32材料成分大致符合不锈钢00Cr19Ni10(GBT1220—1992)主要元素成分要求。提供的是00Cr19Ni10或类似材质,应该没有太大问题。 参考资料: 关于提高提高管线钢抗HIC能力的措施 提高管线钢抗HIC能力的措施有成份设计、冶炼控制、连铸工艺、控轧控冷等四个方面。展开来说,主要有三点: 提高钢的线纯净度。采用精料及高效铁水预处理(三脱)及复合炉外精炼,达到S≤0.001%,P≤0.010%,[O]≤20ppm,[H]≤1.3ppm。同时采用Ca处理。②晶粒细化。主要通过微合金化和控轧工艺使晶粒充分细化,提高成分和组织的均匀性。为此,钢水和连铸过程要电磁搅拌;连铸过程采用轻压下技术;多阶段控制轧制及强制加速冷却工艺;Tio处理,使得钢获得优良的显微组织和超细晶粒,最终组织状态是没有带状珠光体的针状铁素体或贝氏体。③昼降低含C量(C ≤0.06%),控制Mn含量,并添加Cu和Ni。从炼钢来看,宝钢、

武钢、鞍钢、攀钢、太钢等企业能生产不同等级的管线钢种,目前国内能生产X42、X52、X60、X65、X70等,X70目前在试用。管线钢国产化程度大幅度提高,产品质量有了显著的改进,产品的成份控制、强度、韧性、晶粒度、焊接性能等均已接近或达到国外同类产品的水平。 高S原油加工过程中硫腐蚀及防护选材准 则 https://www.doczj.com/doc/b218695460.html,thread-4029-1-1.html (作者前言):2001年1月,中国石化科技开发部邀请英国壳牌石油公司材料专家霍普金申(音译)在南京就“高S原油加工过程中硫腐蚀及防护选材准则”做了讲座。由于国情不同和国外专家有所保留,这篇资料的有些内容不太全面。我将在写完全文以后把我自己的看法拿出来,请大家指点。 注:问----中石化各公司代表提问答----霍普金申 问1:精馏塔顶腐蚀的解决方法? 答:1.塔顶选用耐腐蚀材料。2.为了防止原油中的氯离子腐蚀,在原油中加NaOH中和;3.塔顶注入缓蚀剂。 问2:关于茂名石化精馏塔塔盘选用Monel(蒙耐尔)材料,你有什么看法? 答:日本解决的方法是用钛材,价格太高。蒙耐尔[便宜一些。另外可采用脱S的办法。原油中S含量要达到20磅千桶需要脱S。在原

环境应力开裂

6.1.3聚乙烯环境应力开裂试验(G B1842——1999) 应力开裂是指材料受到低于其屈服点的应力或者说低于其短期强度的应力(包括内应力、外应力以及两种应力的组合)的长期作用下发生开裂而破坏的现象。但这种应力开裂,可能需要很长时间才会发生,当材料暴露于化学介质中,发生应力开裂而破坏的时间就会大大地缩短,因此环境应力开裂就是指材料暴露于化学介质中,受到低于其屈服点的应力或者说低于其短期强度的应力(包括内、外应力以及两种应力的组合)的较长期作用下,发生开裂而破坏的现象。 一、培训准备 1.理论准备 的定义。 掌握应力开裂、应力开裂破损、环境应力开裂时间F 50 了解环境应力开裂试验设备的结构。 2.仪器准备 环境应力开裂试验仪器、测定所需试剂及相应设备。 二、操作步骤 1.试剂 壬基酚聚氧乙烯醚(TX-10,也称OP-10、Oπ-10)或其10%(V/V)水溶液。壬基酚聚氧乙烯醚应贮存在密闭的金属或玻璃容器中以避免其吸湿,TX-10试剂放置时间较长时可进行红外分析,若观察到羰基峰存在,则认为试剂已降解。 配制试剂水溶液时,应将混合液加热到60℃左右,连续搅拌1h。配制好的试剂水溶液应在一个星期内使用,并只使用一次,不得重复使用。 如有特殊需要也可以采用其他表面活性剂、皂类及任何不使试样发生显着溶胀的有机试剂作为试剂。 2.试样制备 按GB/T9352规定采用单功位压机和溢料式模具按照表2-6-1条件制备压塑试片,试片厚度如下:密度小于等于925kg/m3的聚乙烯试片厚度为3.00mm~3.30mm,密度大于925kg/m3的为1.75mm~2.00mm。 表2-6-1试片模塑条件

第_7_章_应力腐蚀

7.1应力腐蚀断裂7.1应力腐蚀断裂 7.2 金属的氢脆和氢损伤7.2 金属的氢脆和氢损伤 7.4 腐蚀疲劳7.4 腐蚀疲劳 7.5 腐蚀磨损7.5 腐蚀磨损 7.3 晶须增强铝复合材料应力腐蚀行为的研究7.3 晶须增强铝复合材料应力腐蚀行为的研究

7.1 应力腐蚀断裂 7.1 应力腐蚀断裂 应力腐蚀-普遍而历史悠久的现象 古代波斯王国青铜少女头像上具有 黄铜弹壳开裂、黄铜冷凝管 蒸汽机车锅炉碱脆 铝合金在潮湿大气中的SCC 奥氏体不锈钢的SCC; 含S的油、气设备出现的SCC 航空技术中出现的钛合金的 腐蚀领域研究最多的课题-应力腐蚀开裂

一. 应力腐蚀断裂产生的条件及特征 1.必须有应力,拉伸应力越大,则断裂所需的时间越短。断裂所需应力,一般低于材料的屈服强度 2.腐蚀介质是特定的,只有某些金属-介质的组合,才会发生应力腐蚀断裂 3.断裂速度介于无应力时的腐蚀速度及单纯力学因素引起的断裂速度拉伸应力来源: 1.残余应力-加工、冶炼、装配过程中产生的 2.外应力及工作所承受的载荷 3.体积效应所造成的不均匀应力 7.1 应力腐蚀断裂7.1 应力腐蚀断裂 应力-力学因素

应力应力在特定破裂体系中起以下作用 应力引起塑性变形; 应力使腐蚀产生的裂纹向纵深扩展 应力使能量集中于局部 工作应力 应力-力学因素 7.1 应力腐蚀断裂7.1 应力腐蚀断裂

腐蚀-电化学因素 凡是能促使钝化膜不稳定的电势区域,都易产生应力腐蚀断裂 在活化-钝化以及钝化-再活化过渡区的很窄电位区内容易发生应力腐蚀 金属断裂-金属学因素 1.晶界吸附-晶界偏聚 2.晶界沉淀-过饱和固溶体脱溶沉淀时,在晶界择优不均匀长大 3.位错与金属结构交互作用 4.表面膜对位错运动的影响

管道的应力腐蚀断裂.docx

管道的应力腐蚀断裂 四川省的天然气管线由于介质未处理好,在被输送的天然气中 H2S大大超过规定的含量,曾发生多次爆破事故。 据国外文献介绍,美国 1955 年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越 来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词StressCorrosionCracKing而来的,其定义为:在应力和介质联 合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a 小时临界裂纹长度2ac 时,管线是不会断裂的,但由于疲劳或( 和 ) 环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac 时,则管道产生断裂。这里只将讨论后者,即在环境和应力相互作用下引起的应力腐蚀 断裂。一、应力腐蚀的机理 为说明应力腐蚀需先简单的介绍腐蚀反应。大家知道,钢铁 放在潮湿的空气中,就会生锈,锈不断脱落,就会导致截面减小 和重量减轻,这称为钢铁受到了腐蚀。腐蚀是一种电化学过程, 它又可分为阳极过程和阴极过程,这二者是共存的。 金属原子是由带正电的金属离子,对钢来说,就是二价的铁离子 F2+和周围带负电的电子云 ( 用 e- 来表示)构成的,如下所

示: Fe→ Fe2++2e-上式是一个可逆反应。当铁遇到水,铁离子Fe2+ 和水化合的倾向比 Fe2+与 e- 结合成金属的倾向还要强,因此金 属铁遇到水后就会发生如下反应: 上式放出电子e- ,故称为阳极反应。 阳极反应所放出的电子必须通过阴极过程( 即吸收电子的过 程) 被取走,式的反应才能继续存在,否则该式将是可逆的。 一种常见吸收电子的阴极过程是吸氧过程,见下式: O2+2H2O+4e→- 4OH-氢氧根 OH-和铁离子F e2+结合,就会产生铁锈,即 Fe2O3 2Fe2++60H-→ Fe2O3·3H2O综合阳极过程和阴极过程,即联合上两式,可写出下式: 4Fe+nH2O+3O2→ 2Fe2O3·nH2O 由上式可以看出,钢管生锈的条件为第一要接触水( 或潮湿的空气 ) ,第二要接触空气,以提供 O2前者是阳极过程,后者是阴极过程。 实验表明,和腐蚀介质相接触的阳极金属介面上会形成一层 致密的复层,即纯化膜,它能阻碍阳极金属进一步溶解。但金属

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。 钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

金属材料应力腐蚀裂纹的探讨

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

乙烯塑料环境应力开裂的标准试验方法 ASTM D1693-15 (中文翻译版)

乙烯塑料环境应力开裂的标准试验方法ASTM D1693-15 (中文翻译版) 1本试验方法由美国材料与材料学会D20塑料委员会管辖,由D20.15热塑性材料小组委员会直接负责。 现行版本于2015年5月1日批准。2015年6月出版。最初批准于1959年。上一版于2013年批准为D1693-13。DOI: 10.1520/D1693-15。 本标准以固定名称D1693发布;紧跟在名称后面的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。括号中的数字表示上次重新批准的年份。上标(ε)表示自上次修订或重新批准以来的编辑性更改。 本标准经美国国防部机构批准使用。 1、适用范围 1.1本测试方法用于决定如术语D883所定义的乙烯塑料处于此处指定条件下时对环境应力开裂的敏感性。在一定应力条件及诸如肥皂、润湿剂、油或洗涤剂等环境条件下,乙烯塑料可能出现开裂引起的机械性损伤。 1.2以SI单位表述的数值认定为标准值。 1.3本标准无意论及与其使用相关的可能的所有安全事项。本标准的使用者有责任制定适宜的安全和健康操作规程,并在使用前确定规定的适用范围。 注1:没有类似或等效ISO标准。 2、参考文献 2.1 ASTM标准2

2有关参考的ASTM标准,请访问ASTM网站https://www.doczj.com/doc/b218695460.html,,或通过Service@https://www.doczj.com/doc/b218695460.html,联系ASTM客户服务。有关ASTM标准年鉴卷信息,请参阅ASTM网站上的标准文件摘要页。D618测试用塑料调整方法 D883塑料相关术语 D1204高温下非硬性热塑塑料薄板或薄膜线性尺寸变化的测试方法 D1248用于线缆的聚乙烯塑料挤出材料规格 D3350聚乙烯塑料管及其配件材料规格 D4703热塑性塑料压缩模制成试样、饰板及薄板的操作方法 D4976聚乙烯塑料模制和挤压材料规格 E691开展实验室间研究以确定测试方法精度的规程 2.2 ASTM附件 仪器制图及设计图3 3仪器的详细图纸可从ASTM总部获得。请求ADJD169301、ADJD169302、ADJD169303和ADJD169304。 3、术语 3.1定义: 3.1.1应力开裂,n——由低于塑料短时机械强度的拉应力引起的塑料外部或内部的开裂。 3.1.1.1讨论——这类开裂常常受塑料所处环境的影响而加速发展。存在于塑料内部或外部的应力或者两种应力的共同作用可以引起开裂。由细小裂纹构成的网络状的开裂称为龟裂。 3.1.2应力开裂破损,n——本实验中凡能用眼睛观察到的裂纹均可认为是整个试样的应力开裂破损。刻痕的延伸不应归为试样破损。单个试样出现多于一个开裂归为单一破损。

应力腐蚀

应力腐蚀 (一)应力腐蚀现象 金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。 应力腐蚀断裂并不是金属在应力作用下的机械性破坏与在化学介质作用下的腐蚀性破坏的迭加所造成的,而是在应力和化学介质的联合作用下,按持有机理产生的断裂。其断裂抗力比单个因素分别作用后再迭加起来的要低很多。由拉伸应力和腐蚀介质联合作用而引起的低应力脆性断裂称为应力腐蚀(常用英文的三个字头SCC表示)。不论是韧性材料还是脆性材料都可能产生应力腐蚀断裂。 应力腐蚀断裂一般都是在特定的条件下产生的: 1.只有在拉伸应力作用下才能引起应力腐蚀开裂(近来有研究说压应力下也可能产生)。这种拉应力可以是外加载荷造成的应力;也可以是各种残余应力,如焊接残余应力,热处理残余应力和装配应力等。一般情况下,产生应力腐蚀时的拉应力都很低,如果没有腐蚀介质的联合作用,机件可以在该应力下长期工作而不产生断裂。 2.产生应力腐蚀的环境总是存在特定腐蚀介质,这种腐蚀介质一般都很弱,如果没有拉应力的同时作用,材料在这种介质中腐蚀速度很慢。产生应力腐蚀的介质一般都是特定的,也就是说,每种材料只对某些介质敏感,而这种介质对其它材料可能没有明显作用,如黄铜在氨气氛中,不锈钢在具有氯离子的腐蚀介质中容易发生应力腐蚀,但反应过来不锈钢对氨气,黄铜对氯离子就不敏感。 3.一般只有合金才产生应力腐蚀,纯金属不会产生这种现象.合金也只有在拉伸应力与特定腐蚀介质联合作用下才会产生应力腐蚀断裂。 常见合金的应力腐蚀介质: 碳钢:荷性钠溶液,氯溶液,硝酸盐水溶液,H2S水溶液,海水,海洋大气与工业大气 奥氏体不锈钢:氯化物水溶液,海水,海洋大气,高温水,潮湿空气(湿度90%),热NaCl,H2S水溶液,严重污染的工业大气(所以不锈钢水压试验时氯离子的含量有很严格的要求)。 马氏体不锈钢:氯化的,海水,工业大气,酸性硫化物 航空用高强度钢:海洋大气,氯化物,硫酸,硝酸,磷酸

PE管材耐环境应力开裂的影响因素及对策

PE管材耐环境应力开裂的影响因素及对策 发表时间:2018-05-22T11:47:20.583Z 来源:《基层建设》2018年第5期作者:史家军 [导读] 摘要:塑料管材以其耐腐蚀、耐老化、环保安全而越来越受到人们的青睐,新型塑料管材不仅能大量替代钢材、木材、水泥等传统建筑,而且还具有节能、节材、保护生态、改善居住环境等特点。PE 管道已发展成多品种、多应用领域管材,广泛应用于建筑给排水、城镇给排水、供热采暖、化工医药等领域。本文分析了聚乙烯(PE)工艺对PE 管材耐环境应力开裂(ESCR)性能的影响,并提出改善PE 管材ESCR 性能的措施。 河南联塑实业有限公司河南周口 466700 摘要:塑料管材以其耐腐蚀、耐老化、环保安全而越来越受到人们的青睐,新型塑料管材不仅能大量替代钢材、木材、水泥等传统建筑,而且还具有节能、节材、保护生态、改善居住环境等特点。PE 管道已发展成多品种、多应用领域管材,广泛应用于建筑给排水、城镇给排水、供热采暖、化工医药等领域。本文分析了聚乙烯(PE)工艺对PE 管材耐环境应力开裂(ESCR)性能的影响,并提出改善PE 管材ESCR 性能的措施。 关键词:PE 管材;耐环境应力;开裂 由于PE管材具有质轻、管壁光滑、价格低、安装方便等特点,PE 与PVC 硬管相比,具有耐冲击、无毒、可盘绕,以及低温性、耐磨性、耐化学药品性等特点。因此PE 管材被广泛用于建筑用上下水管,农用排灌管、煤气管以及排污管,是一种有发展前途的管材。PE 管材的破坏大多数是由于管材在承受长期内压力情况下发生裂纹造成的,它直接影响着管材的使用寿命。无论PE 本身还是塑料管制作过程中引起的任何变化,都会通过管材ESCR 性能的改变反映出来。PE 管材在长期负荷作用下经过一定时间后会出现应力开裂现象,并会导致管材破裂。如用于上下水管,会引起漏水;用于燃气管,会引起漏气,后果严重,所以必须重视PE 管材ESCR 性能的提高。 1 聚乙烯(PE)管材的优点 1.1管材用PE 材料取得重大发展。随着研发力度的不断加大,新一代高强度管材专用PE 料不断涌现,不只使用PE63 等级PE 材料,并且出现了PE80级、PE100级产品,材料升级换代使PE 管各种应力显著提高。 1.2PE 管柔韧且可熔接。具有独特的柔韧性,物理力学性能较好,铺设时移动、弯曲和穿插很容易,有着新颖用途;直径小的PE 管可用长盘管方式供货。运输、安装十分方便,较大直径PE管一般可在地面上连接好后再铺入管沟,施工铺设方便,某些场合下可不挖管沟,而用顶管技术铺设PE 管;可用长管沉入法在江、湖、河、海水底铺设PE 管,也可在沙漠上不挖沟铺设PE 输水管;可用PE 管做内补管修复旧排水管。 1.3低温韧性比PVC 管好。在华北及西北地区,冬季气温一般在0~30℃。PVC管会变硬变脆,但PE 管即使温度低至-30℃,PE 管依然保持良好的柔韧性,不会变脆。 2 PE 管材组分对ESCR 性能的影响 2.1PE 树脂 1)分子量。一般认为PE 的分子量越大,分子链愈长,晶片间的系带分子数愈多,ESCR 性能愈好。因为PE 的分子量越大,表面能就越大,破裂强度也越大,所以ESCR 性能也就越好,这是因为其分子链的运动困难,不易生成大的球晶和形成好的序态。可见熔体流动速率越小,即分子量越大,其ESCR 性能越好。PE 熔体流动速率与ESCR 性能的关系见表。 2)分子量分布。分子量分布是影响ESCR 性能的一个重要因素,分子量分布直接反映了高聚物中大分子和小分子的含量。大分子的含量多,晶片间的连接分子数就多,ESCR性能愈好,而小分子的含量多对ESCR 性能是极为不利的。当分子量分布窄时,分子链长短较均匀,能生成均匀的微晶结构,低分子空隙区少,所以ESCR 性能好。 3)密度和结晶度。PE 密度越大,结晶度越高,晶片间的系带分子数愈少,将导致ESCR 性能下降。另一方面,结晶度愈高,晶粒间结合的密度大,环境介质不易渗透到无定形区而使系带分子不易解缠和松弛,有利于ESCR 性能的提高。 4)分子链结构。当PE 分子带有支链时能大大提高PE 的ESCR 性能。如在PE 主链上引入弹性链段,这些弹性链段使PE大分子链具有很好的弯曲性,阻碍球晶和好的序态形成,因此比均聚物的ESCR 性能好。HDPE 树脂生产过程中加入1-J 烯,使HDPE 带有支链,能大大提高HDPE的ESCR 性能。 2.2PE 组合物成分 在生产PE 管材中,为了提高冲击强度加入少量改性剂;为提高耐老化性能加入炭黑及抗氧剂;为了降低成本加入填料。这些助剂,也将对PE 制品的ESCR性能产生影响。 1)炭黑。纯PE 的老化性能和日光暴晒性能均较差,为改善PE 上述性能而要加入炭黑。试验表明,随着炭黑的加入,使PE 分子之间的结合减弱,从而在外力及环境介质的作用下易产生开裂。 2)抗氧剂。为防止PE 在高温加工和长期使用过程中由于氧的作用而引起降解、龟裂等,在PE 中加入抗氧剂,以捕捉PE 因受热作用而产生的自由基,以此来阻止PE分子链断裂、避免导致材料表面裂纹和产生开裂,从而提高PE 管材的ESCR 性能。一般ESCR 性能随着抗氧剂用量的增加而提高。 3)填充剂。加入填料,使PE 分子间作用力减弱,并且由于与PE 形成的界面不完善及类似大球晶的应力集中作用,致使PE 在外力及溶剂作用下,易产生龟裂。使用填充母料则影响小些。 3 PE 管成型工艺对ESCR 性能的影响 3.1挤出温度。PE 管材通常采用挤出成型。一般认为在挤出PE管材料时,挤出机温度不宜过高,尤其在挤出机螺杆转速低时,物料在机筒停留时间长,PE 易受破坏,生产出的管材ESCR 性能差[3]。HDPE 与LDPE 熔点不同,在挤出成型时温度控制也应不同。 3.2冷却速度。PE 管材成型时,冷却速度将影响到结晶状态,所以应严格控制。当冷却速度能快速越过最佳的结晶温度时,管材表面就形成结晶度较低的聚集态,而中间层和内表层则因PE 传热慢,致使在较高温度下停留时间长,而获得晶核数量及生长速度较为有利的结

相关主题
文本预览
相关文档 最新文档