当前位置:文档之家› 潘二煤矿沿Ⅳ勘探线地下水化学成分空间分布特征研究

潘二煤矿沿Ⅳ勘探线地下水化学成分空间分布特征研究

潘二煤矿沿Ⅳ勘探线地下水化学成分空间分布特征研究
潘二煤矿沿Ⅳ勘探线地下水化学成分空间分布特征研究

地下水化学成分形成的主要影响因素全解

地下水化学成分形成的主要影响因素 地下水化学成分形成的主要影响因素有四大类:分别是自然地理因素、地质因素和水文因素、生物因素和人为因素,下面将详细分析并举例说明其主要的影响因素。 一.自然地理因素 包含地形;水文;气候(气象/降水/气温/蒸发)。 (1)地形:影响水交替条件,而水交替条件又影响水的化学成分和矿化度。地形切割强烈,水的交替条件就好,有利于淡水的形成。反之,则形成高矿化度的咸水或盐水。如山区形成碳酸型水,而平原易形成硫酸水或氯化物型水 (2)水文:密集的水文网有利含水层的水交替条件。盐分的带出及淡潜水的形成。在水文网稀疏的条件下,地下水径流受阻,从而使潜水矿化度增高。 (3)气候 ①气象 ②降水 大气降水能使地下水的储存量、矿化度和化学成分发生明显变化。 降雨对地下水化学成分的影响,可以分为直接与间接两种作用方式,所谓直接方式,是指雨水中的化学组分,通过包气带直接入渗补给地下水;间接方式,是指雨水在经过包气带并与岩土发生复杂的物理化学作用过程中进入地下水。实际上,地下水化学成分的变化,是在上述

两种过程中共同完成的只不过在降雨为pH值过低的酸雨时与岩土的作用更强烈,地下水化学成分的变化更深刻罢了。 i.据苏州市某厂周围1984年检测的浅层地下水中SO42-含量和水的化学类型,由资料看出,硫酸型水广泛分布,面积约为五平方公里,其中C8井点矿化度为2.21克/升,总硬度高达50.7德国度,为全市之冠;尤其是距该厂北侧30米左右的C5、C3。井孔点(为浅钻孔,水位埋深1米),地下水中SO42-含量居然高达2.63 一2.494克/ 升,矿化度达到4.93 一5.21 克/ 升,总硬度为2 5.2一4 1.6德国度,明显的与该厂经常排放高浓度的SO42-所形成的酸雨有密切关系,地下水中的SO42-含量如此之高,与酸雨中的高含量的SO42-的直接入渗有关,也是酸雨中高浓度的H+与本区浅部土层中丰富的铝硅酸盐( 100克土中含有SiO2 +A l2O3达到80克左右) 强烈作用的结果。

地下水的化学成分及其形成作用(精)

第六章地下水的化学成分及其形成作用 第一节概述 地下水是天然溶液。地下水在参与自然界水循环过程中,与大气圈、水圈与生物圈同时发生着水量交换、化学成分的交换(—水质状况)。 水是良好的溶剂,地下水在空隙中运移时,可以溶解岩石中的组分,使地下水的化学成分丰富多彩。 地下水的物理性质:温度、颜色、嗅、味、密度、导电性与放射性 地下水的化学性质:气体成分、离子成分、胶体物质、有机质等 地下水的放射性、微生物成分等。 第二节地下水的化学特征 一、地下水中常见的气体成分 主要有氧()、氮()、二氧化碳()、硫化氢()、甲烷(),常见的气体成分与地下水所处环境,地下水的来源有关。 (1)氧()、氮() 来源:在大气成分中、含量很高,随降水一起入渗进入地下含水层中。反过来,如果地下水中富含与——也说明地下水是大气起源。由于活跃,在地下水运动中易发生氧化作用而消耗,因此,大气起源的地下水中,也可能独立存在。此外,氮还有生物起源与变质起源。 指示意义:含量高指示氧化环境;封闭环境下,氧被耗尽只剩下,则为大气起源封闭环境。 (2)硫化氢()、甲烷() 来源:这两种气体,都是在封闭环境下生成的。如是在有机物与微生物参与的生物化学过程中形成,还原环境下地下水中的→,在成煤过程中,在还原作用下产生,使煤田水富含。同理,甲烷()是成油和油气藏形成过程的结果,油田水富含甲烷()。 指示意义:富含和的地下水,指示封闭的还原环境。 (3)二氧化碳() 大气降水中的含量较低,地下水中主要来源: ①主要源于土壤层(入渗过程溶于水中):有机质残骸发酵产生、植物呼吸作用产生

②碳酸盐岩地层的脱碳酸作用 ③深部高温下,变质作用生成 ④人类活动,在使用化石燃料(煤、石油、天然气)时,大气中的增加 作用:地下水中增加,水对碳酸盐岩的溶解、结晶岩风化溶解的能力愈强! (4)地下水中气体成分特征小结: ①气体成分——指示地下水所处的地球化学环境 氧化环境 还原环境 ②气体成分增加水对盐类的溶解能力→促进水—岩的化学反应(即相互作用) 二、地下水中的主要离子成分 (1)概述:地下水中组分很多,而分布广、含量多的主要有七种离子 阴离子:,, 阳离子:,,, 离子成分含量与什么有关? ①各种元素的丰度(克拉克值)—即某元素在地壳化学成分中的重量百分比 ②该元素组成的化合物在水中的溶解度 在自然界,丰度较高的元素,如Si、Al、Fe,在水中含量很低;而某些丰度较低的,如Cl、S、C,在水中含量却很高。这说明元素组成的化合物的溶解度起主要作用。 (2)主要离子的相对含量与地下水中的总含盐量(TDS)关系 常见地下水的化学成分特征,与地下水的矿化度(或TDS)具有以下关系矿化度:低→ 中→ 高 阴离子: 阳离子: 我们可以得出主要离子构成的盐类溶解度的大小为: 碳酸盐类 < 硫酸盐类 < 氯化物(氯盐) (3)主要离子成分的来源 低矿化度水中的常见离子:

水文地质课件习题六 地下水的化学成分及其形成作用

习题六地下水的化学成分及其形成作用 一、名词解释 1.总溶解固体:地下水中所含各种离子、分子与化合物的总量。 2.变温带:受太阳辐射影响的地表极薄的带。 3.常温带:变温带以下,一个厚度极小的温度不变的带。 4.增温带:常温带以下,随深度增大而温度有规律地升高的带。 5.地温梯度:指每增加单位深度时地温的增值。 6.溶滤作用:在水与岩土相互作用下,岩土中一部分物质转入地下水中,这就是溶滤作用。 7.浓缩作用:由于蒸发作用只排走水分,盐分仍保留在余下的地下水中,随着时间延续,地下水溶液逐渐浓缩,矿化度不断增大的作用。 8.脱碳酸作用:地下水中CO2的溶解度随温度升高或压力降低而减小,一部分CO2便成为游离CO2从水中逸出,这便是脱碳酸作用。 9.脱硫酸作用:在还原环境中,当有有机质存在时,脱硫酸细菌能使硫酸根离子还原为硫化氢的作用。 10.阳离子交换吸附作用:一定条件下,颗粒将吸附地下水中某些阳离子,而将其原来吸附的部分阳离子转为地下水中的组分,这便是阳离子交替吸附作用。 11.混合作用:成分不同的两种水汇合在一起,形成化学成分与原来两者都不相同的地下水,这便是混合作用。 12.溶滤水:富含CO2与O2的渗入成因的地下水,溶滤它所流经的岩土而获得其主要化学成分,这种水称之为溶滤水。 13.沉积水:指与沉积物大体同时生成的古地下水。 14.内生水:来自地球深部层圈物质分异和岩石变质作用过程中化学反应生成的水。 15.总硬度:水中所含钙离子和镁离子的总量。 16.暂时硬度:指水中钙离子和镁离子与碳酸根离子和重碳酸根离子结合的硬度。

17.永久硬度:指水中钙离子和镁离子与氯离子、硫酸根离子和硝酸根离子结合的硬度。 二、填空 1.地下水中含有各种气体、离子、胶体物质、有机质以及微生物等。 2.地下水中常见的气体成分有氧气、氮气、二氧化碳、甲烷及硫化氢等。 3.地下水中分布最广、含量较高的阴离子有氯离子、硫酸根离子及重碳酸根离子等。 4.地下水中分布最广、含量较高的阳离子有钠离子、钾离子、钙离子及镁离子等。 5.一般情况下,低矿化水中常以重碳酸离子、钙离子及镁离子为主;高矿化水则以氯离子及钠离子为主。 6.一般情况下,中等矿化的地下水中,阴离子常以硫酸根离子为主,主要阳离子则可以是钠离子,也可以是钙离子。 7.地下水化学成分的形成作用有溶滤作用、浓缩作用、脱碳酸作用、脱硫酸作用、阳离子交替吸附作用和混合作用。 8.据地下水化学成分的成因类型,可将地下水分为溶滤水、沉积水和内生水。 9.在低矿化水中,阴离子以重碳酸盐为主,阳离子以钙离子、镁离子为主。随着蒸发浓缩,溶解度小的钙、镁的碳酸盐部分析出,硫酸根及钠离子逐渐成为主要成分,继续浓缩,水中硫酸盐达到饱和并开始析出,便将形成以氯离子、钠离子为主的高矿化水。 10.当含钙为主的地下水,进入主要吸附有钠离子的岩土时,水中的钙离子便置换岩土所吸附的一部分钠离子,使地下水中钠离子增多而钙离子减少。 11.地下水的物理性质主要包括:温度、颜色、透明度、嗅味和味道。 12.地壳表层有两个主要热能来源:一个是太阳的辐射,另一个是来自地球内部的热流。 13.根据受热源影响的情况,地壳表层可分为变温带、常温带、和增温带三个带。

相关主题
文本预览
相关文档 最新文档