当前位置:文档之家› 代谢控制发酵-第六章 代谢控制发酵实例

代谢控制发酵-第六章 代谢控制发酵实例

代谢控制发酵试题库

1脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。 2分解代谢物阻遏:当细胞具有一优先利用的底物时,很多其他分解反应途径受到阻遏 3限量补充培养法:将经适当稀释的浓缩处理液涂布于含有微量蛋白胨或0.1%完全培养基成分的基本培养基平板上。经培养后,野生型细胞迅速生长成较大菌落,而缺陷型细胞生长缓慢只能形成小菌落。这些小菌落大多数为营养缺陷型,将其转接到完全培养基斜面保存待测。 5代谢互锁:从生物合成途径来看,酶受一种与此代谢途径完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 6代谢工程:应用重组DNA技术和应用分析生物学相关的遗传学手段进行有精确目标的遗传操作,改变酶的功能或输送体系的功能,甚至产能系统的功能,以改进细胞某些方面的代谢活性的整套操作工作。 7积累反馈抑制:每个分支途径的末端产物都独立于其他末端产物,以一定百分比控制该途径第一个共同的酶所催化的反应。当几个末端产物同时存在时,它们对酶反应的抑制是累积的。各末端产物之间既无协同效应,也无拮抗作用。 8原生质融合:是一个人工实验系统,将遗传性状不同的两个细胞融合,通过基因重组,形成有新的、优良性状的新细胞的过程。 9转导:利用转导噬菌体为媒介而将供体菌的部分DNA导入受体菌中,从而使受体菌获得部分遗传性状的现象。 10营养缺陷型:指原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变型菌株。 11基因工程:指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 12诱变:指利用物理或化学因素处理微生物细胞群体,促使其中少数细胞中的遗传物质(主要是DNA)的结构发生改变,从而引起微生物的遗传性状发生变化,然后通过目的选择标记设法从群体中筛选出少数性状优良的突变菌株的过程。 13.转化:指相当大的游离的供体细胞的DNA片段被直接吸收到受体细胞内,并整合于受体细胞的基因组中,从而使受体细胞获得供体细胞部分遗传性状的现象。 14合作反馈抑制:当任何一种终产物单独过剩时,只部分的反馈抑制第一个酶的活性,只有当终产物同时过剩存在时,才能引起强烈抑制,其抑制程度大于各自单独存在的和 15增强子:指增加同它连锁的基因转录频率的DNA序列(能强化转录起始的一段DNA序列)。 16回复突变株:由突变型菌株经再突变而恢复原初野生型性状的菌株。 17渗漏突变型:指因突变所产生的不完全遗传障碍,其基因所控制的反应程度不象野生型,但多少还能进行,称这种现象为渗漏,具有这种性质的突变型就称为渗漏突变型

第六章 发酵过程控制-4

第六章发酵过程控制 第四节发酵过程泡沫的形成与控制 泡沫的定义:泡沫是气体在少量液体中的粗分散体,属于气液非均相体系,泡沫间被一层液膜隔开而彼此不相连通。是一种密度接近气体,而不接近液体的胶体体系。 泡沫的类型: 一种是存在于发酵液的液面上,气相所占比例特别大,并且泡沫与它下面的液体之间有能分辫的界线。例如:某些稀薄的前期发酵液或种子培养液中的泡沫。 另一种泡沫是出现在粘稠的菌丝发酵液当中。这种泡沫分散很细,而且很均匀,也较稳定。泡沫与液体间没有明显的波面界限,在鼓泡的发酵液中气体分散相占的比例由下而上地逐渐增加。 一、泡沫形成的原因 1、通气搅拌 产生泡沫的首要条件是气体和液体发生接触。而且只有气体与液体连续、充分地接触才会产生过量的泡沫。 如下图所示,通气强度大、搅拌强烈可使泡沫增多;在发酵前期由于培养基营养成分消耗少,培养基成分丰富,易起泡。 2、培养基配比与原料组成 在纯净的气体、纯净的液体之外,必须存在第三种物质—助泡剂,才能产生气泡。

助泡剂在气液界面处就会形成定向吸附层:与液体亲和性弱的一端朝着气泡内部,与液体亲和性强的一端伸向液相,这样的定向吸附层起到稳定泡沫的作用。见下图: 培养基营养丰富,多数富含蛋白质。蛋白质可以作为助泡剂,因此发酵培养基中通气后易产生稳定的泡沫。例如在50L罐中投料10L,成分为淀粉水解糖、豆饼水解液、玉米浆等,搅拌200rpm,通气,泡沫生成量为培养基体积的2倍。 3、培养基的粘度 粘度很高的发酵液,产生的泡沫非常稳定。因为粘稠的液膜,有助于吸收外力的冲击,起到缓冲的作用,使泡沫能持久一些。体系的起泡程度是起泡难易和泡沫稳定性两个因素的综合效果: 泡沫产生速度小于泡沫破灭速度,则泡沫不断减少,最终呈不起泡状态; 泡沫产生速度等于泡沫破灭速度,则泡沫数量将维持在某一平衡状态; 泡沫产生速度高于泡沫破灭速度,泡沫量将不断增加; 4、菌种、种子质量 菌种质量好,生长速度快,可溶性氮源较快被利用,泡沫产生几率也就少。 5、灭菌质量 培养基灭菌质量不好,糖氮等营养成分破坏严重,抑制微生物生长,使细胞自溶,产生大量泡沫。 总结:发酵过程中泡沫的多寡与通气搅拌的剧烈程度和培养基的成分有关如蛋白、粘度、糖类、灭菌情况等。 发酵过程中起泡沫的方式: 在发酵过程中发酵液的性质随菌的代谢活动不断变化,是泡沫消长的重要因素。发酵过程中起泡沫的方式通常有5种情况: (1)整个发酵过程中,泡沫保持恒定的水平; (2)发酵早期,起泡后稳定地下降,以后保持恒定;

第六章 发酵过程作业参考答案

第六章 发酵过程作业参考答案 1、简述补料分批发酵的定义及优缺点、分类。(20分) 答:补料分批发酵又称半连续发酵或培养,是指在分批培养过程中,间歇或连续地补加新鲜培养基的培养方法。(4分)补料分批发酵与传统分批发酵相比,其优点在于使发酵系统中维持很低的基质浓度。低基质浓度的优点:1)可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不致于加剧供氧的矛盾。2)避免培养基积累有毒代谢物。3)与连续发酵相比,补料分批发酵不需要严格的无菌条件,也不会产生菌种老化和变异等问题,其应用范围十分广泛,包括抗生素、氨基酸、酶蛋白、核苷酸、有机酸、及高聚物等、4)在发酵的不同时间不断补加一定的养料,可以延长微生物对数期的持续时间,增加生物量的积累和静止期代谢产物的积累。(8分)补料分批发酵可以分为两种类型:a: 单一补料分批发酵:在开始时投入一定量的基础培养基,到发酵过程的适当时期,开始连续补加碳源和(或)氮源和(或)其他必须基质,直到发酵液体积达到发酵罐最大工作容积后停止补料,将发酵液一次全部放出。这种操作方式称为单一补料分批发酵,由于受发酵罐工作容积的限制,发酵周期只能控制在较短的范围内。(4分)b 重复补料分批发酵:重复补料分批发酵是在单一补料分批发酵的基础上,每隔一定时间按一定比例放出一部分发酵液,使发酵液体积始终不超过发酵罐的最大工作容积,从而可以延长发酵周期,直至发酵产率明现下降,才最终将发酵液全部放出.这种操作方式既保留了单一补料分批发酵的优点,又避免了它的缺点。(4分) 2、通过哪些手段可提高发酵过程的溶氧量并分析比较各种措施的效果。(30分) 答:(1) 提高KL a KL a 与其中的主要影响因素的函数关系可以使用下式表示: 对于牛顿型流体发酵液, KL a 的关联式可简单表示为: (2分) ①搅拌效率对KL a 的影响:一般情况下,高转速可有效地提高 KL a ,但太大或搅拌器的类型不当也会损伤菌丝,或产生漩涡,反而降低混合效果。对于高粘度的流体,转速、器型的影响会更明显。 ②气体流速对KL a 的影响:由上式得知:提高WS ,即提高通气量Q ,也可以有效的提高KL a 。研究表明,当通气量Q 较低时,随着通气量Q 的增加,WS 空气表观线速度也会增加。但Q 过大时,搅拌器不能有效地将空气气泡充分分散,而在大量气体中空转,形成所谓的“过载”现象 。会导致Pw/V 会随着Q 的增加而下降,即单位体积发酵液所拥有的搅拌功率会下降。 ③设备参数的影响:式中的α、β与发酵罐的大小、形状、搅拌器的类型等因素有关。Bartholomew 研究指出,9L 的发酵罐的α为0.95;0.5m3的发酵罐,α变为0.67;而27~57m3的发酵罐的α变为0.5。搅拌器的类型不同,α、β值的大小也不相同,对于α值,弯叶>平叶>箭叶;对),,,,,,,(g D W N d f K L s L a σρη=βαs w L W V P K K a )(=

代谢控制发酵试题库

代谢控制发酵试题库 名词解释 1.代谢工程指应用重组DNA技术和应用分析生物学相关的遗传学手段进行有精确目标的遗传操作,改变酶的功能或输送体系的功能,甚至产能系统的功能,以改进细胞某些方面的代谢活性的整套操作工作(包括代谢分析、代谢设计、遗传操作、目的代谢活性的实现)。 2.积累反馈抑制指每个分支途径的末端产物都独立于其他末端产物,以一定百分比控制该途径第一个共同的酶所催化的反应。当几个末端产物同时存在时,它们对酶反应的抑制是累积的。各末端产物之间既无协同效应,也无拮抗作用。 3.代谢互锁指从生物合成途径来看,酶受一种与此代谢途径完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 4.原生质融合指是一个人工实验系统,是将遗传性状不同的两个细胞融合,通过基因重组,形成具有新的、优良性状的新细胞的过程。 5.转导指利用转导噬菌体为媒介而将供体菌的部分DNA导入受体菌中,从而使受体菌获得部分遗传性状的现象。 6.代谢控制发酵:是指利用遗传学方法或其它生物化学方法,人为地在脱氧核苷酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。 7.营养缺陷型:指原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变型菌株。 8.基因工程:基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 9.诱变:指利用物理或化学因素处理微生物细胞群体,促使其中少数细胞中的遗传物质(主要是DNA)的结构发生改变,从而引起微生物的遗传性状发生变化,然后通过目的选择标记设法从群体中筛选出少数性状优良的突变菌株的过程。 10.转化:指相当大的游离的供体细胞的DNA片段被直接吸收到受体细胞内,并整合于受体细胞的基因组中,从而使受体细胞获得供体细胞部分遗传性状的现象。 11.合作反馈抑制:指当任何一种终产物单独过剩时,只部分的反馈抑制第一个酶的活性,只有当终产物同时过剩存在时,才能引起强烈抑制,其抑制程度大于各自单独存在的和。12.分子克隆:指对目的DNA分子进行切割,并连接到合适的载体上进行体外重组。 判断 1.转化和转导都是将外源基因导入受体细胞的方法,只是受体存在差异。 ×,转导需要载体,而转化不需要载体。 2.紫外线照射后的菌悬液,不能移至可见光下进行筛选和检出。 √,由于光复活作用,不能移至可见光下 3.酶的诱导和酶的阻遏都是指终产物对酶合成过程的促进或阻碍。 ×,酶诱导是底物对酶合成的促进,酶阻遏是产物对酶合成的抑制 4.一个操纵子中的结构基因通过转录、转译控制蛋白质的合成,而操纵基因和启动基因通过转录、转译控制结构基因的表达。 ×,操纵基因和启动基因只起调节作用,本身不表达。 5.诱变处理的菌液进行中间培养主要是为了克服表型延迟。 √,解释表型延迟。 6.转化和转导都是将外源基因导入受体细胞的方法,只是供体存在差异。

发酵调控学完整版

发酵调控学 生物工程学院 储炬 课程内容 1 微生物生长分化调节的规律 (1)细胞周期内有关生长的活动,DNA合成与细胞分裂的调节 (2)丝状菌生长分化的调节 2 初级代谢的调节机制 (1)调节的生化基础 (2)代谢调节的方式与内容:诱导、分解代谢物调节、反馈调节 课程内容 3 次级代谢物的生物合成的调节 (1)次级代谢物的概念 (2)生物合成的前体 (3)次级代谢物的生物合成 (4)抗生素生物合成的控制 课程内容 4 发酵过程控制 (1)控制的策略 (2)参数的指导作用 (3)参数相关分析 (4)过程控制的评价 主要参考书 ?现代工业发酵调控学,储炬,李友荣,化学工业出版社,北京。2002年1月?Biotechnology, 2nd ed. Vol.1; Biological Fundamentals. Rehm H-JB ?Biotechnology, 3nd ed Vol.3;Bioprocessing. Rehm H-JB 微生物发酵代谢调控与发酵过程优化技术 ?代谢调控是研究内在的调节机制,而过程优化则是外在控制,是建立在相关参数的分析上的,这两个方向相辅相成,前者为后者的基础,而后者是使理论变为现实的手段。 1微生物生长与调节 为了控制菌体的生长,需要了解生长的方式,细胞分裂和调节的规律,测量微生物生长的各种办法,微生物生长繁殖的形式与工业生产的关系,环境变化对微生物生长的影响。因此,研究微生物的生长分化规律无疑是发酵调控原理的一个重要组成部分。 细胞周期 对于个体细胞行为,主要关心 ?染色体启动、复制和分离 ?新细胞壁材料的合成与插入 ?协调染色体复制和细胞分裂的信号 细胞周期 细胞周期(Cell cycle): 细胞的一系列可鉴别的周而复始的生长活动。这些活动的顺序不变, 完成一个活动后才能进行下一个活动。 图1 细胞周期 细胞周期

代谢控制发酵

《代谢控制发酵》复习题 1.名词解释 代谢控制发酵:所谓代谢控制发酵就是利用遗传学的方法或其他生物化学的方法,人为地在脱氧核糖核苷酸的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累发酵。 关键酶:参与代谢调节的酶的总称。作为一个反应链的限速因子,对整个反应起限速作用。 变构酶:有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶。 诱导酶:诱导酶是在环境中有诱导物(通常是酶的底物)存在的情况下,由诱导物诱导而生成的酶。 调节子:就是指接受同一调节基因所发出信号的许多操纵子。 温度敏感突变株:通过诱变可以得到在低温下生长,而在高温下却不能生长繁殖的突变株。 碳分解代谢物阻遏:可被迅速利用的碳源抑制作用于含碳底物的酶的合成,就称为碳分解代谢阻遏。 氮分解代谢物阻遏:可被迅速利用的氮源抑制作用于含氮底物的酶的合成,就称为氮分解代谢阻遏。 营养缺陷型突变菌株:原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变菌株。 渗漏突变株:由于遗传性障碍的不完全缺陷,使它的某一种酶的活性下降而不是完全丧失。因此,渗漏突变菌株能少量的合成某一种代谢最终产物,能在基本培养基上进行少量的生长。 代谢互锁:从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而受这种抑制(阻遏)作用是部分性的,不完全的。 平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远远大于b 酶,结果优先合成E。E过量后就会抑制a酶,使代谢转向合成G。G过量后,就会拮抗或逆转E的反馈抑制作用,结果代谢流转向又合成E,如此循环。(P45图)优先合成:底物A经分支合成途径生成两种终产物E和G,由于a酶的活性远远大于b酶的活性,结果优先合成E。E合成达到一定浓度时,就会抑制a酶,使代谢转向合成G。G合成达到一定浓度时就会对c酶产生抑制作用。 代谢工程:指通过某些生化反应的修饰来定向改善细胞的特性或利用重组DNA技术来创造新的化合物。 流量控制系数:单位酶的变化量所引起的某一分支稳态代谢流量的变化,用来衡量某一步酶反应对整个反应体系的控制程度。 能荷:[(ATP)+1/2(ADP)]/[(ATP)+(ADP)+(AMP)] 分叉中间体:糖代谢中间体既可以用来合成初级代谢产物,也可以用来合成次级代谢产物,这种中间体叫做分叉中间体。 质粒产物:有一部分代谢产物的形成取决于由质粒遗传信息所产生的酶所控制的代谢途径,这类物质称为质粒产物。 2.微生物细胞的代谢调节内容包括哪些? (1)通过控制基因的酶生物合成的控制机制。 ①诱导——促进酶的合成

代谢控制发酵

第一章 1、 2、 3、研究任务:随机发酵~人为控制发酵 依赖分解代谢的发酵~依赖合成代谢的发酵 盲目育种~定向育种 4、五字策略:进、通、节、堵、出 5、代谢工程的概念:利用分子生物学原理系统分析代谢途径,设计合理的遗传修饰战略,从而优化 细胞生物学特征 第二章 6、代谢体系组成(及之间联系): 7、辅酶(及辅酶再生):

8、重要的辅酶:NAD——电子受体NADPH——提供还原力 FMN、FAD——电子传递泛酸、辅酶A——促乙酰化硫胺素(VB1)——脱羧吡哆醛(VB6)——转氨、脱羧、消旋生物素(VH)——羧化、CO2固定叶酸——转移一碳基团 9、发酵呼吸的区别: 10、途径(生理功能及在发酵上的作用): (1)EMP: (2)HMP:

(3)ED: ??????????? 11、呼吸作用和发酵作用(概念、区别): 12、发酵(狭义)概念:↑ 13、能量转换: (1)底物水平磷酸化 (2)氧化磷酸化 13、呼吸链概念:

(氧化磷酸化中的计算???????)14、耗能代谢: (1) (2)TCA 15、回补途径: 16、氨基酸合成(及前体):

第三章 17、代谢调节概念:????? 18、原核生物代谢调节位点:????? 19、酶、细胞水平调节包括: (1)酶合成的调节的概念、实质:(2)包括3种: (3)操纵子概念:(4)正、负调控概念(了解): (5)正、负调控例子: 负调控:乳糖操纵子 正调控:麦芽糖操纵子 正、负调控:阿拉伯糖操纵子 (6)组合型突变株概念及筛选: (7)分解代谢物阻遏概念、实质及如何克服:

20、弱化子概念: 21、酶活性调节概念:变构(别构)调节:

代谢控制发酵复习

试卷题型: ⑴、名词解释:8×4' ⑵、填空题:22×1' ⑶、简答题:3×8' ⑷、综合题:2×11' 第一章绪论 1、代谢控制发酵:就是利用遗传学的方法或其他生物化学方法,人为地在脱氧核糖核酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。P2 2、代谢控制发酵的关键:取决于微生物代谢控制机制是否能够被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。P2 3、代谢工程的具体思路:P3 1、改变代谢流: (1)、加速速度限制反应;(2)、改变分支代谢途径的流向;(3)、构建代谢旁路;(4)、改变能量代谢途径。 2、扩展代谢途径和构建新的代谢途径: (1)、引入外源基因,延伸代谢途径;(2)、利用新的底物,构建新的生物合成途径。 第二章代谢控制发酵的基本思想 1、微生物细胞的调节机制:P7-9 (1)、通过控制基因的酶生物合成的控制机制: ①诱导——促进酶的合成; ②阻遏——抑制酶的合成,包括: 1)终产物阻遏,2)分解代谢物阻遏。 (2)、酶活性的控制机制: ①终产物抑制或激活, ②通过辅酶水平的活性调节, ③酶原的活化, ④潜在酶的活化。 (3)、通过细胞渗透性的控制:(根据酶在代谢调节中作用不同分类) ①调节酶:变构酶、同功酶、多功能酶。 ②静态酶 ③潜在酶 2、脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。 注:处理方法:①使变构酶解聚,②基因突变。P15 3、反馈抑制的调节类型可以分为以下几种:P18-21 图略 (1)、单功能途径中酶活性的调节类型:①前体激活,②补偿性激活。 (2)、多功能途径中酶活性的调节类型: ①协作反馈抑制或称多价反馈抑制, ②合作反馈抑制, ③积累反馈抑制, ④顺序反馈抑制, ⑤假反馈抑制:指结构类似物的反馈抑制,

发酵第六章

1 发酵过程 第六章2 定义 发酵过程即细胞的生物反应过程,是指由生长繁殖的细胞所引起的生物反应过程。它不仅包括了以往“发酵”的全部领域,而且还包括固定化细胞的反应过程、生物法废水处理过程和细菌采矿等过程。 3 为什么要研究发酵过程 微生物发酵的生产水平不仅取决于生产菌种本身的性能,而且要赋以合适的环境条件才能使它的生产能力充分表达出来。为此我们必须通过各种研究方法了解有关生产菌种对环境条件的要求,如培养基、培养温度、pH、氧的需求等,并深入地了解生产菌在合成产物过程中的代谢调控机制以及可能的代谢途径,为设计合理的生产工艺提供理论基础。同时,为了掌握菌种在发酵过程中的代谢变化规律,可以通过各种监测手段如取样测定随时间变化的菌体浓度,糖、氮消耗及产物浓度,以及采用传感器测定发酵罐中的培养温度pH、溶解氧等参数的情况,并予以有效地控制,使生产菌种处于产物合成的优化环境之中。 4 本章讲述的内容 ?第一节发酵过程的代谢变化规律?第二节发酵工艺的控制 ?第三节发酵过程的主要控制参数

5 第一节发酵过程的代谢变化规律 ?代谢变化就是反映发酵过程中菌体的生长,发酵参数(培养基,培养条件等)和产物形成速率三者间的关系。 ?了解生产菌种在具有合适的培养基、pH、温度和通气搅拌等环境条件下对基质的利用、细胞的生长以及产物合成的代谢变化,有利于人们对生产的控制。 6 代谢曲线 代谢变化是反映发酵过程中菌体的生长,发酵参数(培养基,培养条件等)和产物形成速率三者间的关系。把它们随时间变化的过程绘制成图,就成为所说的代谢曲线。 7 ■发酵过程按进行过程有三种方式: 9分批发酵(Batch fermentation) 9补料分批发酵(Fed-batch fermentation)9连续发酵(Continuous fermentation) 这节介绍分批发酵、补料分批发酵及连续发酵三种类型的操作方式下的代谢特征。 8 1、分批发酵的定义 ?是指在一封闭系统内含有初始限量基质的发酵方式。在这一过程中,除了氧气、消泡剂及控制pH的酸或碱外,不再加入任何其它物质。发酵过程中培养基成分减少,微生物得到繁殖 。 一、分批发酵

青霉素发酵的代谢控制 内容摘要

青霉素发酵的代谢控制内容摘要:内容摘要:在青霉素发酵过程中,通常通过筛选优良菌株种类,调节菌体的代谢发育和生长等生物过程,给予最适PH、温度、以及发酵液中的碳源和氮源,是生物产量达到最大值。这些控制条件以及各种生物、理化和工程环境因素对这些过程的影响很大,因此研究菌体的培养规律,外界控制因素和达到最佳效果等问题就成为发酵工程的重要任务。关键字:关键字:青霉素、菌株、代谢、发酵控制一、概述发酵工艺过程不同于化学反应过程。它既涉及生物细胞的生长、生理和繁殖的生命过程,又涉及微生物细胞分泌的各种酶所催化的生化反应及其影响因素的多酶反应过程,所以发酵是微生物、化学和工程等学科的理论和技术的综合利用,由于发酵过程的复杂性,控制其过程是比较复杂的。尤其是控制青霉素等次级代谢产物的发酵。二、青霉素的用途及主要生产流程青霉素是抗菌素的一种,是从青霉菌培养液中提制的药物,是第一种能够治疗人类疾病的抗生素。青霉素作为杀菌药,主要作用于大多数革兰阳性菌、革兰阴性球菌、螺旋体和放线菌。青霉素阻抑粘肽合成,造成细胞壁缺损。由于敏感菌菌体内渗透压高,使水分不断内渗,以致菌体膨胀,促使细菌裂解、死亡。青霉素的杀菌作用特点为:①对革兰阳性菌作用强,对革兰阴性菌作用弱;②对繁殖期细菌有作用对静止期细菌无作用;③因为哺乳类动物和真菌细胞无细胞壁,故青霉素对人毒性小,对真菌无效。生产流程:冷冻干孢子→琼脂斜面→米孢子→种子罐→发酵罐→过滤→醋酸丁酯提取→脱水脱色→结晶→洗涤晶体→工业盐→菌丝体→综合利用在发酵过程中添加碳源、氮源和前体、消泡剂三、

青霉素产生菌的选育1、出发菌株的选择青霉素产生菌主要是产黄青霉51-20 和点青霉。以产黄青霉51-20 的菌株为亲株,经不断诱变,目前已获得产青霉素为30000u/ml 以上的高产菌株。青霉菌在固定培养基上具有一定形态特征。开始生长时,孢子先胀大,长出芽管并急速伸长,形成隔膜,繁殖成菌丝,然后产生复杂的分支,交织成网状而形成菌落。菌落外观有的平坦有的褶皱很多。在营养分布均匀的培养基中,菌落一般都是圆形的,其边缘或整齐或呈锯齿状或呈扇状。在发育过程中跟中从气生菌丝大梗和小梗,于小梗上着生分生孢子,排列成链状,形状似毛笔,称为青霉穗。分生孢子成黄绿色、绿色或蓝色,老了以后变成黄棕色、红棕色和灰色等。分生孢子有椭圆形、圆柱形、圆形,每种菌种的孢子菌具有一定的形态,多次传代后也不变。在沉默培养是一般不产生分生孢子。2、切断支路代谢途径当菌种的初级代谢和次级代谢处于分路途经事,初级代谢产物的营养缺陷型菌株常可使相应的次级代谢产物增产。有人采用了诱变的方式获得了亮氨酸营养缺陷型菌株结果是青霉素的产量提高了四倍。青霉素的生物合成受赖氨酸的反馈抑制,这是由于赖氨酸可使高柠檬酸合成受到抑制或阻遏,因侧悬于赖氨酸缺陷突变菌株,通过在培养基中添加赖氨酸,可使青霉素产量明显提高。3、解除菌体自身的反馈调节选育结构类似物抗性突变株(1)筛选自身耐受性突变株不同活性的菌株,其自身耐受性不同,高产菌株能耐受高浓度的自产抗生素。为此,可以用自产抗生素来选育高产菌株。如有人选遇到能耐100000u/ml 青霉素V 的突变菌株,是青霉素的发酵单位提高到约40000u/ml。这种自身耐

发酵过程控制

发酵过程控制和优化技术的有关知识 发酵的生产水平高低除了取决于生产菌种本身的性能外,还要受到发酵条件、工艺的影响。只有深入了解生产菌种在生长和合成产物的过程中的代谢和调控机制以及可能的代谢途径,弄清生产菌种对环境条件的要求,掌握菌种在发酵过程中的代谢变化规律,有效控制各种工艺条件和参数,使生产菌种始终处于生长和产物合成的优化环境中,从而最大限度地发挥生产菌种的生产能力,取得最大的经济效益。 一.发酵过程进行优化控制的意义 随着生物和基因工程技术在各工业行业中的应用,发酵产品生产规模和品种不断增加,对发酵过程进行控制和优化也显得越来越重要。作为发酵中游技术的发酵过程控制和优化技术,既关系到能否发挥菌种的最大生产能力,又会影响到下游处理的难易程度,在整个发酵过程中是一项承上启下的关键技术。 与物理和化学反应过程不同,生物过程的反应速率比较慢,目的产物的浓度、生产强度、反应物质(底物或基质)向目的产物的转化率也比较底。工业微生物学从两个方面解决上述问题,一方面通过菌种选育和改良获得高产的发酵菌种;另一方面,通过控制培养条件使微生物最大限度地生产目标产物。相对来讲,通过发酵过程控制和优化,将生物过程准确地控制在最优的环境或操作条件下,是提高整体生产水平的一个捷径或者说是一种更容易的方法,其重要性也绝不亚于利用分子生物学和基因工程进行菌种改良的方法。 二.生化过程的特征 与物理和化学反应过程相比,生化反应过程有以下不同特征:①动力学模型高度非线性; ②动力学模型参数的时变性;③除简单的物理和化学状态变量(温度、pH、压力、气体分压、DO外,绝大多数生物状态变量(生物量、营养物浓度、代谢产物浓度、生物活性等)很难在线测量;④过程参数的滞后性,一个生物过程可能涉及成千上万个小的物理和化学反应,其相互间的作用和影响造成了生物过程的响应速率慢。 生物过程的控制和优化还具有以下特点:①不需要太高的控制精度;②各状态变量之间存在一定的连带关系;③由于没有合适的定量的数学模型可循,其控制与优化操作还必须完全依靠操作人员的经验和知识来进行。 三.生物过程控制和优化的目的和研究内容 生物过程控制和优化的目的就是以生物反映工程、发酵工程、生物化学、微生物学等学科的原理和知识为基础,以自动控制理论、过程控制和优化理论、工程数学以及人工智能技术为手段,将目的生物过程控制在最优的操作环境之下,以实现提高生物过程生产水平的目

代谢控制发酵

《代谢控制发酵》复习思考题 1.什么是代谢控制发酵(Metabolic control fermentation)? 请你简要 谈一谈学了《代谢控制发酵》后的收获。 2.什么是代谢工程(Metabolic engineering)? 请你简要谈一谈代谢工 程的研究内容与发展方向。 3.什么是合成代谢?请举例说明之。 4.请比较啤酒酵母和运动发酵单胞菌产生乙醇的异同点? 5.画图并简述微生物(原核与真核微生物)代谢调节的部位。 6.画图并简述原核与真核微生物基因表达上的重要区别。 7.微生物细胞代谢调节的主要举措有哪些? 8.RNA多聚酶(蛋白质)怎样和DNA(核苷酸)相互作用的? 9.什么是操纵子?主要包括哪些基因? 10.画图并简述乳糖操纵子的诱导作用机制。 11.画图并简述阿拉伯糖操纵子的诱导作用机制。 12.什么是弱化子?简述转录时弱化子(作用)的调控。 13.画图并简述酶合成的终产物阻遏作用。 14.酶合成的阻遏与弱化作用(attenuation)有什么区别? 15.什么是分解代谢物阻遏(Catabolic repression)其实质是什么? 16.cAMP是怎样控制酶合成的水平呢? 17.葡萄糖是如何调节微生物细胞内的cAMP水平? 18.画图并简述细菌二元调节系统(信号传导)是如何调节基因的表达? 19.什么是变(别)构酶(Allosteric enyzame)?简述变(别)构酶的调 节机制。 20.什么是变(别)构酶的脱敏作用(De-sensitingation)? 21.画图并简述变(别)构酶与普通酶的反应动力学性质的不同。 22.什么是共价调节酶?举例说明共价调节酶对调节酶的调节。 23.什么是能荷(energy charge)? 举例说明能荷对代谢途径的调控。 24.什么是巴斯德效应(Pastear effect)?其实质是什么? 25.什么是克里勃特里(Crabtree effect)? 其实质是什么? 26.简述不产生ATP的呼吸链发现的意义。 27.简述代谢产物——谷氨酸的分泌机制。 28.简述代谢产物——肌苷酸的分泌机制。 29.简述磷霉素、D-环丝氨酸的作用位点。 30.简述氨甲酰丝氨酸、杆菌肽作用位点。 31.简述氨青霉素、衣霉素作用位点。

发酵过程的工艺控制

第十章发酵过程的工艺控制 ●知识要点和教学要求 (1)、理解微生物发酵的动力学 (2)、掌握补料分批培养 (3)、掌握连续培养 (4)、掌握发酵工艺控制最优化 (5)、掌握温度对发酵过程的影响及其控制 (6)、掌握PH值对发酵过程的影响和控制 (7)、掌握泡沫对发酵过程的影响和控制 ●能力培养要求 通过本章节的学习,学生能理解微生物发酵的分类及温度、PH值、泡沫等对发酵过程的影响和控制。 ●教案内容 10.1 微生物发酵的动力学 一般来说,微生物学的生长和培养方式可以分为分批培养、连续培养和补料分批培养等三种类型。 1. 分批培养 分批培养又称分批发酵,是指在一个密闭系统内投入有限数量的营养物质后,接入少量的微生物菌种进行培养,使微生物生长繁殖,在特定的条件下只完成一个生长周期的微生物培养方法。 在分批培养过程中,随着微生长细胞和底物、代谢物的浓度等的不断变化,微生物垢生长可分为停滞期、对数生长期、稳定期和死亡期等四个阶段,图10-1为典型的细胞菌生长曲线。 2. 停滞期 停滞期是微生物细胞适应新环境的过程。

实际上,接种物的生理状态和浓度是停滞期长短的关键。如果接种物处于对数生长期,那么就很有可能不存在停滞期,微生物细胞立即开始生长。反过来,如果接种物本身已经停止生长,那么微生物细胞就需要有更长的停滞期,以适应新的环境。 3. 对数生长期 处于对数生长期的微生物细胞的生长速度大大加快,单位时间内细胞的数目或重量的增加维持恒定,并达到最大值。其生长速度可用数学方程表示: 式中,x---细胞浓度(g/l);t---培养时间(hr);---细胞的比生长速度(1/h)。如果当t=0时,细胞的浓度为x0(g/l),上式积分后就为:于是,用微生物细胞浓度的自然对数对时间作图,就可得到一条直线,该直线的斜率就等于。 微生物的生长有时也可用“倍增时间”(td)来表示,“倍增时间”(td)定义为微生物细胞浓度增加一倍所需要的时间,即: 3. 稳定期 由于细胞的溶解作用,一些新的营养物质,诸如细胞内的一些糖类、蛋白质等被释放出来,又作为细胞的营养物质,从而使存活的细胞继续缓慢地生长,出现通常所称的二次或隐性生长。 4. 死亡期 当发酵过程处惊天动地死亡期时,微生物细胞内所储存的能量已经基本耗尽,细胞开始在自身所含的酶的作用下死亡。 5. 微生物分批培养生长速度的动力学方程

代谢控制发酵

第一章:微生物代谢 小结:1、能量代谢是生物新陈代谢的核心 2、化能异养微生物的生物氧化必须经历脱氢、递氢和受氢3个阶段,依据受体的不 同将生物氧化分为三种:呼吸、无氧呼吸和发酵 3、化能自养微生物利用无机氧化获得ATP,产能少,生长得率极低 4、字样微生物通过光和磷酸化获得ATP,包括循环光合酸化、分循环光和磷酸化和 紫膜光合磷酸化三种 5、微生物具有固氮作用 复习题: 1、名词解释: 生物氧化:在生物体内,从代谢物脱下的氢及电子﹐通过一系列酶促反应与氧化合成水﹐并释放能量的过程。 有氧呼吸:微生物在降解底物过程中,将释放出电子传给NAD(P)+、FAD或FMN等电子载体,在经电子传递系统传给外源电子受体,以分子氧作为最终电子受体,从而生成水或其它还原型产物并释放出能量的过程 无氧呼吸:微生物在降解底物过程中,将释放出电子传给NAD(P)+、FAD或FMN等电子载体,在经电子传递系统传给外源电子受体,以氧化型化合物作为最终电子受体,从而生成水或其它还原型产物并释放出能量的过程 发酵:是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。 电子传递链(呼吸链):多种递电子体或递氢体按次序排列的连接情况。生物氧化过程中各物质氧化脱下的氢,大多由辅酶接受,这些还原性辅酶的氢在线粒体内膜上经一系列递电子体(或递氢体)形成的连锁链,逐步传送到氧分子而生成水。此种连锁过程与细胞内呼吸过程密切相关。植物的叶绿体中则存在光合电子传递链以传递电子,完成光合作用中水分解出氧,形成NADPH的过程。 光和磷酸化(循环/非循环):一种存在于厌氧光合细菌中的利用光能产生ATP的磷酸化反应,由于它是一种在光驱动下通过电子的循环式传递而完成的磷酸化,故称循环光合磷酸化。 生物固氮:生物固氮是指分子氮通过固氮微生物固氮酶系的催化而形成氨的过程。 自生/共生/联合固氮菌:自生固氮菌:独立进行固氮,但并不将氨释放到环境中,而是合成氨基酸;固氮效率较低。共生固氮菌:与其他生物形成共生体,在共生体内进行固氮;将固氮产物氨,通过根瘤细胞酶系统的作用,及时运送给植物体各部,直接为共生体提供氮源。共生固氮菌:与其他生物形成共生体,在共生体内进行固氮;将固氮产物氨,通过根瘤细胞酶系统的作用,及时运送给植物体各部,直接为共生体提供氮源。 2、微生物代谢的特点是什么? 1)代谢旺盛; 2)代谢极为多样化; 3)代谢的严格调解和灵活性。光能型微生物产能:光和磷酸作用产能;植物型(蓝细 菌):放养性光合作用;化能异养微生物产能:氧化磷酸化作用;发酵型产能:(最终电子受体为有机物);呼吸型产能:有氧呼吸和无氧呼吸;化能自养微生物产能:通过氧化物及氧化物(电子呼吸链产能)。

代谢控制发酵试题1

代谢控制发酵试题库 1. 脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的 敏感性。注:处理方法:①使变构酶解聚,②基因突变 2.分解代谢物阻遏:当细胞具有一优先利用的底物(通常是,但并不总 是葡萄糖)时,很多其他分解反应途径受到阻遏 3. 营养缺陷型:就是指原菌株由于发生基因突变,致使合成途径中某一步 骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养中外源补加该营养物质才能生长的突变型菌株。P32 最典型例子:高丝氨酸营养缺陷型(Hom﹣)或苏氨酸营养缺陷型(Thr﹣)菌株达到赖氨酸的积累 4. 平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远大于酶b ,结果优先合成E。E过量后就会抑制a酶,使代谢转向合成G。G过量后,就会拮抗或逆转E的反馈抑制作用,结果代谢流又合成E,如此循环。 5. 优先合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远大于酶b ,结果优先合成E。E过量后就会抑制a酶,使代谢转向合成G。G合成达到一定浓度时就会对c酶产生抑制作用。 6. 限量补充培养法:将经适当稀释的浓缩处理液涂布于含有微量蛋白胨或0.1%完全培养基成分的基本培养基平板上。经培养后,野生型细胞迅速生长成较大菌落,而缺陷型细胞生长缓慢只能形成小菌落。这些小菌落大多数为营养缺陷型,将其转接到完全培养基斜面保存待测。 7. 代谢互锁指从生物合成途径来看,酶受一种与此代谢途径完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 8. 反馈抑制的调节类型可以分为以下几种:(1)单功能途径中酶活性的调节类型:①前体激活,②补偿性激活。(2)多功能途径中酶活性的调节类型:①协作反馈抑制或称多价反馈抑制②合作反馈抑制③积累反馈抑制④顺序反馈抑制⑤假反馈抑制:指结构类似物的反馈抑制⑥同功酶 9. 转导指利用转导噬菌体为媒介而将供体菌的部分DNA导入受体菌中,从而使受体菌获得部分遗传性状的现象。其中必须具有3个组成部分,即供体,转导噬菌体和受体 10. 代谢控制发酵:是指利用遗传学方法或其它生物化学方法,人为地在脱氧核苷酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。 11. 代谢控制发酵的基本思想:⑴切断支路代谢:①选育营养缺陷型突变株,②选育渗漏缺陷突变株。⑵解除菌体自身的反馈调节:①选育抗类似物突变株②酶活性的利用③营养缺陷型回复突变株的应用。⑶增加前体物的合成⑷去除终产物⑸特殊调节机制的利用:①多种产物控制机制的利用②平衡合成的利用③代谢互锁的利用④优先合成的变换。⑹条件突变株的应用⑺选育不生成副产物的菌株 ⑻选育生产代谢拮抗物质的菌株 12. 转化:转化就是指相当大的游离的供体细胞的DNA片段被直接吸收到受 体细胞内,并整合于受体细胞的基因组中,从而使受体细胞获得供体细胞部分遗传性状的现象。包括3个步骤,即供体DNA的制备,受体细胞对DNA的吸收及转化子的选择 13. 基本培养基:能满足野生型或原养型菌株的最低营养成分的培养基。 15. 诱变育种中的几个问题①出发菌株的选择:⑴出发菌株对诱变剂的效应,

《代谢控制发酵》考试试卷及答案

2006—2007年度生物工程专业 《代谢控制发酵》考试试卷及答案(2007年6月) 班级姓名得分 一、名词解释(25分): 1.Catabolit repression (3分) 分解代谢物阻遏:在培养基中有多种营养物质时,微生物先选择利用易分解利用的营养物质,而这种营养物质的分解,对分解利用其它营养物物质所需酶的合成起阻遏作用。 其实质是细胞内cAMP少了。 2.Pasteur effect (3分) 巴斯德效应:微生物细胞的有氧呼吸抑制了发酵作用。酵母发酵酒精时,由于供氧使TCA 循环加快,A TP增加,细胞内能荷增大,反馈抑制和阻遏EMP途径中关键酶FPK酶,使酒精产量下降。 3.Energy charge (3分) 能荷:是细胞内能量状态的一个认为假设参数,指细胞内含有的核苷酸中相当于A TP的数量百分比。 能荷={[A T P]+1/2[ADP]}/{ [A T P] +[ADP]+[AMP]×100% 4.Concerted feedback inhibition(3分) 协同反馈抑制:在代谢途径中,会产生两个以上的代谢产物,任何一种代谢产物的积累都不会对代谢途径的第一步反应得酶起抑制作用,只有当代谢产物同时过量积累时,才会对代谢途径的第一步反应得酶起抑制作用。 5.Cooperte (synergistic) feedback inhibition(4分) 增效性反馈抑制:在代谢途径中,每种代谢产物只能单独地、部分地抑制第一步反应的酶。当它们均过量积累时,对反应第一步酶起强烈的抑制作用。此时,抑制作用大于两种代谢产物单独抑制作用之和。 6.Metabolic interlock(3分) 代谢互锁:在代谢途径中,前端反应的酶受到与其看似无关的代谢产物的抑制(阻遏)作用。 7.auxotroph mutant(3分) 代谢途径某一步骤发生缺陷,造成菌株缺乏某一营养物质,终产物不能积累,解除了终产物的反馈调节,使中间产物积累或另一分支途径的末端产物得以积累。

发酵工艺控制——代谢调控及育种

代谢调控及育种 从工业微生物育种史来看,诱变育种曾取得了巨大的成就,使微生物有效产物成百倍、乃致成千倍的增加。但是诱变育种工作量繁重,盲目性大。近年来由于应用生物化学和遗传学原理,深入研究了生物合成代谢途径以及代谢调节控制的基础理论,人们不仅可进行外因控制,通过培养条件来解除反馈调节而使生物合成的途径朝着人们所希望的方向进行,即实现代谢控制发酵;同时还可进行内因改变,通过定向选育某种特定的突变型,以达到大量积累有益产物的目的,即所谓代谢控制育种。内因是变化的根据,所以改变微生物的遗传型往往是控制代谢的更为有效的途径。代谢控制育种可以大大减少传统育种的盲目性,提高了效率。代谢控制育种很快在初级代谢产物的育种中得到广泛的应用,成就也十分显赫,几乎全部氨基酸和多种核苷酸生产菌株都被打上了抗性或缺陷型遗传标记。 代谢调节控制育种通过特定突变型的选育,达到改变代谢通路、降低支路代谢终产物的产生或切断支路代谢途径及提高细胞膜的透性,使代谢流向目的产物积累方向进行。 一、克服反馈抑制和反馈阻遏的调控 克服反馈调节,可从以下两方面着手:降低末端产物浓度;应用抗反馈突变株 1、降低末端产物浓度 (1)营养缺陷型的利用 A、在直线式生物合成途径中 营养缺陷型突变株的代谢流受阻,末端产物减少,解除了末端产物参与的反馈调节,可使代谢途径中的某一中间产物积累。一个典型的例子是谷氨酸棒状杆菌的精氨酸缺陷型突变株进行鸟氨酸发酵(,由于合成途径中酶6(氨基酸甲酰转移酶)的缺陷,必须供应精氨酸和瓜氨酸,菌株才能生长,但是这种供应要维持在亚适量水平,使菌体达到最高生长,又不引起终产物对酶② (N—乙酰谷氨酸激酶)的反馈抑制,从而使鸟氨酸得以大量分泌累积。 B、利用营养缺陷型积累分支代谢途径中的中间产物

【精品】代谢控制发酵

【关键字】精品 《代谢控制发酵》复习题 1.名词解释 代谢控制发酵:所谓代谢控制发酵就是利用遗传学的方法或其他生物化学的方法,人为地在脱氧核糖核苷酸的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累发酵。 关键酶:参与代谢调节的酶的总称。作为一个反应链的限速因子,对整个反应起限速作用。 变构酶:有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶。 诱导酶:诱导酶是在环境中有诱导物(通常是酶的底物)存在的情况下,由诱导物诱导而生成的酶。 调节子:就是指接受同一调节基因所发出信号的许多操纵子。 温度敏感突变株:通过诱变可以得到在低温下生长,而在高温下却不能生长繁殖的突变株。 碳分解代谢物阻遏:可被迅速利用的碳源抑制作用于含碳底物的酶的合成,就称为碳分解代谢阻遏。 氮分解代谢物阻遏:可被迅速利用的氮源抑制作用于含氮底物的酶的合成,就称为氮分解代谢阻遏。 营养缺陷型突变菌株:原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变菌株。 渗漏突变株:由于遗传性障碍的不完全缺陷,使它的某一种酶的活性下降而不是完全丧失。因此,渗漏突变菌株能少量的合成某一种代谢最终产物,能在基本培养基上进行少量的生长。 代谢互锁:从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而受这种抑制(阻遏)作用是部分性的,不完全的。 平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远远大于b 酶,结果优先合成E。E过量后就会抑制a酶,使代谢转向合成G。G过量后,就会拮抗或逆转E的反应抑制作用,结果代谢流转向又合成E,如此循环。(P45图)优先合成:底物A经分支合成途径生成两种终产物E和G,由于a酶的活性远远大于b酶的活性,结果优先合成E。E合成达到一定浓度时,就会抑制a酶,使代谢转向合成G。G合成达到一定浓度时就会对c酶产生抑制作用。 代谢工程:指通过某些生化反应的修饰来定向改善细胞的特性或利用重组DNA技术来创造新的化合物。 流量控制系数:单位酶的变化量所引起的某一分支稳态代谢流量的变化,用来衡量某一步酶反应对整个反应体系的控制程度。 能荷:[(ATP)+1/2(ADP)]/[(ATP)+(ADP)+(AMP)] 分叉中间体:糖代谢中间体既可以用来合成初级代谢产物,也可以用来合成次级代谢产物,这种中间体叫做分叉中间体。 质粒产物:有一部分代谢产物的形成取决于由质粒遗传信息所产生的酶所控制的代谢途径,这类物质称为质粒产物。 2.微生物细胞的代谢调节内容包括哪些? (1)通过控制基因的酶生物合成的控制机制。

相关主题
文本预览
相关文档 最新文档