当前位置:文档之家› 自控实验

自控实验

自控实验
自控实验

三、实验内容

1.典型二阶系统

2

2

22)(n

n n

s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。

2.系统的开环传递函数为

)

5)(15(10

)(2

+-=

s s s s G )

106)(15()

1(8)(2

2++++=

s s s s s s G )

11.0)(105.0)(102.0()

13/(4)(++++=

s s s s s s G

绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。

3.已知系统的开环传递函数为)

11.0(1

)(2++=

s s s s G 。求系统的开环截止频率、

穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。 四、实验报告

1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的图形,根据实验结果与各典型环节的频率曲线对比分析。 3. 记录并分析ζ对二阶系统bode 图的影响。

4.根据频域分析方法分析系统,说明频域法分析系统的优点。 5.写出实验的心得与体会。

MATLAB 语句如下:

num=[0 36];den1=[1 1.2 36];den2=[1 3.6 36];den3=[1 6 36]; den4=[1 9.6 36];den5=[1 24 36]; bode(num,den1) grid hold

Current plot held bode(num,den2) bode(num,den3) bode(num,den4) bode(num,den5)

legend('Zate=0.1','Zate=0.3','Zate=0.5','Zate=0.8','Zate=2')

-100-80-60-40-200

20M a g n i t u d e (d B

)

10

-2

10

-1

10

10

1

10

2

10

3

-180-135-90

-45

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

Zate=0.1

Zate=0.3Zate=0.5Zate=0.8Zate=2

①Nyquist 曲线绘制: MATLAB 语句如下: num=[0 10];

den=[conv([5,-1],[1,5]),0,0]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) p =

0 0 -5.0000

0.2000 图形如下:

-2000

020004000600080001000012000

-800-600

-400

-200

200

400

600

800

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

②Bode 图绘制: MATLAB 语句如下:

num=[0 10];

den=[conv([5,-1],[1,5]),0,0]; bode(num,den) grid 图形如下:

-200-150-100-50050

100M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-360

-330

-300

-270

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

③Nichols 图绘制: MATLAB 语句如下: num=[0 10];

den=[conv([5,-1],[1,5]),0,0]; w=logspace(-2,2,5000);

[mag,phase]=nichols(num,den,w); plot(phase,20*log10(mag)) ngrid 图形如下:

010203040506070

-200

-150

-100

-50

50

100

④分析:由极点的显示结果可知开环传递函数在S 右半平面有一个极点,即P=1,从Nyquist 曲线可看出,奈氏曲线没有包围(-1,j0)点,即N=0,根据奈氏稳定判据,Z=P-N=1,不等于0,所以该系统不稳定。 ⑤绘制阶跃响应曲线验证: MATLAB 语句如下: num=[0 10];

den=[conv([5,-1],[1,5]),0,0]; G=tf(num,den); G_c=feedback(G,1); step(G_c)

图形如下,可以看出系统最终值不稳定,所以该系统不稳定,与分析相符。

0204060

80100120140

-4

-2

2

4

6

8

10

x 10

26

Step Response

Time (sec)

A m p l i t u d e

①Nyquist 曲线绘制: MATLAB 语句如下: num=[8 8];

den=[1 21 100 150 0 0]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) p =

0 0 -15.0000 -3.0000 + 1.0000i -3.0000 - 1.0000i 图形如下:

-10

-8-6-4-202

-0.25

-0.2-0.15-0.1-0.0500.050.1

0.150.2

0.25Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

②Bode 图绘制: MATLAB 语句如下: num=[8 8];

den=[1 21 100 150 0 0]; bode(num,den) grid 图形如下:

-250-200-150-100-500

50M a g n i t u d e (d B

)10

-1

10

10

1

10

2

10

3

-360

-315-270-225-180

-135P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

③Nichols 图绘制: MATLAB 语句如下: num=[8 8];

den=[1 21 100 150 0 0]; w=logspace(-2,2,5000);

[mag,phase]=nichols(num,den,w); plot(phase,20*log10(mag)) ngrid 图形如下:

-360

-340-320-300-280-260-240-220-200-180-160

-150

-100

-50

50

100

6 dB

3 dB 1 dB 0.5 dB

④分析:有极点显示结果可知开环传递函数在S 右半平面没有极点,即P=0,从Nyquist 曲线可看出,奈氏曲线逆时针包围(-1,j0)一圈,即N=0,根据奈氏稳定判据,Z=P-N=0,,所以该系统稳定。 ⑤绘制阶跃响应曲线验证: MATLAB 语句如下: num=[8 8];

den=[1 21 100 150 0 0]; G=tf(num,den); G_c=feedback(G ,1); step(G_c)

图形如下,从阶跃响应曲线可以看出系统最终为不稳定状态,所以该系统是不稳定的,与分析相符。

0100200300400500600700

0.20.40.60.811.2

1.41.61.8

2Step Response

Time (sec)

A m p l i t u d e

①Nyquist 曲线绘制: MATLAB 语句如下: num=[4/3 4];

den=[conv([0.02,1],conv([0.05,1],[0.1,1])),0]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) p =

0 -50.0000 -20.0000 -10.0000 图形如下:

-1

-0.8-0.6-0.4-0.200.20.40.60.8

-15-10

-5

5

10

15

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

②Bode 图绘制: MATLAB 语句如下: num=[4/3 4];

den=[conv([0.02,1],conv([0.05,1],[0.1,1])),0]; bode(num,den) grid 图形如下:

-150-100

-50

50

M a g n i t u d e (d B

)10

-1

10

10

1

10

2

10

3

10

4

-270

-225-180-135-90

-45P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

③Nichols 图绘制: MATLAB 语句如下: num=[4/3 4];

den=[conv([0.02,1],conv([0.05,1],[0.1,1])),0]; w=logspace(-2,2,5000);

[mag,phase]=nichols(num,den,w); plot(phase,20*log10(mag)) ngrid 图形如下:

-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40-30-20-10010203040

5060 6 dB

3 dB 1 dB 0.5 dB 0.25 dB 0 dB

④分析:由极点显示结果可知开环传递函数在S 右半平面没有极点,即P=0,从Nyquist 曲线可看出,奈氏曲线没有包围(-1,j0),即N=0,根据奈氏稳定判据,Z=P-N=0,所以该系统稳定。 ⑤绘制阶跃响应曲线验证: MATLAB 语句如下: num=[4/3 4];

den=[conv([0.02,1],conv([0.05,1],[0.1,1])),0]; G=tf(num,den); G_c=feedback(G ,1); step(G_c) 图形如下,

00.51

1.52

0.1

0.20.30.40.50.6

0.70.80.9

1Step Response

Time (sec)

A m p l i t u d e

3.求其稳定裕度,对应的MATLAB 语句如下: num=[1 1]; den=[0.1,1,0,0];

[gm,pm,wcg,wcp]=margin(num,den); gm,pm,wcg,wcp gm =

pm =

44.4594

wcg =

wcp =

1.2647

结果分析及说明:Gm,Pm 分别为系统的幅值裕量和相位裕量,而Wcg,Wcp 分别为幅值裕量和相位裕量处相应的频率值。从结果中可以得出:相位裕量pm=44.4954>0,所以系统是稳定的;

-100-50

50

100

M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

10

3

-180

-150

-120

P h a s e (d e g )

Bode Diagram

Gm = -Inf dB (at 0 rad/sec) , P m = 44.5 deg (at 1.26 rad/sec)

Frequency (rad/sec)

四、小结

频域分析法分析系统具有很多优点,控制系统及其元部件的频率特性可以用分析法和实验法获得,并可用多种形式的曲线表示,因而系统分析和控制器的设计可以应用图解法进行;控制系统的频域设计可以兼顾动态响应和噪声抑制两方面的要求;频域分析法不仅适用于线性定常系统,还可以推广应用于某些非线性控制系统。通过这次实验,我学会了用MATLAB 来分析系统的频域特性,频域特性的图解法主要有,Nyquist 曲线、Bode 图和Nichols 图,Nyquist 曲线和Bode 图主要用来分析系统的开环频率特性,Nichols 图主要用来分析系统的闭环特性,手工绘制Nyquist 曲线、Bode 图很麻烦,而高阶系统只能大概地绘出,这给我们分析系统带来了很大的不便,使用MATLAB 软件可以方便而精确地绘制出Nyquist 曲线、Bode 图和Nichols 图,使得我们分析和设计系统更加方便。

三、实验内容

1.某单位负反馈控制系统的开环传递函数为)

1(4

)(+=

s s s G ,试设计一超前

校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。

2.某单位负反馈控制系统的开环传递函数为3

)

1()(+=

s k

s G ,试设计一个合适的滞后校正网络,使系统阶跃响应的稳态误差约为0.04,相角裕量约为045。

3.某单位负反馈控制系统的开环传递函数为)

2)(1()(++=

s s s K

s G ,试设计

一滞后-超前校正装置,使校正后系统的静态速度误差系数110-=s K v ,相位裕量

050=γ,增益裕量dB K g 10lg 20≥。

1.解:

1)取K=20,绘制原系统的Bode 图, 源程序代码如下:

num=[0 20]; den=[1 1 0];

[gm1,pm1,wcg1,wcp1]=margin(num,den); [mag1,phase1]=bode(num,den); [gm1,pm1,wcg1,wcp1]

margin(num,den) grid ans =

Inf 12.7580 Inf 4.4165

-500

50

100

M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-180

-135

-90

P h a s e (d e g )

Bode Diagram

Gm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)

Frequency (rad/sec)

由结果可知,原系统相角裕度08.12=r ,s rad c /42.4=ω,不满足指标要求,系统的Bode 图如图所示。考虑采用串联超前校正装置,以增加系统的相角裕度。 2)系统的串联校正设计

确定串联装置所需要增加的超前相位角及求得的校正装置参数。 ),5,,50(0000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ

m

m

??αsin 1sin 1-+=

e=5; r=50; r0=pm1; phic=(r-r0+e)*pi/180; alpha=(1+sin(phic))/(1-sin(phic));

将校正装置的最大超前角处的频率m ω作为校正后系统的剪切频率c ω。则有:

α

ωωω1

)(0)()(lg 2000=

?=c c c c j G j G j G

即原系统幅频特性幅值等于αlg 20-时的频率,选为c ω。

根据m ω=c ω,求出校正装置的参数T 。即α

ωc T 1

=。

源程序代码及Bode 图如下: num0=[20]; den0=[1 1 0]; w=0.1:1000;

[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid;

e=5;r=50;r0=pm1; phic=(r-r0+e)*pi/180;

alpha=(1+sin(phic))/(1-sin(phic)); [il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w(ii);

T=1/(wc*sqrt(alpha)); numc=[alpha*T,1];denc=[T,1];

[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc)

disp('校正之后的系统开环传递函数为:'); printsys(num,den)

[mag2,phase2]=bode(numc,denc,w);[mag,phase]=bode(num,den,w); subplot(2,1,1);

semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid;ylabel('幅值(db)');title('--Go,-Gc,GoGc');

title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'°']);

subplot(2,1,2);semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':');

grid;ylabel('相位(0)');xlabel('频率(rad/sec)');

title(['校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm) , '°']);

运行结果如下: num/den = 0.31815 s + 1 -------------- 0.062352 s + 1

校正之后的系统开环传递函数为: num/den =

6.363 s + 20 ------------------------------ 0.062352 s^3 + 1.0624 s^2 + s 系统校正前后的bode 图:

10

-110

10

1

10

2

10

3

-100

-500

50幅值(d b )

校正前:幅值裕量=Infdb 相位裕量=12.758°

10

-110

10

1

10

2

10

3

-200

-1000

100相位(0)

频率(rad/sec)

校正后:幅值裕量=Infdb 相位裕量=50.8956°

3)创建simulink 模块图 ①校正前的simulink 仿真模型:

单位阶跃响应波形:

012345678910

0.20.40.60.811.21.41.6

1.8

②校正后的simulink 仿真模型:

单位阶跃响应波形:

自控实验4

东南大学自动化学院 实验报告 课程名称:控制基础 第 4 次实验 实验名称:串联校正研究 院(系):自动化学院专业:自动化 姓名:徐丽娜学号:08011308 实验室:416 实验组别: 同组人员:刘燊燊实验时间:2013年12月20日评定成绩:审阅教师:

一、实验目的: (1)熟悉串联校正的作用和结构 (2)掌握用Bode图设计校正网络 (3)在时域验证各种网络参数的校正效果 二、实验原理: (1)校正的目的就是要在原系统上再加一些由调节器实现的运算规律,使控制系统满足性能指标。 由于控制系统是利用期望值与实际输出值的误差进行调节的,所以,常常用“串联校正”调节方法,串联校正在结构上是将调节器Gc(S)串接在给定与反馈相比误差之后的支路上,见下图。 设定校正网络Gc(S) 被控对象H(S) 实际上,校正设计不局限这种结构形式,有局部反馈、前馈等。若单从稳定性考虑,将校正网络放置在反馈回路上也很常见。 (2)本实验取三阶原系统作为被控对象,分别加上二个滞后、一个超前、一个超前-滞后四种串联校正网络,这四个网络的参数均是利用Bode图定性设计的,用阶跃响应检验四种校正效果。由此证明Bode图和系统性能的关系,从而使同学会设计校正网络。 三、实验设备: THBDC-1实验平台 THBDC-1虚拟示波器 四、实验线路: 五、实验步骤:

(1)不接校正网络,即Gc(S)=1,如总图。观察并记录阶跃响应曲线,用Bode 图解释; (2)接人参数不正确的滞后校正网络,如图4-2。观察并记录阶跃响应曲线,用Bode 图解释; (3)接人参数较好的滞后校正网络,如图4-3。观察并记录阶跃响应曲线,用Bode 图解释; (4)接人参数较好的超前校正网络,如图4-4。观察并记录阶跃响应曲线,用Bode 图解释; (5)接人参数较好的混合校正网络,如图4-5,此传递函数就是工程上常见的比例-积分-微分校正网络,即PID 调节器。观察并记录阶跃响应曲线,用Bode 图解释; 六、预习与回答: (1) 写出原系统和四种校正网络的传递函数,并画出它们的Bode 图,请预先得出各种校正后的阶跃响 应结论,从精度、稳定性、响应时间说明五种校正网络的大致关系。 (2) 若只考虑减少系统的过渡时间,你认为用超前校正还是用滞后校正好? (3) 请用简单的代数表达式说明用Bode 图设计校正网络的方法 七、报告要求: (1)画出各种网络对原系统校正的BODE 图,从BODE 图上先得出校正后的时域特性,看是否与阶跃响应曲线一致。 (2)为了便于比较,作五条阶跃曲线的坐标大小要一致。 八、预习题回答 一、 预习思考 (1)写出原系统和四种校正网络的传递函数,并画出它们的Bode 图,请预先得出各种校正后的阶跃响应结论,从精度、稳定性、响应时间说明五种校正网络的大致关系。 答:原系统开环传递函数:)1051.0)(1094.0)(12.0(2 .10)(+++=s s s s G 原系统的Bode 图:

自动控制根轨迹实验(二)

2 线性系统的根轨迹研究 2.1 实验目的 (1) 考察闭环系统根轨迹的一般形成规律。 (2) 观察和理解引进零极点对闭环根轨迹的影响。 (3) 观察、理解根轨迹与系统时域响应之间的联系。 (4) 初步掌握利用产生根轨迹的基本指令和方法。 2.2 实验内容 根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。 已知单位负反馈系统的开环传递函数为2 )^54()2()(2+++=s s s K s G ,实验要求: (1) 试用MATLAB 的rlocus 指令,绘制闭环系统根轨迹。(要求写出指令,并绘出图 形。) num=[1 2] num = 1 2 >> den=[1 0 16 0 25] den = 1 0 16 0 25 >> rlocus(tf(num,den));

(2)利用MATLAB的rlocfind指令,确定根轨迹的分离点、根轨迹与虚轴的交点。(要求写出指令,并给出结果。) (3)利用MATLAB的rlocfind指令,求出系统临界稳定增益,并用指令验证系统的稳定性。 >> rlocfind(G) Select a point in the graphics window selected_point = -0.0000 + 3.6025i ans = 65.8411

>> sym G G=tf([1 2],[1 8 26 40 25]); sym p den=[1 8 26 40 25]; p=roots(den) ans = G ans = p p = -2.0000 + 1.0000i -2.0000 - 1.0000i -2.0000 + 1.0000i -2.0000 - 1.0000i (4)利用SISOTOOL交互界面,获取和记录根轨迹分离点、根轨迹与虚轴的交点处的关键参数,并与前面所得的结果进行校对验证。(要求写出记录值,并给出说明。)

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

经典自控实验报告

控制理论: 实验一 典型环节的电路模拟与软件仿真 1. 比例(P )环节 1.1 实验电路 图中后一个单元为反相器,其中R 0=200K 。 1.2 实验设备 阶跃信号发生器(单位阶跃输入);电路单元U 6,U 12;直流数字电压表(测输入电压);“THBDC-1”软件 1.3实验数据及实验响应曲线 R 1=100K ,R 2=200K(K=2),R 0=200K 时 红色曲线为输入u i ,蓝色曲线为输出u o 。 注:为了更好的观测实验曲线,实验时可适当调节软件上的分频系数(一般调至刻度2)和“ ” 按钮(时基自动),以下实验同样。 2. 积分(I )环节 2.1 实验电路 图中后一个单元为反相器,其中R 0=200K 。 2.2 实验设备 阶跃信号发生器(单位阶跃输入),电路单元U 6,U 12,直流数字电压表(测输入电压),

“THBDC-1”软件 2.3实验数据及实验响应曲线 R=100K,C=10 uF,R0=200K ,(T=RC=100K×10uF=1)时, 红色曲线为输入u i,蓝色曲线为输出u o。 注:当实验电路中有积分环节时,实验前一定要用锁零单元进行锁零。 3. 比例积分(PI)环节 3.1 实验电路 图中后一个单元为反相器,其中R0=200K。 3.2实验设备 阶跃信号发生器(单位阶跃输入),电路单元U6,U12,直流数字电压表(测输入电压),“THBDC-1”软件 3.3实验数据及实验响应曲线 R1=100K,R2=100K,C=10uF ,R0=200K ,(K= R2/ R1=1,T=R1C=100K×10uF=1)时 红色曲线为输入u i,蓝色曲线为输出u o。 4. 比例微分(PD)环节

自控实验四 五校正

实验四 连续系统的串联校正 一、实验目的 1)、熟悉串联校正装置的结构和特性 2)、掌握串联校正装置的设计方法和对系统的实时调试技术 二、实验仪器 1)、控制理论电子模拟实验箱一台 2)、超低频慢扫描示波器一台 三、实验原理 图4-1为串联校正系统的方框图。 图4-1 图中Gc (s )为串联校正装置,Go (s )为被控对象的传递函数,两者串联相连。串联校正装置有三种:一是超前校正,它是利用朝前校正装置的相位超前特性来改善系统的动态性能; 二是滞后校正,它是利用滞后装置的高频幅值衰减特性,使系统在满足静态性能的前提下又能满足其动态性能的要求。三是滞后——超前校正,这种校正兼顾了上述三种校正的优点,顾其适用于系统性能要求较高的场合。本实验的校正装置采用频率法来设计,其校正效果通过观察系统的阶跃响应曲线来验证。实验的内容:1)串联超前校正,2)串联滞后校正。 四、实验内容与步骤 (一)串联超前校正 1.已知被控对象的传递函数为) 2(4)(0+=s s K s G ,试设计一串联超前校正装置,使校正后 的系统同时满足下列性能指标: Kv =20s - 1,相位裕量γ≥500 1)根据Kv 要求调整K 值 20)2(4lim =+s s K s K =10,即) 5.0(20 )(0s s s s G +=

2)画出校正前系统的Bode 图,如图4-2中的虚线可知,校正前系统的相位裕量γ≈170,表示校正前系统的动态性能欠佳,者可由图4-3中所示校正前系统的模拟电路的阶跃响应实验来验证。 图4-2 3)根据相位裕量γ的要求,确定超前校正装置的相位超前角: 0000138517502=+-=+-=Φγγm 4)由下列公式可得: 42.038 sin 138sin 10 0=+-=α 5)确定超前校正装置的传递函数 令超前校正装置产生最大相位超前角Φm 的频率ωm ,则在ωm 校正装置的幅值为 dB 2.6)24.0/1lg(10=,据此,在图4--2上找出未校正系统开环幅值为-6.2dB 所对应的频 率1 9-==s m ωω,这个频率就是校正后的剪切频率ωc ,于是求得超前校正装置的两个转 折频率为

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自控实验三__采用PI的串联校正

实验三 采用PI 的串联校正 一、实验目的: 1、了解和观测校正装置对系统稳定性及瞬态特性的影响。 2、验证频率法校正是否满足性能要求。 二、实验要求: 1、观测未校正系统的稳定性及瞬态响应。 2、观测校正后系统的稳定性极瞬态响应。 三、实验仪器设备 1、TDN-AC/ACS 教学实验系统 一套 2、万用表 一块 四、实验原理、内容及步骤 1、原系统的原理方块图 未校正系统的方框图如图3—1所示 图3—1未校正系统的方框图 要求设计PI 串联校正装置,校正时使期望特性开环传递函数为典型II 型并使系统满足下列指标: %25≤p M S t s 84.0≤ 校正网络的传递函数为: CS R CS R s G c 011 )(+=

校正后的方块图如图3—2所示 图3—2 校正后的方块图 2、系统校正前后的模拟电路图 图3—3系统校正前的模拟电路图 图3—4系统校正后的模拟电路图 3、实验内容及步骤 (1)测量未校正系统的性能指标。 准备:将模拟电路输入端R(t)与信号源单元(U1 SG)的输出端OUT端相连

接;模拟电路的输出端C(t)接至示波器。 步骤:按图3—3接线;加入阶跃电压,观察阶跃响应曲线,并测出超调量 Mp 和调节时间Ts ,记录曲线及参数。 未校正:35.9%P M =>25%, 0.3125s t s =<0.84S 不满足指标。 未校正系统分析:开环传函()50(0.061) S D S S = +,特征方程为:2 502500033S S ++= ∴ ω= ξ=, ∴ exp(38.78%P M == (2) 测量校正系统的性能指标 分析:要求设计PI 串联校正装置,校正时使期望特性开环传递函数为典型二型并使系统满足下列指标:p M <=25% S T <=0.84S 校正网络的传递函数为:C G (s )=CS R CS R 011+ 为比例积分环节 K=2 3 R R 为比例 放大环节 设计校正装置参数 由超调量和调整时间的公式Mp=exp(- )100%<=25%得阻尼系数 ξ=0.4,带入Ts= 3 n ξω<=0.84,得剪切频率为ωc=7.87,而ωc 两侧与高频和低频

一阶二阶自控原理实验报告

成绩 北京航空航天大学 自动控制原理实验报告 学院自动化科学与电气工程学院 专业方向电气工程及其自动化 班级120311 学号12031019 学生姓名毕森森 指导教师 自动控制与测试教学实验中心

实验一一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014.10.28 实验编号29 同组同学无 一、实验目的 1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2. 学习在电子模拟机上建立典型环节系统模型的方法。 3. 学习阶跃响应的测试方法。 二、实验内容 1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。 三、实验原理 1.一阶系统:系统传递函数为: 模拟运算电路如图1- 1所示: 图 1- 1 由图 1-1得 在实验当中始终取R 2= R 1 ,则K=1,T= R 2 C,取时间常数T分别为: 0.25、 0.5、1。 2.二阶系统: 其传递函数为: 令=1弧度/秒,则系统结构如图1-2所示: 图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示:

图1-3 取R 2C 1=1 ,R 3C 2 =1,则及ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1 四、实验设备 HHMN-1电子模拟机一台、PC 机一台、数字式万用表一块 五、实验步骤 1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路; 2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相; 3. 检查线路正确后,模拟机可通电; 4. 双击桌面的“自控原理实验”图标后进入实验软件系统。 5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。 6. 单击“确定”,进行实验。完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。 六、实验结果 1、一阶系统。

自控实验1

实验报告 课程名称:___自动控制理论实验____________指导老师:_ 吴越__ _成绩:实验名称: 典型环节的模拟电路 实验类型:_ __________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验1 典型环节的模拟电路 一. 实验目的 1.熟悉慢扫描示波器的性能和使用方法; 2.掌握典型环节的电模拟方法及其参数测试方法; 3.测量典型环节的阶跃响应曲线,了解参数变化对动态特性的影响。 二,实验内容 1,了解双线示波器的使用方法和性能; 2,画出测试电路图及典型环节的模拟电路图; 3,观察并记录s 5.0/1s G =)(环节的动态波形,)1/(2s 1+=s G )(和)15.0/(1s 2+=s G )(;积分环节:s s G s s G 5.0/1)(2/1)(1==和比例积分环节s s G s S G 5.0/12)(2/11)(1+=+=和;观察并记录比例积分微分环节的动态波形。 三,实验仪器设备 1.电子模拟实验装置一台 2.超低频慢扫描示波器一台 3.万用表一只 四,实验原理 本实验采用复合网络来模拟各种典型环节,即是设置运算放大器不同的输入网络和反馈网络来模拟各种典型环节,根据实域等效电路来求各典型环节的等效模拟电路电路。 五,实验数据记录 1.(1))1/(2s 1+=s G )(对应R3=1000K,R2=500K,C=1UF

阶跃脉冲为+4.5V输入时,稳定输出值为-9.0V,时间τ=2.0S (2),)1 =s G) (: 2+ s /( 5.0 1 R3=500k,R2=500K,C=1UF 输入阶跃脉冲为+4.5V时,稳定输出值为-4.5V,时间常数τ=1.0s

自动控制原理_实验2(1)

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在 单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部 信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分 别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1) 阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随 即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位 阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。则MATLAB 的调用语句:

自动控制实验四

实验4 系统的频率特性分析 一、实验目的 1. 学习和掌握利用MATLAB 绘制系统Nyquist 图和Bode 图的方法。 2. 学习和掌握利用系统的频率特性分析系统的性能。 二、实验原理 系统的频率特性是一种图解方法,分析运用系统的开环频率特性曲线,分析闭环系统的性能,如系统的稳态性能、暂态性能常用的频率特性曲线有Nyquist 图和Bode 图。在MATLAB中,提供了绘制Nyquist 图和Bode 图的专门函数。 1.Nyquist图 nyquist 函数可以用于计算或绘制连续时间LTI系统的Nyquist 频率曲线,其使用方法如下: nyquist(sys) 绘制系统的Nyquist 曲线。 nyquist(sys,w) 利用给定的频率向量w 来绘制系统的Nyquist 曲线。 [re,im]=nyquist(sys,w) 返回Nyquist 曲线的实部re 和虚部im,不绘图。 2.Bode图 bode函数可以用于计算或绘制连续时间LTI系统的Bode图,其方法如下: bode(sys) 绘制系统的Bode图。 bode(sys,w)利用给定的频率向量w 来绘制系统的Bode 图。 [mag,phase]=bode(sys,w)返回Bode图数据的幅度mag 和相位phase,不绘图。 3.幅度和相位裕度计算 margin 函数可以用于从频率响应数据中计算出幅度裕度、相位裕度及其对应的角频率,其使用方法如下: margin(sys) margin(mag,phase,w) [Gm,Pm,Wcg,Wcp] = margin(sys) [Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) 其中不带输出参数时,可绘制出标有幅度裕度和相位裕度值的Bode 图,带输出参数时,返回幅度裕度Gm、相位裕度Pm及其对应的角频率Wcg和Wcp。

自控实验二

《自动控制理论》 实验报告 专业:电气工程及其自动化班号:1406111 学号:1140610217 姓名:田晨晨 电气工程及其自动化实验中心二零一六年十一月二十四日

实验五 线性系统的时域分析 一、实验目的 1、学会使用MATLAB 绘制控制系统的单位阶跃响应曲线; 2、研究二阶控制系统中 、 对系统阶跃响应的影响 3、掌握系统动态性能指标的获得方法及参数对系统动态性能的影响。 二、 实验设备 Pc 机一台,MATLAB 软件。 三、实验内容 1、已知二阶单位反馈闭环传递函数系统: 求:(1)当 及 时系统单位阶跃响应的曲线。 (2)从图中求出系统的动态指标: 超调量M p 、上升时间t p 及过渡过程调 节时间t s 。 (3)分析二阶系统中 、 的值变化对系统阶跃响应曲线的影响。 4.0=n ω,3 5.0=ξ,P M =0.31,s t =27.5S,p t =3.48S 4.0=n ω,5.0=ξ, P M =0.16,s t =20.2S,p t =4.1S ξ越大,超调量越小,调节时间越短,上升时间越长

2.0=n ω,35.0=ξ,P M =0.31,s t =54.9S,p t =6.95S 6.0=n ω,35.0=ξ,P M =0.31,s t =18.3S,p t =2.33S n ω越大,上升时间越小,调节时间越小,超调量不变 2、已知三阶系统单位反馈闭环传递函数为 求: (1) 求取系统闭环极点及其单位阶跃响应,读取动态性能指标。 闭环极点:1234,1,1S S i S i =-=-+=-- 1.03, 3.64,0.27p s P t S t S M === 改变系统闭环极点的位置

自动控制实验报告.

计算机控制原理实验报告 姓名:房甜甜 学号:130104010072 班级:计算机三班 指导教师:胡玉琦 完成时间:2015年10月11日

实验一 二阶系统闭环参数n ω和ξ对时域响应的影响 一、实验目的 1.研究二阶系统闭环参数 n ω和ξ对时域响应的影响 2.研究二阶系统不同阻尼比下的响应曲线及系统的稳定性。 二、实验要求 1. 从help 菜单或其它方式,理解程序的每个语句和函数的含义; 2.分析ξ对时域响应的影响,观察典型二阶系统阻尼系数ξ在一般工程系统中的选择范围; 三、实验内容 1、如图1所示的典型二阶系统,其开环传递函数为) 2s(s G(S)2n n ξωω+=,其中,无阻尼自 然震荡角频率n ω=1,ξ为阻尼比,试绘制ξ分别为0, 0.2, 0.4, 0.6, 0.9, 1.2, 1.5时,其单位负反馈系统的单位阶跃响应曲线(绘制在同一张图上)。 图1 典型二阶系统方框图 2、程序代码 wn=1; sigma=[0,0.2,0.4,0.6,0.9,1.2,1.5];(1) num=wn*wn; t=linspace(0,20,200)';(2) for j=1:7(3) den=conv([1,0],[1,2*wn*sigma(j)]);(4) s1=tf(num,den);(5) sys=feedback(s1,1)(6); y(:,j)=step(sys,t);(7) end plot(t,y(:,1:7));(8) grid;(9) gtext('sigma=0');(10) gtext('sigma=0.2'); gtext('sigma=0.4'); ) 2s(s 2 n n ξωω+ R(s) C(s)

自动控制实验二

实验二 控制系统的根轨迹绘制与性能分析 一、实验目的 1、利用计算机完成控制系统的根轨迹作图。 2、了解控制系统根轨迹图的一般规律。 3、利用根轨迹进行系统分析。 二、实验设备 PC 机,MATLAB 仿真软件。 三、实验内容 1、作系统)2)(1()(01++= s s s k s G g 的根轨迹图,记录并观察曲线,依此分析系统的性能。 2、作系统)164)(1() 1()(202++-+=s s s s s k s G g 的根轨迹图,记录并观察曲线,依 此分析系统的性能。 3、作系统)2()3()(03++= s s s k s G g 的根轨迹图,记录并观察曲线,依此分析系统 的性能。 四、实验步骤 给定如下系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。 1. )2)(1()(01++=s s s k s G g 解:程序如下 clc clear close all k=1; z=[]; p=[0,-1,-2]; [num,den]=zp2tf(z,p,k) printsys(num,den) figure(1) rlocus(num,den) title('rlocus(num,den)') 根轨迹图如下所示

图2.1 (a )根轨迹的条数有3条。红色一条的起点为-2,终点为无穷;绿色一条的起点为-1,终点为无穷;蓝色一条的起点为0,中点为无穷。 (b)根轨迹的分离点为(-0.423,0);相应的根轨迹增益为0.385。 (c)临界稳定时的根轨迹增益为6.0。 2. )164)(1() 1()(202++-+=s s s s s k s G g 解:程序如下: clc clear close all k=1; num=[1,1]; den=[1,3,12,-16,0]; printsys(num,den) figure(1) rlocus(num,den) title('rlocus(num,den)')

自控实验报告-系统校正

西安邮电学院 自动控制原理 实验报告

实验三系统校正 一,实验目的 1.了解和掌握系统校正的一般方法。 2.熟悉掌握典型校正环节的模拟电路构成方法。二.实验原理及电路 1.未校正系统的结构方框图 图1 2.校正前系统的参考模拟方框图 图2 3.校正后系统的结构方框图

图3 4.校正后系统的模拟电路图 图4 三.实验内容及步骤 1.测量未校正系统的性能指标 (1)按图2接线 (2)加入阶跃电压观察阶跃响应曲线,并测出超调量和调节时间,并将曲线和参数记录出来。 2.测量校正系统的性能指标 (1)按图4接线

(2)加入阶跃电压,观察阶跃响应曲线,并测出超调量以及调节时间。 四.实验结果 未校正系统 理论值σ% = 60.4% t s = 3.5s 测量值σ% = 60% t s = 2.8s 校正后系统 理论值σ% = 16.3% t s = 0.35s 测量值σ% = 5% t s = 0.42s

五.心得体会 在课本的第六章,我们学习了线性系统的校正方法,包括串联校正、反馈校正以及复合校正等矫正方法,相对于之前学习的内容,理解起来相对难一些,做起实验来也不容易上手。试验期间,遇到了很多难题,反复调整修改甚至把连接好的电路全都拆了重连,最后终于完成了实验。相对于之前的几次试验,这次实验师最让人头疼的,幸好之前积累了些经验,才使得我们这次实验的时候不至于手忙脚乱,但是也并不轻松。 虽然遇到的困难很多,但是我们却收获的更多,线性系统的校正是自动控制原理中重要的部分,通过理论课的学习,再加上实验课的实践,我终于对这些内容有个系统的理解。

最新上海大学自控实验复习

1、用计算机进行控制原理实验优点: ①计算机具有良好的图形界面,实验中可以得到各种图形和曲线,可以直观地了解系统的变化和特性;②计算机上用程序实现各种实验,可以很方便地改变系统的参数,并且得到系统响应的结果;③随着计算机技术的发展,计算机功能越来越强,可以在计算机上实现各种经典、现代控制理论实验;在计算机上开发实验成本体,易于升级换代,不断更新补充新的实验内容。 2、各种仿真语言特点: ①操作简单,使用方便;②系统软件标准化,便于在各种类型计算机上推广使用;③功能强,适应各种类型系统的仿真;④语言简单易学 3、数字仿真:指建立一个系统(或过程)的可以计算的模型,并把它放到数字计算机上进行仿真研究的全过程 4、数字仿真步骤 ①描述问题,建立数学模型(一般用微分方程或描述函数表示);②准备仿真模型;③画出实验仿真模型的流程图,并用通用语言或仿真语言编程;④验证模型;⑤运行仿真模型,试验不同初始条件和参数下系统的响应 5、MATLAB优点:

①强大的矩阵运算能力;②良好的图形处理能力 实验一——线性控制系统串联超前校正 实验结果分析:串联超前校正装置可以改善系统的动态性能,减小超调量和调节时间 1、什么是系统的校正?其目的作用是什么? 答:校正就是通过改变系统结构或在系统中增加附加装置或元件对已有系统进行再设计使之满足性能要求,目的是改善系统的动态性能和稳态性能,是满足各项性能指标。 2、串联校正的三种形式各有何特点?适用于什么场合? 答:超前校正:利用相角超前特性,提高系统相角裕度和截止频率,改善系统的稳定性和快速性;适合于对抗噪声要就不高对响应速度要求高的系统 滞后校正:利用滞后网络的高频幅值衰减特性,减小截止频率,并得到较大相稳定裕度。适合于响应速度要求不高,但抗噪声要求高的系统。 超前-滞后校正:使相稳定裕度增大,减小超调量响应速度快,抑制

自控实验三

东南大学能源与环境学院 实验报告 课程名称:自动控制基础 实验名称:闭环电压控制系统研究 院(系):能源与环境学院专业:热能与动力工程 姓名:周兴学号:03011127 实验室:418 实验组别:XX 同组人员:张亚丽实验时间:2013年10月30 日评定成绩:审阅教师:

目录 一.实验目的 (3) 二.实验设备 (3) 三.实验原理 (3) 四.实验线路图 (4) 五.实验步骤 (4) 六.报告要求 (5) 七.实验结果与分析 (5) 八.思考与回答 (11) 九.实验总结 (17)

一.实验目的 (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题; (2)学会正确实现闭环负反馈; (3)通过开、闭环实验数据说明闭环控制效果。 二.实验设备 1. THBDC-1型控制理论·计算机控制技术实验平台; 2. PC机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线。 三.实验原理 (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)数学上的“相似性”,将各种实际物理装置经过简化、并抽象成数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对纯数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把纯数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理装置,而“模拟实物”的实验方式可以举一反三,我们就是用下列“模拟实物”——电路,也有实际物理装置——电机,替代各种实际物理装置。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,两个演示实例说明这一点。本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联校正、极点配置),本实验为了简洁,采用单闭环、比例算法K。通过实验证明:不同的统K,对系性能产生不同的影响。说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验可以认为是真实

自控实验2:典型环节的电路控制

实验报告 课程名称:自动控制原理 实验名称:二阶系统的瞬态响应 院(系):能源与环境学院专业:热能与动力工程姓名:谭强学号:03009224 实验时间:2011 年11 月9日 评定成绩:审阅教师:

一、实验目的 1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响; 2. 掌握二阶系统动态性能的测试方法。 二、实验内容、原理 1. 二阶系统的瞬态响应 用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为 2 2 2 2)()(n n n S S S R S C ωζωω++= (2-1) 闭环特征方程:022 2=++n n S ωζω 其解 12 2,1-±-=ζωζωn n S , 针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S 此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。它的数学表达式为: 式中2 1ζωω-=n d ,ζ ζβ21 1-=-tg 。 2)1=ζ(临界阻尼)n S ω-=2,1 此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。 3)1>ζ(过阻尼),122,1-±-=ζωζωn n S 此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。 (a) 欠阻 尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ) 图2-1 二阶系统的动态响应曲线 ) t (Sin e 111)t (C d t 2 n βωζζω+--=-

虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。 2. 二阶系统的典型结构 典型的二阶系统结构方框图和模拟电路图如2-2、如2-3所示。 图2-2 二阶系统的方框图 图2-3 二阶系统的模拟电路图(电路参考单元为:U 7、U 9、U 11、U 6) 图2-3中最后一个单元为反相器。 由图2-4可得其开环传递函数为: )1S T (S K )s (G 1+= ,其中:21T k K =, R R k X 1= (C R T X 1=,RC T 2=) 其闭环传递函数为: 1 12 1 T K S T 1S T K )S (W + += 与式2-1相比较,可得 RC 1T T k 211n == ω,X 112R 2R T k T 21= =ξ 三、实验步骤 根据图2-3,选择实验台上的通用电路单元设计并组建模拟电路。 1. n ω值一定时,图2-3中取C=1uF ,R=100K(此时10=n ω),Rx 为可调电阻。系统输入一 单位阶跃信号,在下列几种情况下,用“THBDC-1”软件观测并记录不同ξ值时的实验曲线。 1.1取R X =200K 时,ζ=0.25,系统处于欠阻尼状态,其超调量为45%左右; 1.2取R X =100K 时,ζ=0.5,系统处于欠阻尼状态,其超调量为16.3%左右; 1.3取R X =51K 时,ζ=1,系统处于临界阻尼状态;

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

自控原理实验一二

实验一 线性系统时域特性分析 一、实验目的 1.掌握测试系统响应曲线的模拟实验方法。 2.研究二阶系统的特征参量ζ阻尼比和n ω自然频率对阶跃响应瞬态指标的影响。 二、实验设备与器件 计算机一台,NI ELVIS Ⅱ多功能虚拟仪器综合实验平台一套,万用表一个,通用型运算放大器4个,电阻若干,电容若干,导线若干。 三、实验原理 典型二阶系统开环传递函数为:) 2()1()(2 n n s s Ts s K s G ζωω+=+= ,一种是时间常数 表达式,一种是零极点表达式。时间常数表达式中包含三个环节:比例、积分和一阶惯性环节。其中,K 开环放大系数,T 为一阶惯性环节的时间常数。零极点表达式中包含两个特征参数:ζ阻尼比和n ω自然频率。二阶系统的瞬态性能就由特征参数ζ和n ω决定。 典型二阶系统方块图如图1-1所示,系统闭环传递函数为: ) ()1()(2)() (10112 101222T T K s s T T K s s s R s C n n n ++=++=ωζωω , 图1-1典型二阶系统方块图 阻尼比与自然频率为: 110 1 01 1 1 212121K T T T T K T T n = == ωζ, 1 01T T K n =ω 典型环节与模拟电路的阻容参数的关系如下: 积分环节 S T 01 :000C R T = 一阶惯性环节1 11 +S T K :f f C R T =1,i f R R K =1 四、实验内容

Cf 图1-2二阶系统闭环模拟电路图 1.已知系统的模拟电路如图1-2所示,在NI ELVIS Ⅱ教学实验板上,利用运算放大器、电阻、电容自行搭建二阶模拟闭环系统。阶跃信号由实验板模拟量输出接口AO0输出,接到二阶系统的输入端。将二阶系统的输入端与输出端分别接实验板模拟量输入接口AI0(+)与AI1(+),采样阶跃输入信号与二阶系统的阶跃响应信号。 搭建模拟电路时,应特别注意:运算放大器的Vcc 与Vee 分别接实验板的+15V 与-15V ,正输入端IN+应接实验板的Ground ,实验板模拟量输入接口AI0(-)与AI1(-)应接实验板的Ground ,电容负端接运放负端输入IN-。 2.写出下面二阶系统6组参数的开环传递函数,测量并记录下每组参数的阶跃响应曲线,标出各组曲线的超调量P M 、峰值时间p t 、调节时间s t (2=?)的测量值,与理论值进行比较。将曲线①②③④组曲线进行对比,①⑤⑥组进行对比分析。 ① 1=n ω不变,取2.0=ζ Ω=k R i 200,Ω=k R f 500,F C f μ5=, Ω=k R 5000,F C μ20= ② 1=n ω不变,取5.0=ζ Ω=k R i 200,Ω=k R f 200,F C f μ5=, Ω=k R 5000,F C μ20= ③ 1=n ω不变,取1=ζ Ω=k R i 200,Ω=k R f 100,F C f μ5=, Ω=k R 5000,F C μ20= ④ 1=n ω不变,取0=ζ Ω=k R i 200,∞=f R ,F C f μ5=, Ω=k R 5000,F C μ20= ⑤ 2.0=ζ不变,取5.0=n ω

相关主题
文本预览
相关文档 最新文档