当前位置:文档之家› 气体灭火泄压口资料

气体灭火泄压口资料

气体灭火泄压口资料
气体灭火泄压口资料

气体灭火系统防护区泄压口(自动泄压装置)设计与安装使用

1概述

气体灭火系统防护区泄压口,是指当气体灭火系统中的灭火剂喷放时,防护区内的压力值达到规定值时自动开启泄压的装置,简称泄压口,也称自动泄压装置,是与气体灭火系统配套的必备设备,一般安装在气体灭火系统保护区外墙或

内墙的泄压孔上。(为便于表述,本文中统一简称泄压口)。

气体灭火系统灭火具有洁净、绝缘性能好、灭火速度快等特点,在灭火中和灭火后对保护对象及环境没有二次污染。因而被广泛应用于电子计算机房、电讯中

心、通讯机房、图书馆、档案馆、珍品库、博物馆、配电室等洁净场所。

2006年来,随着GB50370-2005《气体灭火系统设计规范》国家标准的颁布,消防监督部门加大了灭火设备的检查力度,2007年后市场对自动泄压口的需

求也明显增多。因泄压口产品是新产品,目前国家、行业尚无统一标准。大

多数生产泄压口产品的厂家或公司都只生产某一种类型的泄压口。而通过从

百度、谷歌等搜索网站检索来看,全面介绍泄压口应用、设计、安装与使用

的资料和文章少之又少,给企业正确选择、设计、安装、使用泄压口带来了

许多问题,不利于泄压口在气体灭火中正确发挥其实际功能和作用。两年多

来,本人对国内外各厂家泄压口资料、样品进行了系统的收集,对该产品进

行研发,进行了大量的试验。为使国内自动泄压口产品得到正确的使用和发

展,现特写此篇文章。在本篇文章中难免会存在一些不足和缺陷之处,本人

真诚的期待广大同仁给予指正。

2设置泄压口的必要性

2.1相关标准中使用泄压口规定表述不清,造成歧义。

!--[if !supportLists]--l !--[endif]--GB50370-2005《气体灭火系统设计规范》国家标准颁布之前,原有的国家标准和规范对灭火系统必须使用泄压口的规定表

述模糊,用词模棱两可,致使在气体灭火系统的实际应用中相关设计和监督

部门无法正确设计和监督泄压口的安装和使用。

GB50193-93《二氧化碳灭火系统设计规范》国家标准条文说明第3.2.6条中阐述:“采用全淹没灭火系统保护的大多数防护区,都不是完全封闭的,有门、窗

的防护区一般都有缝隙存在;通过门窗四周缝隙所泄漏的二氧化碳,可防止

空间内压力过量升高,这种防护区一般不需要再开泄压口。”

DBJ15-23-1999《七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范》广东地方标准第 3.0.6条中Pf符号解释:“Pf—围护结构承受内压的允许压强(Pa)。

当设有外开门弹性闭门器或弹簧门的防护区,其开口面积不小于泄压口计算

面积的,不须另设泄压口。”

DGTJ08-306-2001《惰性气体IG-541灭火系统技术规程》上海地方标准条文说明书

3.1.2条解释:“对于密封性较好的防护区,规定安装泄压口。”也就是说防

护区密封性较差的可不安装泄压口。

!--[if !supportLists]--l !--[endif]--2006年3月GB50370-2005《气体灭火系统设计规范》国家标准发布,

由于该标准的宣传、贯彻和印刷的滞后,各设计院和消防监督部门实际上到2008年才开始按此标准对相关气体灭火系统项目进行设计和监督。但由于该标准

中第3.2.7和第3.2.9条用词模糊,给部分设计人员和用户带来误解。规定第

3.2.7条“防护区应设置泄压口,七氟丙烷灭火系统的泄压口应位于防护区净

高的23以上。”如此表述,导致部分人认为泄压口就是在离地三分之二的净高处开一个泄压孔,而不是一种泄压装置,规定第 3.2.9条“喷放灭火剂前,防护区内除泄压口外的开口应能自动关闭。”这再一次说明泄压口就是一个

常开的孔,加深了部分设计人员的误解。

2.2设置泄压口的实际必要性

依据GB50370-2005《气体灭火系统设计规范》要求,七氟丙烷灭火系统灭火设计浓度一般为8%~10%。当七氟丙烷灭火剂释放到一个完全密封的防护区,

驱动气体(氮气)的释放和七氟丙烷灭火剂在20°C标准大气压下,气化使

防护区压强随之升高,药剂吸收一部分的热量,使防护区温度降低,这造成

压强降低值很小。压强的升高主要与防护区的密闭程度和灭火设计浓度以及

泄压口(自动泄压装置)的密封性有关。压力升高值基本上等于防护区灭火

设计体积浓度比,升高值为8~10KPa,这个压强值将超过轻型、高层建筑和普通建筑1.2 KPa的6~8倍。

我们在密封性好的108m3试验室做泄压口开启动作试验,开启动作压力设为

1.1+0.1 KPa,理论计算试验氮气压力值为1.45MPa,实际试验压力值为3.8

MPa,则高出2.62倍。这说明灭火设计浓度小的七氟丙烷灭火系统,若防护

区密封性较好时,气体释放后防护区压力值仍能超过1.2 KPa,这将会给防护区内围护结构造成损坏,导致系统不能正常灭火。

在IG-541混合气体灭火系统中,灭火设计浓度为37.5%~43%;二氧化碳气体灭火系统中,灭火设计浓度在34%~62%之间。也就是说当这两种灭火剂释放

到完全封闭的防护区内,防护区内的气体体积迅速膨胀,防护区内的压强值

将超过允许压强1.2 KPa的25倍以上,足可以摧毁防护区内整个围护结构。

某公司在长6m,宽6m,高4m的试验室做IG-541混合气体试验,防护区内开有直径Φ200mm的通风口,通风口上的排风扇正常工作,当向试验室喷入7

瓶组70升IG-541混合气体时,试验室的门被弹开,排风扇严重变形。

在我公司100m3以上试验室中,做IG-541混合气体灭火系统实际灭火试验时,几名有丰富气体灭火系统模拟试验经验的泄压口研发设计和试验人员,深刻了

解超压气体释放时的威力和破坏力,在要求确保灭火试验成功和试验室内设

备、墙体、门框及窗户不受到破坏,人们又只能挑选一种类型和规格的泄压

口进行安装时,这几名人员不约而同的均提出以下两套方案:

第一套方案:若只能安装一台时,选用无电源式泄压口。无电源式结构中优先选用室外壁挂无电源盖式泄压口。理由是:(1)无电源式泄压口现场检测合格后,再做试验则百分之百无故障;有电源式泄压口现场检测合格后,由于它的结

构比较复杂仍不能百分之百确保无故障率,如:突然断电、线路接触不良、

无器件性能不稳定等等原因。(2)室内壁挂无电源式泄压口装置,理论计算的开启压力值与实验参数值一致,这是由它的结构而决定的。当防护区内压

力值达到装置设定的压力值时,同时开启,无开启滞后时间。有电源式比无

电源式泄压口大约滞后0.3秒钟左右。而其它无电源式泄压口装置,阀门的

开启受控于驱动执行机构控制,理论计算的开启压力值与实际试验参数值相

差较大。所以,无电源式泄压口开启压力值必须以实际气体喷放模拟试验参

数值为准。

第二套方案:安装两台,第一台为无电源式泄压口,开启压力值设定为1.1KPa以下正常开启;另一台为无电源式或有电源式泄压口,开启压力值设定在

1.3KPa,这样能确保试验成功和安全可靠。

2.3新规范中明确规定气体灭火系统防护区应采用泄压口

2006年3月2日发布的GB50370-2005《气体灭火系统设计规范》中,从设计要求条款和防护区的泄压口面积计算公式条款用词来看,无论防护区门窗密封性

好与差和防护区门安装的是否为外开弹簧门或弹性闭门器,如采用气体灭火

系统,则防护区内都必须安装泄压口。泄压口不是一个开口,而是一种泄压

装置。此装置平时常闭,当达到或接近防护区允许压强值时自动开启泄压,

低于设定压力值时自动关闭,以避免灭火药剂流失,影响正常灭火效果。

近几年来,采用泄压口的多为一些重点工程和项目,对防护区内温度和湿度的精度要求很高,因此对防护区的密封性要求也很高。所以GB50370-2005《气体灭火系统设计规范》国家标准中规定,采用气体灭火系统的防护区内均应设计

安装泄压口。修改后的新标准对旧的标准和规范中模棱两可的用词给予了修

正。据各消防工程公司和本公司售后服务人员反馈,在各级消防检查中,消

防验收和监督部门都均严格按新标准执行,若消防项目中安装了气体灭火系

统,首先要检查各防护区是否安装了泄压口(自动泄压装置)。

3泄压口面积设计依据与计算

3.1防护区内围护结构最高允许压强

防护区内门、窗上的玻璃允许压强不应低于建筑物的允许压强。目前国内各设计部门防护区内围护结构承受内压的允许压强,无论建筑物是轻型和高层建筑,

还是标准建筑及地下建筑,均设定为1.2KPa,该值的设定是依据GB50370-

2005标准中3.2.6条款,参照美国NFDA12B-1980标准中给出的,若设计部

门和用户需提高防护区内围护结构承受的允许压强,应由建筑设计部门试验

给出。

七氟丙烷和IG-541混合气体灭火系统的防护区的泄压口面积公式应分别依据GB50370-2005标准中3.3.13和3.4.6公式计算。二氧化碳气体灭火系统应依

据GB50193-93中3.2.7公式计算该防护区的泄压口面积。

3.3 设计计算

3.3.1 七氟丙烷气体灭火系统泄压面积电子表格计算表

注:(1)依据该表计算公式和说明栏中的各公式,分别将L、B、H、t、C可变化的参数代入公式中,可计算求得防护区的总泄压面积。

(2)若使用者经常设计计算气体灭火系统,则可编制一个电子表格,将字母上标有‘’符号的可变化的参数填入表中,电子表格自动快速准确的计算出各相

关参数。

(3)电子表格中主要公式编制方法:(a)分区1格中的L、B、H、VV、AV、t、S、C、K、W、P t参数分别为E4、E5至E15位置。(b)公式VV= E4 E5

E6;公式W=1.05 E12 E7 E11 E10(100- E11);公式FX=0.13(E13E14)

SQRT(E15)。

3.3.2 IG-541混合气体灭火系统泄压面积电子表格计算表

!--[if !vml]--!--[endif]--!--[if !vml]--!--[endif]--

注:(1)IG541混合气体灭火系统防护区泄压口总泄压面积计算和电子表格编制方法与七氟丙烷灭火系统相同,这里不再赘述。

(2)IG51混合气体灭火系统灭火药剂剩余量公式为Ws≥2.7Vo+Vp,计算过程比较复杂,经大量设计计算,剩余量一般为防护区设计用量的2~5%之间,则

取剩余量K=1.05。

3.4主要气体灭火系统在不同容积下的泄压面积

注:(1)防护区内围护结构承受内压为1200Pa。

(2)将防护区容积和保护对象的灭火设计浓度带入本表中,便可快捷查得防护区的总泄压面积。

(3)选用某厂家型号、数量的泄压口的总面积不得小于防护区的总泄压面积。

4泄压口名称、种类及型号

4.1 泄压口名称

目前泄压口的名称有很多。标准和规范中一般名称为泄压口,也有称为气体灭

火系统防护区泄压口。各设计部门、消防工程公司和生产厂家及用户较多的

称之为泄压口、(消防)自动泄压装置。

4.2 泄压口种类

泄压口产品近两年来发展迅速,一些新种类和新规格的产品相继研发成功。目前国内没有任何文献资料和厂家对其进行明确的分类。本人通过收集国内多家产

品的资料、样品和结合我公司对该产品的研发,将此产品进行了分类。使人

看到它的名称,便可一目了然的理解它的各种主要功能,有利于该产品名称

向标准化、统一化方向完善和发展。具体分类如下:

4.2.1 依据安装方式分类

目前国内泄压口(自动泄压装置)有室内安装和室外安装两种类型。室内和室外安装又分别分为嵌入式和壁挂式以及吸顶式三种结构。

4.2.2 依据启动方式分类

泄压口启动方式分为有电源式启动和无电源式启动两种类型。有电源式泄压口又分两种启动形式:一种是驱动执行机构为压力检测器和齿轮减速微电机;另一

种为压力检测器和电磁铁启动。无电源式泄压口驱动执行机构有砝码式结构、压力调节器结构、综合式结构三种形式。

4.2.3阀门结构

泄压口的阀门结构形式有三种:一种是阀门由二片或二片以上的叶片组成,这些叶片一起联动时旋转一定角度时才能实现开启和关闭;第二种是板式结构,该

阀门安装在阀体内,在阀体内伸缩一段距离才能实现启闭;第三种是盖式结

构,阀门安装在阀体外框上,绕阀体外框一定角度实现开启和关闭功能。盖

式和板式结构密封性能相对较好。

4.3产品型号

消防产品型号编制方法规定,产品型号应由类、组、特征代码和主要性能参数组成。

以便用户通过产品名称和型号一目了然的了解该产品的主要结构和功能参数,有利于产品的型号和应用。下面举一厂家该泄压口型号的编制方法:

标记示例一型号为:XWZ151.2

其名称为:气体灭火系统防护区泄压口(自动泄压装置)。为室外式安装,当达到一定压力值时,无电源式泄压口自动启动开启,有效泄压面积为0.15m2,开

启工作压力为1.1+0.1KPa。另一名称为:室外壁挂无电源综合型盖式泄压口

(自动泄压装置)。

标记示例二型号为:XND71.2

其名称为:气体灭火系统防护区泄压口(自动泄压装置)。为室内式安装,当达到一定压力值时,电源式泄压口通电启动开启,有效泄压面积为0.07 m2,开启工作压力为1.1+0.1KPa。另一名称为:室内嵌入有电源叶片式泄压口(自动

泄压装置)。

5结构与工作原理

5.1结构特征

泄压口主要由装饰面板、箱体部件、阀门组件、装置启闭执行驱动部件或装置固定框架组件等部件及配套的辅助设备组成。泄压口分无电源式系列结构和有电

源式系列结构两种。无电源式系列在该产品装置内设置压力调节驱动部件或

砝码部件。有电源式系列在该产品装置内设置压力检测装置和电动驱动部件。

5.2工作原理

泄压口安装在防护区外墙或内墙泄压孔内,平时处于常闭状态。当防护区发生火灾时,气体灭火系统在释放灭火气体之前,为了保证药剂浓度、浸渍时间,保

证灭火成功,气体灭火系统防护区的通风设备、空调将自动断电,通风管道

和门、窗处于密闭状态。气体灭火系统启动释放灭火气体,导致防护区内压

力迅速超过建筑物内设计的允许压强。这时,若防护区内安装了无电源系列

结构泄压口,当作用在叶片或盖板组件上的气体压力值达到设定压力值时,

克服压力调节驱动部件或砝码驱动部件预作用力,立即驱动叶片或盖板开启

泄压;若防护区内安装了有电源系列结构泄压口,当压力检测装置达到设定

压力值时,发出一个电讯号给电动驱动部件,电动驱动部件迅速开启叶片或

盖板,泄放出防护区内超压气体,以避免建筑物墙体、门、窗、玻璃等围护

结构遭受破坏和导致灭火失败。当防护区内的压强降到设定值以下时,无电

源系列和有电源系列泄压口中的叶片或盖板将自动关闭,维持防护区内灭火

剂的灭火浓度,使其达到一定的灭火浸渍时间,将火灾及时扑灭。

6如何正确选择泄压口

设计安装泄压口就是为了确保气体灭火系统防护区内建筑物的围护结构的安全、可靠,并快速、及时地将火灾扑救成功。所以泄压口产品质量至关重要,如何

正确选择呢?主要依据泄压口的主要性能参数进行选择,方法如下:

6.1泄压口应有检验报告

各用户选用泄压口产品应经过国家固定灭火系统和耐火构件质量监督检验中心检测,并获得检验报告。这样才能基本保证该产品的功能和作用,特别是无电源式

泄压口尤为重要。

泄压口目前尚无国家、行业、地方标准,各企业制定的企业标准主要性能参数均不一致,产品质量相差较大。有部分厂家获得的不是消防部门认可的其它行业

的国家级检验报告。这种其它行业的检验报告中只有2~3个性能参数,完全依据企业自定的内容进行的检测,无法保证泄压口的作用。

消防部门认可的国家级检验报告,企业标准首先必须通过有关专家逐条审核,功能不完善,性能参数不合理的,将不予检测,从而保证了该泄压口产品的基本

作用。合格的无电源式泄压口研发实际比有电源式泄压口的难度要大,做的

试验要多。目前大多数无电源式泄压口经过国家级检测的比较少。建议用户

选用时,每种类型结构的泄压口应有相对应的检验报告,这样基本上可以保

证泄压口产品的质量要求。

6.2选用正确启动方式

泄压口启动方式有无电源式和有电源式两种类型。无电源式泄压口,无需电源,当达到设定压力值时将自动开启或关闭,结构简单,零部件少,工作可靠,

故障率低,安装简便,平时基本无需维护,价格中等。由于施工现场不能检

测泄压口开启动作压力值,只能检测装置是否启闭灵活。该装置出厂时厂家

已调试合格,适合于在雨雪较多,室外温度变化较大和经常断电及无人管理

较差的环境安装。

有电源式泄压口,断电后应立即以消防电源通电才能正常工作,当达到设定压力值时才能自动开启或关闭。结构较复杂,零部件较多,主要由电气元件和机

械零部件组成。此种装置的压力检测装置精度较高,且电气元件不能承受较

大的冲击和振动,并应注意防潮防水。因此故障率比无电源式泄压口高,平

时须定期检测试验,且产品单价较高。现场安装后可现场检测泄压口开启动

作压力值,装置开启后有反馈电信号。适合于雨雪较少,温度在-25°C~+55°C之间和不断的及有常人管理较好的环境进行安装。若安装在较差的环境中,应做好防雨雪的特殊处理。

6.3合理选择规格型号

泄压口产品规格型号均由各企业自己编制,比较混乱。关键是设计和选用者应了解该泄压口产品有哪些主要性能和参数及结构,从而分析各厂家泄压口产品具

有什么功能,性能参数是否合理,以便作出正确选择,确保产品质量。

6.4正确设定启闭压力值

开启压力值设定是泄压口产品的最主要的性能参数指标之一。启闭压力值中的开启压力值显得更加重要,它是泄压口阀门的开启压力指标值。该值的高低取值

决定了防护区内围护结构建筑物的安全不受到气体压力的破坏和是否能及时将火灾扑救。经查阅相关资料和对其进行综合分析,泄压口的开启压力值为

1.1+0.1KPa时,较为合理。压力值超过1.2KPa,取值会高,将会影响防护区

内门、窗、玻璃等围护结构建筑物的安全,压力值低于0.8KPa以下,将会造成灭火药剂不必要的流失,势必会影响灭火效果,甚至不能灭火。

6.5关注启闭滞后时间

启闭滞后时间,表示开启滞后时间和关闭滞后时间,一般该参数设定为≤2秒。开启滞后时间表示防护区内气体达到设定的最大工作压力值时,泄压口的阀门应在小于或等于2秒钟内完全开启或达到相应的开启状态,使防护区及时泄放超压气体,以避免气体压力持续升高,导致建筑物墙体、门、窗、玻璃等围护结构遭受破坏和导致灭火失败。关闭滞后时间表示防护区内超压气体释放后,防护区内压力值降到设定的关闭压力值时,泄压口的阀门应在小于或等于2秒钟内关闭或达到相应关闭状态,避免防护区内灭火药剂不必要的流失,维护防护区内灭火剂的灭火浓度,有利于火灾及时扑灭。最大开启工作压力值与关闭工作压力值一般差值为1.5KPa左右,厂家亦可依据用户要求自行设定。合格的泄压口启闭滞后时间小于等于2秒,主要由泄压口的阀门与驱动执行机构设计是否合理决定。

大多数人认为有电源式泄压口比无电源式泄压口开启压力值准确度高,另外泄压口阀门开启动作更快。经试验检测,合格的无电源式泄压口与有电源式泄压口对比:无电源泄压口与防护区压力值一致时开启,有电源式泄压口当防护区压力值高于泄压口设定值0.05~0.10KPa时才开启,引气体流入压力检测器窄小的通道,具有一定的距离和局部压力的损失,压力值将降低;无电源式比有电源式泄压口阀门开启速度大约快0.3S左右,有电源电磁铁式泄压口比有电源微电机式泄压口又大约快0.3S左右。

6.6合理选择泄压面积大小

国内目前各厂家生产的泄压口规格均未统一,故各厂家泄压口的泄压面积和外形尺寸及泄压孔大小都不一致,一般泄压面积在0.04~0.20m2之间。每个防护区泄压孔面积或安装泄压口数量之和的总泄压面积,不得小于设计院计算的泄压面积。泄压口泄压面积应与防护区面积配套,若超出太大将造成灭火气体不必要的流失,影响灭火效果。IG-541混合气体和二氧化碳气体灭火系统的防护区,建议应配置两台或两台以上泄压口,特别是有电源式泄压口切不可只选用一台,或者将大于0.20m2的单台泄压口改为泄压面积小的两台或两台以上的泄压口,均布于防护区,以确保防护区内围护结构建筑物的安全和不受到破坏。

用户应尽量选择各厂家稳定型号和依据泄压面积生产的泄压口产品,不要选择根据用户临时设计加工的非标型号泄压口,这种产品的质量很难得到保证。若数量多,确实需要单独设计加工的非标型号泄压口,用户应到厂家进行现场试

验,检测压力启闭值是否准确。特别是无电源式自动泄压装置更需要用户进

行实地试验和检测。

下面通过一个对比试验,以便于了解防护区设置大小不同面积泄压口的区别和泄压口实际起得的作用。两种结构相同的无电源式泄压口,泄压面积相差50%,

在相同的100m3以上的试验室、相同的试验瓶组,内充装压力相同的条件下,试验过程和参数如下。

小泄压面积泄压口试验过程:气体释放时间约4S,防护区内压力值达到1.1KPa时,泄压口同时开启,压力立即升到1.2KPa后,然后马上降至1.0KPa时,1.4S

后泄压口关闭,防护区内压力迅速降到0.4KPa,1~2S后上升至0.7KPa,稳

压几秒钟,大约6S后降至0值。

大泄压面积泄压口试验过程:气体释放时间约4S,防护区内压力值达到1.1KPa时,泄压口同时开启,压力值不再上升,降至0.9KPa时,1.2S后泄压口关闭,防护区内压力值迅速降至0值后上升至0.4KPa,约5S后降至0值。

通过上述泄压面积大小不同的泄压口对比试验,可明显看出:(1)泄压面积偏小的泄压口开启后,压力仍会升高一点,气体流失少,有利于快速灭火;泄压

面积偏大的泄压口开启后,压力不再升高,气体流失过多,不利于将火灾快

速扑灭。(2)泄压口能确保防护区内围护建筑物的安全。本试验模型是依据有管网七氟丙烷灭火系统设计的,目前只有我公司采用。据收集国内各厂家

企业标准和检验报告,一般在几立方至十几立方容积大的试验室内做试验。

本人认为泄压口应在100m3以上试验室模型下进行试验才能真实反应泄压口

的各种功能和参数,且更具有实用性和可靠性。

6.7泄漏量也是选择参考指标

泄漏量也叫漏风量,指泄压口在管道或某容积内温度和压差相等条件时,泄压口装置在实际工作状态下与理想密封状态下单位面积的漏风量之差。泄压口从外

观上就可看到阀门结构的密封性好坏。从泄压口开启动作试验看,泄压口阀

门密封性较差的,防护区内的压力值很难达到设定的最大开启工作压力值,

将造成灭火气体从开始喷放到灭火气体浸渍结束这一段时间的不断流失,使

灭火浓度降低,影响正常灭火效果。七氟丙烷灭火系统浸渍时应一般在1~

20min,通讯机房、电子计算机房内的电气设备火灾,应采用5min浸渍时间。

IG541混合气体灭火系统浸渍时间为10~20min,通讯机房、电子计算机房宜采用20min。

6.8选择适当安装方式

泄压口有室内和室外安装两种类型。泄压口从防护区内安装于泄压孔上称室内安装。

室内安装有两种形式:一种是嵌入式,将泄压口安装于防护区侧墙的泄压孔

内,这种安装方式应用最多;另一种是吸顶嵌入式,将泄压口安装于防护区

顶的泄压孔内,这种安装方式很少。室内式安装适合新工程和老项目改造,

特别适合高楼大厦,安装、调试均安全方便;而嵌入式安装要求泄压孔尺寸

准确。

泄压口从防护区外安装于泄压口上称室外安装。室外安装有两种形式:一种是壁挂式,将泄压口安装在泄压孔墙壁上,这种安装方式较多;另一种是嵌入式,

安装较少。室外式安装适应于新工程项目,高楼大厦采用时,应在大楼外墙

装饰刚刚完毕,脚手架没有拆卸之前,利用脚手架安装。壁挂式安装简便、

快速。

6.9正确选择泄压口配套辅助设备

泄压口配套辅助设备是与泄压口配套的固定格栅(简称风口)或装饰面板,它安装在泄压口另一端泄压孔内或墙上。室外式泄压口安装在防护区外墙或走道外

墙泄压孔上,而配套的固定格栅(风口)或装饰面板则安装在防护区内墙上,室内式泄压口从防护区内安装,配套的固定格栅(风口)或装饰面板则从防

护区外墙或走道外墙泄压孔上安装,辅助设备主要作用是防雨雪、美观和防

盗。固定格栅(风口)部件一般采用铝合金材料加工,嵌入或安装在泄压孔

内,有防雨雪,美观和防盗作用。装饰面板部件结构外形基本上与自动泄压

装置的面板外型一致,壁挂在泄压孔上。银行金库或博物馆安装泄压口,建

议采用室内式泄压口,将泄压口装饰面板压着微动开关,当泄压口离开墙面

几毫米距离时将报警,在泄压孔的另一端同时安装防盗窗和风口。

7安装注意事项

!--[if !supportLists]--7.1 !--[endif]--安装位置确定

施工单位和人员首先应了解设计部门或用户选用的泄压口的种类(有电源式或无电源式)、安装方式(室外式或室内式)、型号和防护区安装台数,依据设计

图纸和泄压口产品使用说明书,综合分析确定泄压口安装位置。泄压口安装

位置有三种类型:第一种设置在防护区外墙上;第二种是防护区无外墙时,

则安装在靠走廊墙上;最后一种防护区既无外墙又无走廊内墙的安装。泄压

口位置的选择应不影响泄压口正常工作,有利于超压的灭火气体快速畅通排

放到大楼外的空气中,排放的路径应最短。

!--[if !supportLists]--7.1.1 !--[endif]--外墙安装(见图一)

大多数防护区既有建筑大楼的外墙,又有走廊内墙,依据GB50370-2005《气体灭火系统设计规范》国标中第3.2.8条规定,泄压口宜设置在外墙上。也就是说应优先安装在外墙上,若安装确定存在问题,可选择靠走廊内墙上设置。

!--[if !supportLists]--7.1.2 !--[endif]--走廊内墙安装(见图二)

目前大多数设计部门在气体灭火系统管网平面图中,均设有在防护区确定泄压口的位置,大多数在安装气体灭火系统管道时才考虑选型和安装。较大型的建筑大楼,有许多防护区的墙不靠近大楼的外墙,靠走廊内墙。依据GB50370-2005国标条文说明中第3.28条,“防护区存在外墙的,就应该设在外墙上;

防护区不存在外墙的,可考虑设在与走廊相隔的内墙上”,如乙区安装。

!--[if !supportLists]--7.1.3 !--[endif]--无外墙又无走廊内墙安装(见图三)

超大型建筑大厦,有部分防护区既无外墙又无走廊内墙对于这种防护区,如图三乙区,因GB50370-2005国标中没有阐述,建议泄压口优先考虑放到无人的防护区,或靠近外墙的乙防护区安装,或安装专门的防火排烟管道,以便快速将气体灭火药剂排放到大楼外。气体灭火系统在实际灭火过程中,超压排出的气体往往为高温气体或含有大量浓烟或火焰,七氟丙烷灭火药剂具有一定的刺激性味道;二氧化碳气体达到8%以上时,呼吸困难,丧失意识,甚至窒息,有生命危险。所以超压排出的灭火气体应及时打开通风设备和通向大楼外的门、窗,以便尽快将气体释放和通风。

总之,各防护区泄压口的位置设置,设计人员和施工人员应对各种因素考虑周全,切不可随意确定。

7.2安装高度

依据GB50370-2005国标第3.2.7条规定,“七氟丙烷灭火系统的泄压口应于防护区净高的23以上”。也就是说除七氟丙烷气体灭火系统的泄压口,下沿底边不低于防护区净高的23外,其他气体灭火系统的泄压口安装高度没有限制。

目前使用最多的七氟丙烷、IG541混合气体、二氧化碳和其他大多数气体灭火药剂比重均比空气重。气体灭火系统的喷嘴均安装在防护区顶部,带一定角度向下喷洒。气体灭火系统在喷洒过程中,防护区内地面的灭火气体比重最大,灭火浓度也最大,有利于迅速将火灾扑救,随着离地面高度的升高灭火气体比重降低,防护区的顶层大多数聚集的是被压缩的防护区内的空气。

若将泄压口设置在防护区净高的23位置,泄压口释放的超压气体大多数将是压缩空气,这样减少了灭火气体的流失,既确保了防护区的围护结构建筑物不遭到破坏,又确保了快速将火灾扑灭。

建议各种类型气体灭火系统防护区泄压口下沿底边安装高度应在防护区净高23以上。

7.3 安装时注意事项及步骤

7.3.1 注意事项

7.3.1.1 安装前请先仔细阅读《泄压口产品使用说明书》,严格按说明书中的要求

安装、检测和维护。

7.3.1.2 安装过程中要求轻拿轻放,以避免自动泄压装置变形而造成结构和性能的

破坏,导致无法正常工作,特别是有电源式泄压口。

7.3.1.3 装置不可倒装,否则无法正常工作。

7.3.1.4 各厂家生产的泄压口出厂前已经调试合格,不得随意打开装置,调节内部

零部件。

7.3.1.5 安装完毕,有电源式泄压口应做通电和开启动作试验,因该类型结构泄压

口由电器和机械零部件组成,故障率比无电源泄压口偏高。无电源式泄压口

结构应检测阀门零件是否开启灵活正常。

7.3.1.5.1 有电源式泄压口

A、有电源式泄压口主要有两种电源,一种是DC24V,另一种是AC220V,启动

电源一般为1~1.7A左右。通电后装置上的绿色指示灯常亮,表示电源工作

正常。

B、用直径大约为Φ10mm,长度200mm左右塑料管插入装置面板压力检测孔,

轻轻对塑料管吹气或采用厂家提供的专用检测设备,当气体压力达到设定的

开启压力值时,装置动作(发出机械开启声响),阀门的叶片或盖板开启泄

压,绿色和红色指示灯亮,并发出装置开启反馈信号给火灾报警控制器。当

低于设定的关闭压力值时,阀门将关闭,装置动作停止。反复测试三次以上,出现上述状态,表示泄压口能正常工作。

7.3.1.5.2 无电源式泄压口

A、无电源式泄压口为机械式结构,防振动性好,故障率低。当泄压口阀门上作

用的气体压力值达到启闭压力值时,将自动开启或关闭。厂家在出厂前已设

定好,不能采用有电源式泄压口的检测方法进行试验,不能一目了然的看到

它的全程启闭状态。无电源式泄压口的启闭动作压力值的出厂检测比有电源

式的复杂且难度较大,一旦检测准确,将不会变化,故障率很低。在施工现

场,无电源式泄压口一般无需监测。

B、重要的工程项目,若用户必须对泄压口进行检测时,则直接对泄压口阀门或

驱动执行机构作用一定力,阀门开启和关闭灵活自如三次以上为合格。

泄压口启闭动作试验,应依据装置的外形结构来确定安装前或安装后试验。阀门结构为盖式和装饰面板上安装有固定格栅(风口)的应在安装后,再进行试验。

阀门结构为其他类型的,应在安装前拆卸泄压口装置箱体后的固定格栅(风

口),再进行试验,试验合格后再安装。

!--[if !supportLists]--7.3.1.6 !--[endif]--泄压口安装和检测合格后,应处于关闭状态。

7.3.2安装步骤

7.3.2.1确定每个防护区应安装几台泄压口,并确定泄压孔位置和高度及开孔尺寸。

开孔尺寸应严格依据各厂家产品使用说明书规定的尺寸开孔。开设的泄压孔

应与防护区墙体外表面垂直,墙体表面应平整一致。有电源式泄压口,在泄

压孔的左侧或右侧0.3~0.5m处开设接线盒孔和电源线管、控制线管槽。

7.3.2.2泄压口有装置固定框架组件的,将嵌入到泄压孔内,并用膨胀螺钉固定。

7.3.2.3泄压口安装与检测

A、有电源式泄压口应依据各厂家产品说明书要求连接启动电源和控制线,然后再

安装泄压口,最后对泄压口进行检测。

B、无电源式泄压口安装和检测步骤依据相关要求进行。

7.3.2.4泄压口辅助设备安装

泄压口辅助设备分固定格栅(风口)和装饰面板两种。各厂家一般均不单独配置,它主要用于泄压口安装完毕后,各用户或施工方从防护区内或防护区外观察,泄压孔出现不美观、不能防雨、雪和防盗时,由用户和施工方自由选择是否

安装。固定格栅(风口)和装饰面板可向提供泄压口厂家订购,也可在当地

订购加工。

8检查与保养

8.1为保证泄压口安装后能正常工作,因此必须建立相应的检查保养制度,并由

专人负责经常性检查、维护,使设备保持良好工作状态。

8.2 检查保养人员必须熟悉本装置的性能参数、动作程序,以及泄压口的结构和工

作原理。

8.3 正常使用后,有电源式泄压口应一个季度开启动作试验不少于一次;无电源式

泄压口应半年至一年检测阀门开启或关闭是否灵活自如,试验应不少于一次,无异常现象方可继续使用。每次检查应做好记录以备查。

气体灭火系统防护区泄压口设置

气体灭火系统防护区泄 压口设置 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

气体灭火系统防护区泄压口设置 氟丙烷、IG541与二氧化碳气体灭火系统的灭火剂充装在高压容器内,释放后,会使得防护区内的压强在短时间内急剧增加,如果不做好泄压措施,可能破坏防护区的维护结构,灭火剂不能在防护区内有效保持,使得灭火失败。因此防护区需要设置泄压口。(PS:泄压口分为械式泄压口和电动式泄压口,当建筑物室内发生爆炸或燃烧时屋内气体压力随之急剧上升,当压力值达到 P =时泄压口通过泄爆配件或装置使窗开启并释放压力从而保护建筑免受损坏及控制危险,电动式的采用连接直流电源和敏感装置组成,机械式的采用泄爆配件和五金配件组合而成!) 七氟丙烷、IG541灭火系统 七氟丙烷、IG541气体灭火剂喷入防护区内,会显着地增加防护区的内压,如果没有适当的泄压口,防护区的围护结构将可能承受不起增长的压力而遭破坏。 因此防护区应设置泄压口,七氟丙烷灭火系统的泄压口应位于防护区净高的2/3以上。规范没有对IG541的泄压口高度做出要求,但因为IG541较空气重,也应该设置在防护区的上部。 由于七氟丙烷灭火剂比空气重,为了减少灭火剂从泄压口流失,泄压口应开在防护区净高的2/3以上,即泄压口下沿不低于防护区净高的2/3。当泄压口开启后,泄压口开启后,从泄压口出去的主要是空气。当然也有一定的灭火剂从此流失。在灭火设计用量公式中,对于喷放过程阶段内的流失量已经在设计用量中考虑。

防护区设置的泄压口,宜设在外墙上。防护区存在外墙的,就应该设在外墙上;防护区不存在外墙的,可考虑设在与走廊相隔的内墙上。 泄压口面积按相应气体灭火系统设计规定计算。 二氧化碳灭火系统 防护区应设置泄压口,并宜设在外墙上,其高度应大于防护区净高的2/3。 因为二氧化碳比空气重,容易在空气下面扩散。所以为了防止防护区因设置泄压口而造成过多的二氧化碳流失,泄压口的位置应开在防护区的上部。 防护区存在外墙的,就应该设在外墙上;防护区不存在外墙的,可考虑设在与走廊相隔的内墙上。 当防护区设有防爆泄压孔时,可不单独设置泄压口。 采用全淹没灭火系统保护的大多数防护区,都不是完全封闭的,有门、窗的防护区一般都有缝隙存在,通过门窗四周缝隙所泄漏的二氧化碳,可防止空间内压力过量升高,这种防护区一般不需要再开泄压口。此外,已设有防爆泄压口的防护区,也不需要再设泄压口。 气溶胶灭火系统是否需要设置泄压口 《气体灭火系统设计规范》GB50370-2005对气溶胶灭火系统防护区泄压口设置要求有矛盾的地方: 条文: 按条文规定,七氟丙烷,IG541、气溶胶灭火系统都应设置泄压口。七氟丙烷、IG541灭火系统规范给出了相应的计算公式,但是气溶胶灭火系统并没有给出计算公式。

气体消防灭火系统方案

气体消防灭火系统 方案

气体消防灭火系统 6.1. 方案简述 (2) 6.2. 前提条件 (3) 6.3. 系统方案设计 (3) 6.4 七氟丙烷气体灭火系统介绍 (4) 6.5 火灾自动报警系统介绍 (10) 6.1. 方案简述 *****机房工程主要是由主机房、操作间及配电机房组成。机房设计吊顶高度 2.8米,活动地板高度0.3米,机房设计净高 2.5米。 本次消防自控系统工程由两部分组成: 主机房:采用七氟丙烷无管网单元独立自动灭火系统方式,机房消防自控系统分为一个相互独立的保护区; 操作间:配置手持式干粉灭火装置和二氧化碳灭火器。 配电机房:采用七氟丙烷无管网单元独立自动灭火系统方

式,机房消防自控系统分为一个相互独立的保护区; 七氟丙烷组合分配灭火系统特点: ?灭火力强,灭火时间短,能灭A、B、C型火灾; ?灭火后无污染、腐蚀作用,不导电没有残留物,对臭氧层无破坏; ?低浓度灭火,液态储存,药剂占地面积小; ?毒性低,能够应用于有人值守场所; ?系统具有扩展性。 6.2. 前提条件 ?消防报警控制器安装在本层过道 ?大楼消防电源已具备 6.3. 系统方案设计 本系统设计采用七氟丙烷柜式气体灭火系统。 当前气体消防主流产品有:CO2自动灭火系统、卤代烷1301自动灭火系统、INERGEN(烟烙尽)、七氟丙烷气体灭火系统。 CO2是一种适用于计算机机房的灭火剂,但CO2一般只能适用于那些无人值守或较少时间有人在内的机房。 卤代烷1301有一定毒性,但其对大气臭氧层有破坏作用,成为一种被逐渐淘汰的产品。 INERGEN(烟烙尽)是一种比较新的气体灭火剂,但由于当前主要依靠国外技术,投资量大,维护费用高,还未普及推广使

气体灭火资料

1 前言 ●感谢贵单位选用了本公司生产的七氟丙烷自动灭火系统! 该系统到交付使用已经历了下列程序: 1、参照美国消防标准NFPA2001《洁净气体灭火剂灭火系统》设计规 范和广东省工程建设地方标准DB×××××—××《七氟丙烷 (HFC-227ea)洁净气体灭火系统设计规范》要求进行工程设计。 2、根据经国家固定灭火系统标准审查委员会审查的Q/HSB07-2001《七 氟丙烷自动灭火系统》和ISO/CD14520-15(1997年第3版)《气体 灭火系统—物理性能和系统设计》国际标准的指标和要求组织生产 和检验。 3、与火灾自动报警系统和灭火控制系统组成完整的自动灭火系统。 4、具备气体灭火系统施工资质单位按设计要求进行施工。 5、灭火系统安装工程检验测试合格。 6、系统安装工程竣工验收合格。 ●以上每一程序均有书面资料,使用单位应妥善保存,管理人员应熟 悉这些资料,并认真阅读说明书。 ●一个好的产品需要有一个好的用户,有一个好的维护和保养。贵单 位在维护保养中有困难,本公司将为您提供满意的服务。 2灭火系统简介

●灭火特点 1)保护环境。七氟丙烷是无色、无味的气体,其臭氧耗损潜能值 (ODP)为零,在ISO认可的洁净气体灭火剂中,其洁净性最好,具有清洁、低毒、电绝缘性能好、灭火效率高的特点。 2)保护生命安全。七氟丙烷的未观察到不良反应浓度NOAEL值为9%, 而一般七氟丙烷的灭火设计浓度为10%以下,对人体基本无害。 ●灭火机理 通过惰化火焰中的活性自由基,实现断链灭火。 ●适用范围 A类——固体表面火灾;B类——易燃液体火灾,包括一定量的庚烷火灾;C类——电气设备火灾,主要用于电子计算机房、电信通讯设备、过程控制中心、贵重的工业设备、图书馆、博物馆及艺术馆、机器人、洁净室、消声室、应急电力设施、易燃液体储存区、也可用于生产作业火灾危险场所,如喷漆生产线,电器老化间、轧制机、印刷机、油开关、油浸变压器、浸渍槽、熔化槽、大型发电机、烘干设备、水泥生产流程中的煤粉仓、以及船舶机舱、货舱等。 ●产品特点 本公司精心研制开发的ZH系列七氟丙烷自动灭火系统设计合理、先进,关键部位采用新材料,产品性能可靠,其主要指标达到国内领先水平。各项指标均符合经国家固定灭火系统技术委员会审查的Q/HSB07-2001《七氟丙烷(HFC—227ea)洁净气体灭火系统》的标准要求。

气体灭火系统防护区泄压口设置

气体灭火系统防护区泄压口设置 氟丙烷、IG541与二氧化碳气体灭火系统的灭火剂充装在高压容器内,释放后,会使得防护区内的压强在短时间内急剧增加,如果不做好泄压措施,可能破坏防护区的维护结构,灭火剂不能在防护区内有效保持,使得灭火失败。因此防护区需要设置泄压口。(PS:泄压口分为械式泄压口和电动式泄压口,当建筑物室内发生爆炸或燃烧时屋内气体压力随之急剧上升,当压力值达到P =1.15kPa时泄压口通过泄爆配件或装置使窗开启并释放压力从而保护建筑免受损坏及控制危险,电动式的采用连接直流电源和敏感装置组成,机械式的采用泄爆配件和五金配件组合而成!) 七氟丙烷、IG541灭火系统 七氟丙烷、IG541气体灭火剂喷入防护区内,会显著地增加防护区的内压,如果没有适当的泄压口,防护区的围护结构将可能承受不起增长的压力而遭破坏。 因此防护区应设置泄压口,七氟丙烷灭火系统的泄压口应位于防护区净高的2/3以上。规范没有对IG541的泄压口高度做出要求,但因为IG541较空气重,也应该设置在防护区的上部。 由于七氟丙烷灭火剂比空气重,为了减少灭火剂从泄压口流失,泄压口应开在防护区净高的2/3以上,即泄压口下沿不低于防护区净高的2/3。当泄压口开启后,泄压口开启后,从泄压口出去的主要是空气。当然也有一定的灭火剂从此流失。在灭火设计用量公式中,对于喷放过程阶段内的流失量已经在设计用量中考虑。 防护区设置的泄压口,宜设在外墙上。防护区存在外墙的,就应该设在外墙上;防护区不存在外墙的,可考虑设在与走廊相隔的内墙上。 泄压口面积按相应气体灭火系统设计规定计算。 二氧化碳灭火系统 防护区应设置泄压口,并宜设在外墙上,其高度应大于防护区净高的2/3。 因为二氧化碳比空气重,容易在空气下面扩散。所以为了防止防护区因设置泄压口而造成过多的二氧化碳流失,泄压口的位置应开在防护区的上部。 防护区存在外墙的,就应该设在外墙上;防护区不存在外墙的,可考虑设在与走廊相隔的内墙上。 当防护区设有防爆泄压孔时,可不单独设置泄压口。 采用全淹没灭火系统保护的大多数防护区,都不是完全封闭的,有门、窗的防护区一般都有缝隙存在,通过门窗四周缝隙所泄漏的二氧化碳,可防止空间内压力过量升高,这种防护区一般不需要再开泄压口。此外,已设有防爆泄压口的防护区,也不需要再设泄压口。

机房气体消防七氟丙烷灭火系统

机房气体消防七氟丙烷灭火系统

机房气体消防灭火系统 一概述 (3) 二气体灭火系统的特性: (3) 三、气体灭火应用场所有: (4) 四气体消防系统 (4) 五消防气体灭火系统说明 (5)

一概述 机房气体灭火目前常规的做法是先用七氟丙烷灭火系统,也叫FM200来进行保护,它分为有管网和无管网二种型式,即小的机房或独立的保护区我们一般用一个柜式的七氟丙烷灭火装置,也叫七氟丙烷无管网灭火装置来保护;若是区域较大或较多,而且比较分散我们一般会用管网式的组合方式来进行保护,这样可以充分的利用资源,节约成本。 二气体灭火系统的特性: 1.对环境无污染,是安全有效的灭火系统。

2.灭火速度快,能在十秒内迅速灭火。 3.对敏感设备无损害。 4.优异性能,是其他灭火系统无法比拟的。 5.经全面的测试,无毒性。 6.灭火时候不用屏住呼吸,气体灭火对人体更安全。 7.节省时间,快速无比,当贵重的财产面临危险,每一秒钟都至关重要。 8.解除隐忧,解决后顾之忧。 9.价格优势,与火灾造成的财产与资料损失相比,气体灭火价值是显而易见的。 三、气体灭火应用场所有: 配电房、配电室、无人配电房、无人配电室、无人值守配电房、无人值守配电 四气体消防系统 气体消防系统应符合安全可靠、技术先进、节省投资的原则。采用FM200七氟丙烷(HFC-227ea)气体灭火系统,系统最大保护区建筑

面积约500平方米,最大保护容积为2000立方米。气体自动灭火系统采用有管网组合分配系统,即系统可以在气瓶间按最大保护设置灭火药剂瓶组,通过组合分配原理最大可以设置8个防护区域,某个发生火警的区域系统能自动选择启动释放药剂灭火,可以节省投资。根据七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范(DBJ15-23-1999)要求:当系统为组合分配系统时,系统设置用量中有关防护区灭火设计用量的部分,应采用该组合中某个防护区设计用量最大者替代。用于需不间断保护的防护区的灭火系统和超过8个防护区组合成的组合分配系统,应设七氟丙烷备用量,备用量按原设置用量的100%确定。 数据中心全部气体灭火防区为4个,每组按最大防区的容积设置气量。 主数据中心区间,七氟丙烷的灭火设计浓度按8%进行设计。 灭火钢瓶集中放置在气瓶室,以钢管道连到各保护区间,气体容积需考虑天花层、工作层及地板层。火灾自动报警系统在每个防护区内设置烟感回路和温感回路。该系统的控制同时具有自动控制、手动控制(电气)、紧急手动操作和紧急停止放气操作等控制与操作方式。 五消防气体灭火系统说明 每个保护区的地板下、室内空间层及吊顶天花内需设置喷嘴、烟感探

2021版气体灭火的一般规定

2021版气体灭火的一般规定 Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0537

2021版气体灭火的一般规定 1、采用气体灭火系统保护的防护区,其灭火设计用量或惰化设计用量,应根据防护区内可燃物相应的灭火设计难度或惰化设计浓度经过计算确定。 2、有爆炸危险的气体、液体类火灾的防护区,应采用惰化设计浓度;无爆炸危险的气体、液体类火灾和固体类火灾的防护区,应采用灭火设计浓度。 3、几种可燃物共存或混合时,灭火设计浓度或惰化设计浓度,应按其中最大的灭火浓度或惰化设计浓度确定 4、两个或两个以上的防护区采用组合分配系统时,一个组合分配系统所保护的防护区不应超过8个。 5、组合分配系统的灭火剂储存量,应按储存量最大的防护区确

定。 6、灭火系统灭火剂的储存量,应为防护区的设计用量、储存容器内的灭火剂剩余量和管网内的灭火剂剩余量之和。 7、灭火系统的储存装置72小时内不能重新充装恢复工作的。应按系统原储存量的100%设置用量。 8、灭火系统的设计温度。应采用20℃。 9、同一集流管上的储存容器,其规格,充压压力和充装量应相同。 10、同一防护区,当设计两套或三套管网时,集流管可分别设置,系统启动装置必须共用。各管网上喷头流量均按同一灭火设计浓度、同一喷放时间进行设计。 11、管网上不应采用四通管件进行分流。 12、喷头的保护高度和保护半径,应符合下列规定: A、最大保护高度不宜大于6.5米; B、最小保护高度不应小于0.3米; C、喷头安装高度小于1.5米时,保护半径不宜大于4.5米;

气体灭火泄压口

精心整理 气体灭火系统防护区泄压口(自动泄压装置)设计与安装使用 1 概述 气体灭火系统防护区泄压口,是指当气体灭火系统中的灭火剂喷放时,防护区内的压力值达到规 定值时自动开启泄压的装置,简称泄压口,也称自动泄压装置,是与气体灭火系统配套的必备设备,一般安装在气体灭火系统保护区外墙或内墙的泄压孔上。(为便于表述,本文中统一简称泄压口)。 气体灭火系统灭火具有洁净、绝缘性能好、灭火速度快等特点,在灭火中和灭火后对保护对象及 2 2.1 条中 Pf 符号解释:“Pf —围护结构承受内压的允许压强(Pa )。当设有外开门弹性闭门器或弹簧门的防护区,其开口面积不小于泄压口计算面积的,不须另设泄压口。” DGTJ08-306-2001《惰性气体IG-541灭火系统技术规程》上海地方标准条文说明书3.1.2条解释: “对于密封性较好的防护区,规定安装泄压口。”也就是说防护区密封性较差的可不安装泄压口。 !--[if!supportLists]--l!--[endif]--2006年3月GB50370-2005《气体灭火系统设计规范》国家标准发 布,

由于该标准的宣传、贯彻和印刷的滞后,各设计院和消防监督部门实际上到2008年才开始按此标准对相关气体灭火系统项目进行设计和监督。但由于该标准中第3.2.7和第3.2.9条用词模糊,给部分设计人员和用户带来误解。规定第3.2.7条“防护区应设置泄压口,七氟丙烷灭火系统的泄压口应位于防护区净高的23以上。”如此表述,导致部分人认为泄压口就是在离地三分之二的净高处开一个泄压孔,而不是一种泄压装置,规定第3.2.9条“喷放灭火剂前,防护区内除泄压口外的开口应能自动关闭。”这再一次说明泄压口就是一个常开的孔,加深了部分设计人员的误解。 2.2设置泄压口的实际必要性 依据GB50370-2005《气体灭火系统设计规范》要求,七氟丙烷灭火系统灭火设计浓度一般为 在 障;有电源式泄压口现场检测合格后,由于它的结构比较复杂仍不能百分之百确保无故障率,如:突然断电、线路接触不良、无器件性能不稳定等等原因。(2)室内壁挂无电源式泄压口装置,理论计算的开启压力值与实验参数值一致,这是由它的结构而决定的。当防护区内压力值达到装置设定的压力值时,同时开启,无开启滞后时间。有电源式比无电源式泄压口大约滞后0.3秒钟左右。而其它无电源式泄压口装置,阀门的开启受控于驱动执行机构控制,理论计算的开启压力值与实际试验参数值相差较大。所以,无电源式泄压口开启压力值必须以实际气体喷放模拟试验参数值为准。 第二套方案:安装两台,第一台为无电源式泄压口,开启压力值设定为1.1KPa以下正常开启;另一台为无电源式或有电源式泄压口,开启压力值设定在1.3KPa,这样能确保试验成功和安全可靠。

气体消防灭火系统方案

气体消防灭火系统 6.1. 方案简述 (1) 6.2. 前提条件 (1) 6.3. 系统方案设计 (2) 6.4 七氟丙烷气体灭火系统介绍 (2) 6.5 火灾自动报警系统介绍 (7) 6.1. 方案简述 *****机房工程主要是由主机房、操作间及配电机房组成。机房设计吊顶高度2.8米,活动地板高度0.3米,机房设计净高2.5米。 本次消防自控系统工程由两部分组成: 主机房:采用七氟丙烷无管网单元独立自动灭火系统方式,机房消防自控系统分为一个相互独立的保护区; 操作间:配置手持式干粉灭火装置和二氧化碳灭火器。 配电机房:采用七氟丙烷无管网单元独立自动灭火系统方式,机房消防自控系统分为一个相互独立的保护区; 七氟丙烷组合分配灭火系统特点: 灭火力强,灭火时间短,能灭A、B、C型火灾; 灭火后无污染、腐蚀作用,不导电没有残留物,对臭氧层无破坏; 低浓度灭火,液态储存,药剂占地面积小; 毒性低,可以应用于有人值守场所; 系统具有扩展性。 6.2. 前提条件 消防报警控制器安装在本层过道

大楼消防电源已具备 6.3. 系统方案设计 本系统设计采用七氟丙烷柜式气体灭火系统。 目前气体消防主流产品有:CO 2 自动灭火系统、卤代烷1301自动灭火系统、INERGEN(烟烙尽)、七氟丙烷气体灭火系统。 CO 2是一种适用于计算机机房的灭火剂,但CO 2 一般只能适用于那些无人值守 或较少时间有人在内的机房。 卤代烷1301有一定毒性,但其对大气臭氧层有破坏作用,成为一种被逐渐淘汰的产品。 INERGEN(烟烙尽)是一种比较新的气体灭火剂,但由于目前主要依靠国外技术,投资量大,维护费用高,还未普及推广使用。 七氟丙烷气体则完全摒弃了CO2、卤代烷1301、INERGEN的缺点,毒性低,价格较便宜,已经为当今计算机机房首推的气体灭火剂。 根据以上四种灭火系统的比较并结合计算机房特有的情况特点和防火等级,参考业主的消防需求,我们设计采用目前国际上最先进的气体灭火系统——七氟丙烷气体灭火系统。 6.3.1 消防系统保护区的设置 因本次工程设计的灭火工作区域被操作间隔开,我们设置 2个相互独立的气体保护区。 七氟丙烷柜式气体灭火系统可以组成两种形式的灭火系统,即组合分配式系统(有管网系统)与单元独立系统(无管网系统)。本消防工程存在多个需要保护的区域,因此采用七氟丙烷无管网单元独立式柜式气体灭火系统。 6.3.2 消防系统组成 本工程消防系统以七氟丙烷气体自动灭火消防为主。本层机房区的气体消防系统是由七氟丙烷气体灭火系统和火灾自动报警系统两部分组成,构成一个完整的七氟丙烷自动灭火系统。 6.4 七氟丙烷气体灭火系统介绍 本方案中单元独立式系统中共有两个保护区,火灾气体喷嘴布置形式: 机房保护区的火灾喷嘴安装在天花板向室内的一侧。当一个区域发生火灾时通过该区的释放阀,继而打开系统七氟丙烷的供该区的储瓶,并向该区释放七氟丙烷进行灭火,而其他区域的储瓶则被其单向阀阻止而不打开。 本层保护区的设计灭火浓度为8%,通过智能灭火控制器的逻辑编程,来实

气体灭火系统设计规范条文说明

气体灭火系统设计规 条文说明

目录 1. 总则 (39) 2. 术语与符号 (41) 2.1 术语 (41) 3. 设计要求 (42) 3.1 一般规定 (42) 3.2 系统设置 (45) 3.3 七氟丙烷灭火系统 (48) 3.4 IG541混合气体灭火系统 (62) 3.5 热气溶胶预制灭火系统 (68) 4. 系统组件 (69) 4.1 一般规定 (69) 5. 操作与控制 (70) 6. 安全要求 (71)

1. 总则 1.0.1 本条阐明本《规》是为了合理地设计气体灭火系统,使之有效地达到扑灭火灾,保护人身和财产安全的目的。1.0.2 本《规》属于工程建设规标准中的一个组成部分,其任务是解决用于工业和民用建筑中新建、改建、扩建工程中有关设置气体全淹没灭火系统的消防设计问题。 气体灭火系统的设置部位,应根据国家标准《建筑设计防火规》、《高层民用建筑设计防火规》等其它有关国家标准的规定及消防监督部门针对保护场所的火灾特点、财产价值、重要程度等所作出的有关要求确定。 当今,国际上已开发出化学合成类及惰性气体类等多种替代哈龙的气体灭火剂。其中七氟丙烷及IG541混合气体灭火剂在我国哈龙替代气体灭火系统中应用较广,且已应用多年,有较好的效果,积累了一定经验。七氟丙烷是目前替代物中效果较好的产品。其对臭氧层的耗损潜能值ODP=0,温室效应潜能值GWP=0.6,大气中存留寿命ALT=31(年),灭火剂毒性——无毒性反应浓度NOAEL=9%,灭火设计基本浓度C=8%,具有良好的清洁性——在大气中完全汽化不留残渣、良好的气相电绝缘性及良好的适用于灭火系统使用的物理性能,自20世纪90年代初,工业发达国家首选用其替代哈龙灭火系统并取得成功。IG541灭火剂由N2、Ar、CO2三种惰性气体,按一定比例混合而成,其ODP=0,使用后以其原有成分回归自然,灭火设计浓度一般在37%~43%之间,在此浓度人员短时间停留不会造成生理影响。系统压源高,管网可布置较远。1994年1月美国率先制定出洁净气体灭火系统设计标准(NFPA2001),国际标准化组织(ISO)亦制订了国际标准《洁净气体灭火剂一物理性能和灭火系统设计》(ISO14520)。应用实践表明,七氟丙烷灭火系统和IG541混合气体灭火系统均能有效地达到预期的保护目的。 热气溶胶灭火技术是由我国消防科研人员于20世纪六十年代首先提出的,自90年代中期始,热气溶胶产品作为哈龙替代技术的重要组成部分在我国得到了大量使用。基于以下考虑,将热气溶胶预制灭火系统列入本《规》:

气体灭火泄压装置说明书

技术文件 泄压装置(机械 型)使用说明书

长沙磐龙安全系统设备有限公司 PAVLN INC.

目录 1、概述 .............................................. 错误!未定义书签。 2、装置结构原理 ...................................... 错误!未定义书签。 结构图 ........................................... 错误!未定义书签。 规格尺寸 ......................................... 错误!未定义书签。 动作原理 ......................................... 错误!未定义书签。 3、安装与施工 ........................................ 错误!未定义书签。 选型 ............................................. 错误!未定义书签。 安装 ............................................. 错误!未定义书签。 泄压装置安装预留洞口尺寸 ..................... 错误!未定义书签。 固定 ......................................... 错误!未定义书签。 4、注意事项 .......................................... 错误!未定义书签。 5、售后服务 .......................................... 错误!未定义书签。

气体灭火设计方案详细案例

气体灭火设计方案详细案例 QQ空间发表日期:2013-10-08 14:45:58 浏览次数:2231 “我们经常会遇到做个《气体灭火设计方案》给到客户-业主、甲方、总包审核、沟通、商讨确认方案的可行性等,从而进入施工阶段”本文以七氟丙烷灭火系统做个详细案例供大家参考! 第一部分:工程概况: 该工程为某商业大厦地下二层气体消防工程,首先明确建筑物本身的建筑特点和功能特点,了解该建筑地下二层的防火工程设计中其它专业的设施及对消防专业的设计要求,然后根据有关规范对建筑物定性,确定系统的总体结构。按照气体灭火设计规范,该楼层配电房、发电机房、油库不能应用水喷淋灭火系统,因此选用气体灭火系统方案,以确保消防灭火的可靠性 第二部分:地下二层气体灭火系统设计说明 一、设计依据: 1、《建筑设计防火规范》(GB50016-2006)2006年版; 2、《气体灭火系统设计规范》(GB50370-2005); 3、《气体灭火系统施工及验收规范》(GB50263-2007); 4、甲方提供的相关图纸及资料; 5、设备生产厂家提供的相关图纸及资料。 二、设计原则 1、该气体灭火系统设计按整体建筑同一时间内发生一次火灾考虑。 2、气体灭火系统采用全淹没保护形式,用组合分配系统对各防护区进行保护。 设计灭火浓度:按保护对象定为9%。 系统额定增压压力:4.2Mpa(表压) 防护区最低环境温度:20℃。 三、系统设计: 采用七氟丙烷气体灭火组合分配系统;系统设计技术参数及详细计算过程见《设计计算书》。 四、系统启动方式: 控制系统有以下三种启动方式:自动控制、手动控制(手操电动)、紧急机械控制;在有人值班时可采用手动控制形式,在手动/自动控制故障时采用机械应急控制方式。 1、自动控制方式

消防气体灭火系统设备安装方案

消防气体灭火系统设备安装 3 操作工艺 3.1 工艺流程: →→→ →→→→ →→→→ →→ 3.2 安装准备: 3.2.1 认真熟悉图纸,领会设计意图,确定施工方案。 3.2.2 复核预留、预埋的位置、尺寸、标高。 3.2.3 根据设计图纸画出管路分部的位置、管径、异变径、预留口的坐标、标高、坡向及支、吊架、卡件的位置草图,并将侧量的尺寸做好记录;并注意并列交叉排列管道的最小间隔尺寸。 3.2.4 按照草图,进行管道预制加工,加工后核对尺寸,编号,码放整齐。按照要求安装支、吊、卡、架。 3.2.5 将预制管道及附件运至安装地点,按编号就位,清扫管膛。 3.3 预留孔、洞及预埋铁件: 3.3.1 在钢筋混凝土楼板、梁、墙上预留孔、洞时,应设专业人员按照设计图纸将管道及设备的位置、坐标、标高尺寸测量准确。

3.3.2 配合土建放线定位,定标高、尺寸。同时令同有关部门解决施工相互矛盾的问题。 3.3.3 标记好预留孔、洞及预埋铁件的部位。将预制模盒在绑扎钢筋前固定好,开口盒填塞柔性物材。在浇注混凝土过程中,应设专业人员核对、看护,以免位移、错位,并且注意复验位置、尺寸。 3.3.4 如遇移位、错位,需剔凿处理时,须征得有关部门的同意后,方可进行。 3.4 设备材料的清点检查: 3.4.1 按照设计图纸要求,安装前,做规格、型号、尺寸、质量等方面的清点验证,保证数量、质量符合设计及安装要求。 3.4.2 对目测不易识别的材料(阀件)要抽样送试验室检测。 3.5 支、吊架的制作安装: 3.5.1 支、吊架的制作: 管道支、吊架应按照设计图纸要求选用材料制作,其加工尺寸、型号、精度及焊接均应符合设计要求。 具体制作方法参见1-1。 3.5.2 支、吊架的安装 3.5.2.1 管道支、吊架安装时应及时进行支、吊架的固定和调整工作。 3.5.2.2 安装支、吊架的位置、标高应准确、间距应合理。应按设计图纸要求,有关标准图规定进行安装。 3.5.2.3 管道不允许位移时,应设置固定支架。必须严格安装在设计规定的位置上,并应使管子牢固地固定在支架上。 3.5.2.4 埋入墙内的支架,焊接到预埋件上的支架,用射钉安装的支架,用膨胀螺栓

设计方案气体灭火

气体灭火系统 1.1.设计编制依据: ?GB50116-98 《火灾自动报警系统设计规范》 ?GB50166-2007 《火灾自动报警系统施工及验收规范》 ?GB50016-2006 《建筑设计防火规范》 ?GB50370-2005 《气体灭火系统设计规范》 ?GB50174-2008 《电子计算机房设计规范》 ?GB50263-2007 《气体灭火系统施工及验收规范》 ?国家现行的其他有关标准和规范 1.2.设计指导思想和原则: 本次气体灭火系统的设计在满足规范、标准的要求下进行合理设计,选用性价比高的相关设备。在保护区的分隔上依据现行的气体消防规范规定“一个保护区的面积不宜大于800m2,,且容积不宜大于3600m3”,“围护结构耐压1200pa”等方面的要求。 在机房维护结构方面充分响应现行规范,优先考虑维护结构的耐火时限、抗压抗冲击性能指标:选用通过型式检测的铯钾有框防火玻璃门。防火玻璃拼缝采用防火胶密封,外扣金属嵌条。 本次设计的机房、监控中心的火灾报警系统是相对独立的区域报警及灭火系统,能接入大楼的火灾自动报警系统,在主机上能显示报警信号;在机房区域、监控中心区域均设置七氟丙烷气体灭火系统。 对于消防系统的设计、安装、调试、开通、验收、运行、移交,相应的施工组织设计的指导思想为:精心组织、合理安排、科学施工、保证质量、主动协调、确保工期。

1.3.设计方案: 1.3.1.HFC-227ea(七氟丙烷)气体灭火系统设计 ?HFC-227ea(七氟丙烷)气体灭火系统设计原则: 1-1按火灾一次一区计,按建筑物自然分布,机房为1个防火分区为。 1-2设计灭火方式:全淹没式。 1-3设计的HFC-227ea(七氟丙烷)灭火系统必须具备电气自动、电气手动两种控制方式的转换在气体灭火控制器面板通过电子锁来实现。 1-3-1自动控制方式:在无人值班的情况下应采用自动控制方式,将灭火控制盘的控制方式选择键放置在“自动”位置,这时整个灭火系统处于自动控制状态.当一路火灾探测器检测到火警信号时,即发出火警异常的声光信号.当两路火灾探测器同时检测到火警信号时,火灾控制主机发出指令信号:气体灭火装置进入约30秒左右的倒计时状态,联动设备关闭;延时停止,灭火剂释放进行灭火。 1-3-2电气手动控制方式:在有人值班的情况下应采用电气手动控制方式,将灭火系统的控制方式选择键放置在“手动”位置,这时整个灭火系统处于电气手动控制状态。当任意一路火灾探测器检测到火警信号时,即发出火警异常的声光信号.当两路火灾探测器同时检测到火警信号时,也发出火警异常的声光信号.但均不启动灭火系统释放灭火剂进行灭火。值班人员此时应检查火警信号,如确认火警,需启动灭火系统时,可按下气体灭火控制主机的启动按纽或安装机房门外的紧急启动按钮,进入灭火程序,灭火控制柜发出联动指令信号,关闭联动设备,发出灭火指令。启动灭火系统,释放灭火剂进行灭火。 注意:手动控制优先,无论何种控制方式,在人确定火警按下手动控制按钮时,均可启动灭火系统,释放灭火剂进行灭火。 1-4紧急启停按钮:在气体灭火系统保护区的门外侧,设置紧急启停按钮。 1-4-1紧急启动:当灭火系统处于自动或手动控制状态时,在火灾自动报警系统未检测到火警时,而已确认火情,需启动灭火系统时,可按下紧急启动按钮,即发出报警声、光信号,关闭连锁设备,启动灭火系统进行灭火。 1-4-2紧急停止: 当报警系统发出火警信号,在延时时间内,发现不需启动灭火系统进行扑救,可按下紧急停止按钮,即可阻止向灭火系统发出指令,不启

机房气体灭火系统

一概述 蓝狐消防机房气体灭火目前常规的做法是先用七氟丙烷灭火系统,也叫FM200来进行保护,它分为有管网和无管网二种型式,即小的机房或独立的保护区我们一般用一个柜式的七氟丙烷灭火装置,也叫七氟丙烷无管网灭火装置来保护;若是区域较大或较多,而且比较分散我们一般会用管网式的组合方式来进行保护,这样可以充分的利用资源,节约成本。 二气体灭火系统的特性: 1.对环境无污染,是安全有效的灭火系统。 2.灭火速度快,能在十秒内迅速灭火。 3.对敏感设备无损害。 4.优异性能,是其他灭火系统无法比拟的。 5.经全面的测试,无毒性。 6.灭火时候不用屏住呼吸,气体灭火对人体更安全。 7.节省时间,快速无比,当贵重的财产面临危险,每一秒钟都至关重要。 8.解除隐忧,解决后顾之忧。 9.价格优势,与火灾造成的财产与资料损失相比,气体灭火价值是显而易见的。 三、气体灭火应用场所有: 配电房、配电室、无人配电房、无人配电室、无人值守配电房、无人值守配电 四气体消防系统 气体消防系统应符合安全可靠、技术先进、节省投资的原则。采用FM200七氟丙烷(HFC-227ea)气体灭火系统,系统最大保护区建筑面积约500平方米,最大保护容积为2000立方米。气体自动灭火系统采用有管网组合分配系统,即系统可以在气瓶间按最大保护设置灭火药剂瓶组,通过组合分配原理最大可以设置8个防护区域,某个发生火警的区域系统能自动选择启动释放药剂灭火,可以节省投资。 根据七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范(DBJ15-23-1999)要求:当系统为组合分配系统时,系统设置用量中有关防护区灭火设计用量的部分,应采用该组合中某个防护区设计用量最大者替代。用于需不间断保护的防护区的灭火系统和超过8个防护区组合成的组合分配系统,应设七氟丙烷备用量,备用量按原设置用量的100%确定。 数据中心全部气体灭火防区为4个,每组按最大防区的容积设置气量。 主数据中心区间,七氟丙烷的灭火设计浓度按8%进行设计。 灭火钢瓶集中放置在气瓶室,以钢管道连到各保护区间,气体容积需考虑天花层、工作层及地板层。火灾自动报警系统在每个防护区内设置烟感回路和温感回路。该系统的控制同时具有自动控制、手动控制(电气)、紧急手动操作和紧急停止放气操作等控制与操作方式。 五消防气体灭火系统说明 每个保护区的地板下、室内空间层及吊顶天花内需设置喷嘴、烟感探测器和温感探测器。为了节省投资成本,保护区之间的气体采用共享设计,减少了灭火药剂用量,而烟感探测器和温感探测器则仍然保持警报的功效。 所有间隔必须密闭固定,药剂喷放时无泄漏。系统采用组合分配方式,当某个保护区有火情发生时,烟、温两路探头把火警信号传至气体灭火控制盘及控制室,声、光自动报警并按照预定模式自动延时,启动电磁阀及方向阀,使FM-200储气钢瓶喷放气体至发生火情的保护区,也可以手动放气或进行机械紧急启动。 气体喷放的延迟时间0-30 秒可调,表示系统状态的所有信号都可以传输到当地的气体灭火控制盘或传到消防中央控制室。 钢瓶的瓶头阀部位设有安全阀,在超压时可以自动泄压,从而起到保护作用。钢瓶的放气启动头及方向阀均采用24VDC 电磁阀控制,由气体灭火控制屏给出放气信号,启动钢瓶。在断电或紧急情况下,可通过钢瓶上的手动启动头施行手动启动。手动及电动启动方式作用在钢瓶的瓶头阀上,而从属钢瓶则用主气瓶的压力通过压力启动头控制启动。

气体灭火系统防护区泄压口设计与安装

气体灭火系统防护区泄压口设计与安装(中) 气体灭火系统防护区泄压口设计与安装 (上) Tag:防护系统设计气体 编者按:本文的要讲述的话题是气体灭火系统防护区泄压口设计与安装(上),从属于栏目自动灭火-消防安全-中国弱电。如果你感兴趣,请继续阅读;否则可以选择右边推荐的其他文章。编者祝您健康! 摘要:文章针对在实践中存在的对自动泄压装置的认识误区进行理论和实际上的说明,强调自动泄压装置,是与气体灭火系统配套的必备设备,它不是一个常开的孔,而是一种必须装置。作者对自动泄压装置如何正确设计、选择、安装、使用进行详细阐述。使自动泄压装置在气体灭火中能正确发挥其实际功能和作用。 关键词:自动泄压装置、工作原理、设计安装、气体灭火系统 气体灭火系统防护区泄压口(自动泄压装置)设计与安装使用 朱劲武 (北京利达海鑫灭火系统设备有限公司,北京100176) 1 概述 气体灭火系统防护区泄压口,是指当气体灭火系统中的灭火剂喷放时,防护区内的压力值达到规定值时自动开启泄压的装置,简称泄压口,也称自动泄压装置,是与气体灭火系统配套的必备设备,一般安装在气体灭火系统保护区外墙或内墙的泄压孔上。(以下统一简称泄压口)。 气体灭火系统灭火具有洁净、绝缘性能好、灭火速度快等特点,在灭火中和灭火后对保护对象及环境没有二次污染。因而被广泛应用于电子计算机房、电讯中心、通讯机房、图书馆、档案馆、珍品库、博物馆、配电室等洁净场所。2006年来,随着GB50370-2005《气体灭火系统设计规范》国家标准的颁布,消防监督部门加大了灭火设备的检查力度,2007年后市场对自动泄压口的需求也明显增多。因泄压口产品是新产品,目前国家、行业尚无统一标准。大多数生产泄压口产品的厂家或公司都只生产某一种类型的泄压口。而通过从百度、谷歌等搜索网站检索来看,全面介绍泄压口应用、设计、安装与使用的资料和文章少之又少,给企业正确选择、设计、安装、使用泄压口带来了许多问题,不利于泄压口在气体灭火中正确发挥其实际功能和作用。两年多来,作者对国内外各厂家泄压口资料、样品进行了系统的收集,对该产品进行研发,进行了大量的试验,以促进国内自动泄压口产品得到正确的使用和发展。 2设置泄压口的必要性

室内气体消防灭火系统安装规范

室内气体消防灭火系统安装规范 1范围 本工艺标准适用于民用和一般工业建筑中设置的二氧化碳灭火系统,卤代烷1211、1301灭火系统的管道及设备安装。 2施工准备 2.1接到任务后,认真熟悉施工图纸,对照装修图并结合施工现场检查管路及喷嘴位置是否相吻合,如存在问题,应及时与设计协商解决并办理洽商手续。根据工程特点确定施工方法,配备所需各项资源。 2.2设备材料: 2.2.1消防气体灭火系统主要设备材料的选用应符合6一1“消防工程安装的通用要求”的有关内容。 2.2.2主要设备:灭火剂储存容器及系统组件包括单向阀、容器阀、选择阀、阀驱动装置和喷嘴等。这些系统组件均应给国家质量监督检测中心检测合格。系统中采用的不能复验的产品,如安全膜片等,应具有生产厂出具的同批产品检验报告。 2.2.3一般常用材料:管材及连接件,型钢,焊条,氮气,氧气,乙炔,聚四氟乙烯胶带,膨胀螺栓,螺栓,螺母,密封垫;机油,防腐漆,稀料,小线,铅丝,电池等。 2.3主要机具:锯管机,套管机,台钻,手电钻,射钉枪,电焊机,空气压缩机,专用弯管机,步话机,管钳,压力案子,手锯,手锤,调管专用支架,钢锯,锉刀,板牙,扳手,活扳手,改锥,榔头,錾子,钢卷尺,平尺,角尺,油标卡尺,水平尺,线坠,白绸或白纸,石笔,粉笔,铅笔等。 2.4作业条件: 2.4.1预留预埋应配合结构施工进行。 2.4.2管网安装所需基准线应测定并标明。吊顶内管道应在封吊顶前完成。 2.4.3设备安装应在设备间完成粗装修后进行。 3操作工艺 3.1工艺流程: 安装准备→管网安装→设备及配件安装→系统调试及功能验收 3.2安装准备: 3.2.1熟悉图纸并对照现场复核管路走向,发现问题及时与设计研究解决。检查预留预埋是否正确;临时剔凿应与设计,土建协调好。 3.2.2进场设备材料检验:设备材料规格:型号应满足设计要求,外观整洁,无缺损、变形及锈蚀,镀锌或涂漆均匀无脱落,接口螺纹和法兰密封面完好无损伤;充压药剂钢瓶压力表指针应在指定范围内。选择阀、单向阀、高压软管、集流管逐个水压试验和气压严密性试验结果,应满足施工规范规定。 3.3管网安装: 3.3.1气体灭火系统管材应根据设计要求或贮存压力选用,一般采用冷拔冷轧精密无缝钢管并内外镀锌。 当公称直径小于或等于80mm时,宜采用螺纹连接;当公称直径大于80mm的管道,宜采用法兰连接。丝扣及法兰连接件应满足试验压力要求并内外镀锌。对镀锌层有腐蚀的环境可采用不锈钢或钢管等。 3.3.2管道安装前应进行调直并清理内部杂物。采用法兰连接时,被焊接损坏的镀锌层要做好防腐处理。丝扣连接时,丝扣填料应采用聚乙烯四氟胶带。切割的管口应用锉刀打净毛刺。 3.3.3气体灭火管道必须固定牢靠。公称直径大于或等于50mm的主干管道,垂直和水平方向至少应各安装一个防晃支架。当穿过建筑物楼层时,每层应设一个防晃支架。当水平管道改变方向时,应增设防晃支架。管道支吊架安装最大间距应符合下列规定: 公称直径(mm):1520253240506580100150 最大间距(m):1.51.82.12.42.73.43.53.74.35.2 3.3.4干管安装时,出瓶室的一段管应先安装好,找准尺寸后固定牢靠,管与管之间的距离应严格按照施工图纸确定,确保设备安装尺寸,然后再顺序安装其它管道。所有管道的安装尺寸应与设计图纸一致,严禁任意改变管道方向和长度。 3.3.5卤代烷1301和二氧化碳系统管道的三通接头的分流出口应水平安装。 3.3.6吊顶型喷头支管安装前,应按照图纸在现场确定出喷头位置,有条件的可以配合吊顶装修进行,但封吊顶板前应完成系统压力、严密性试验。喷头支管应加固定支架,支架与喷嘴间的管道长度不应大于500mm。 3.3.7管网安装完应进行强度试验,如采用水压试验,试验压力为工作压力的1.5倍。如采用气压试验,试验压力为工作压力的1.2倍。在试验压力下稳压5min,无明显渗漏,目测管道无变形为合格。高压二氧化碳灭火系统管道的水压强度试验压力应为15MPa。 3.3.8强度试验后,管网应进行吹扫。吹扫时管道末端应保证20m/s的流速,采用白布进行检查,直至无铁锈、尘土、水渍及其它赃物出现为合格。

气体灭火设计说明

气体灭火设计说明 1、主要依据《气体灭火系统设计规范》GB50370-2005;《高层民用建筑防火设计规范》 GB50045-95(2005年);《火灾自动报警系统设计规范》GB50116-98;《汽车库、修车库、停车场设计防火规范》GB50067-97等相关规范进行设计。 2、设计原理: 本系统具有自动,手动及机械应急操作三种启动方式。自动状态下,当防护区发生火警时,火灾报警控制器接到防护区两独立火灾报警后立即发出联动信号(关闭通风空调等),经过0~30秒时间(可调)延时,火灾报警控制器输出24伏直流电,启动灭火系统。灭火气体经管网施放到防护区内,控制器面板喷放指示灯亮,同时,报警控制器接收压力讯号器反馈信号,防护区门灯亮,避免人员误入。 当防护区有人工资时,可通过防护区门外的手动/自动转换开关,使系统从自动状态转换到手动状态,当防护区发生火警时,报警控制器只发出报警信号,不输出动作信号,由工作人员确认火警,按下控制面板或击碎防护区门外紧急启动按钮,即可立即启动系统,喷放七氟丙烷气体灭火剂。当自动/手动紧急启动都失灵时。可进入储瓶间内实现机械应急操作启动。只需拔出对应防护区启动瓶上的手动保险销,再拍击手动按钮(分两步进行)即可完成整套系统的启动喷放工作。 3、声光报警器安装在工作人员易看到和听到的地方,以便火灾报警时人员及时撤离,距地 1.8~ 2.3米。 4、手动按钮安装在防护区门外,离地高度1.3~1.5米,工作人员便于操作及明显处。 5、门灯安装在防护区门外正上方0.2米处。 6、探测器水平安装,周围0.5米内不应有遮挡物,探测器至墙壁、梁边距离不应小于0.5 米,至空调送风口边的水平距离不应小于1.5米。感烟探测器保护半径不大于5.8米(不大于60平方米),感温探测器保护半径不应大于3.6米(不大于20平方米)。 7、气体灭火控制器应安装在墙上,其底边距地(楼)面高度宜为1.3~1.5米,落地安装时, 其底宜高出地坪0.1~0.2米,其靠近门轴的侧面距墙不应小于0.5米,正面操作距离不应小于1.2米。 8、所有类比感烟及感温探测器回路采用ZBN-RVS-2×1.5mm2/SC20,其它回路采用 ZBN-RVVP-2×1.0mm2/SC20或ZBN-RVS-2×1.5mm2/SC20电线,电压等级不应低于交流500V,火灾自动报警系统传输线路、消防控制室、通讯和报警线路,应采用传金属管保护,并暗敷(保护层厚度不小于30mm)在非燃烧体内。当明敷时,应采用金属管或金属线槽保护,采取防火保护设施。 9、气体灭火控制器能通过模块将火警、放气、故障、启动、自动/手动信号反馈至消防报警 主机。 10、系统供电: 火灾自动报警系统主电源采用AC200V,由本工程的消防电源专路供给,备用电源采用DC24V,由火灾报警控制器专用蓄电池供给,备有电源应具有浮充和自动投入的功能。11、防护区内的门应向疏散方向开启,并能自动关闭,保证在任何情况下可以从防护区内打开。 12、凡经过有爆炸危险的场所的官网系统,均应设防静电接地。 13、详尽设计可根据各不同专业厂家进行。 14、未尽事宜按国家相关规范执行。

相关主题
文本预览
相关文档 最新文档